• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waves propagating over a two-layer porous barrier on a seabed *

    2018-07-06 10:01:48QiangLin林強QingruiMeng孟慶瑞DongqiangLu盧東強
    水動力學研究與進展 B輯 2018年3期
    關鍵詞:林強

    Qiang Lin (林強), Qing-rui Meng (孟慶瑞), Dong-qiang Lu (盧東強)

    1. China Ship Scientific Research Center, Wuxi 214082, China

    2. Shanghai Oriental Maritime Engineering Technology Company Limited, Shanghai 200011, China

    3. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    4. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China

    Introduction

    The interactions between waves and porous regions have given rise to extensive attention among costal engineering designers. The porous media are probably rocks and breakwaters, which may reflect the energy by adopting the proper porosity and dissipate the energy by friction. The study on the interactions between waves and porous regions is useful to analyze the wave motion and wave loads on the marine structures. For instance, the bottoms of permeable breakwaters are stuck on the seabed, while their tops are below or pierce the water. The porous breakwaters may play a significant role in reducing the total load on the structures.

    When the waves encounter the porous structures,some energy is reflected into the open water; some is transmitted into the porous region, the others dissipated. The specific amount of each part depends on the parameters of the porous media. Sollitt and Cross[1]proposed a theory to predict the reflected and transmitted energy of a rectangular breakwater with the matching conditions at the windward and leeward faces. With a similar model, Chwang[2]developed a porous-wavemaker theory to analyze the small amplitude surface waves generated by the horizontal oscillations of a porous vertical plate. The effects of two important parameters, namely the wave-effect and the porous-effect parameters, on the surface waves and hydrodynamic pressures were analyzed in detail.Sahoo et al.[3]extended this work to four different configurations: a bottom-standing barrier, a surfacepiercing barrier, a barrier with a gap, and a submerged barrier, in the case of obliquely incident surface waves.A new model of a vertical porous structure placed near and away from a rigid vertical wall was studied by Das and Bora[4]within the framework of linear water wave theory. Zhao et al.[5]considered the wave interaction with a vertical wall protected by a submerged porous bar and claimed that the wave run-up and wave force were effectively reduced by the porous bar.In order to verify the theoretical method, some experiments were carried out by Zhang et al.[6]and Zhai et al.[7]in wave flumes to measure the pore pressure.

    For an impermeable seabed, free surface waves consist of the propagating and evanescent waves. As for the waves in the porous region, the wave numbers become complex ones, which was detailedly analyzed by Jeng[8]. The real part is related to the wavelength,while the imaginary part is the damping of the water waves. Metallinos et al.[9]investigated the submerged porous breakwaters of mild to steep slopes with theoretical and experimental methods. Mohapatra[10]presented an expression of Green’s function suitable for the scattering problem with obliquely incident waves propagating over a region, in which the upper surface was covered by an infinitely extended thin elastic plate and the lower surface was a porous bottom with a small deformation. The influences of poroelastic bed on flexural-gravity waves in both cases of single-layer and two-layer fluids were studied by Das et al.[11]which revealed that the phase speed for the flexural-gravity mode in the two-layer fluid reaches the maximum value for large porosities when the interface is close to the poroelastic bed. With a numerical model, Shoushtari and Cartwright[12]analyzed the effects of porous medium deformation on the dispersion of water-table waves.

    In real circumstances, ocean waves are usually simultaneously accompanied by currents. Based on Biot’s poroelastic dynamic theory, Ye and Jeng[13]investigated the model of seabed response with waves and currents. Furthermore, Zhang et al.[14]had a parametric study for the influence of the currents and non-linear waves on the seabed responses. A numerical calculation model was proposed by Zhang et al.[15]to analyze the stability of seabed under wave and current loadings. It has shown that the excess pore pressure increases with increasing flow velocity.

    A porous model of different parameters is more appropriate when the seabed consists of multiple-layer breakwater and rocks. Seymour et al.[16]proposed a new method for the wave-induced response in a soil matrix, with the permeability as a function of depth.Jeng and Seymour[17]verified an analytical solution of soil response with variable permeability by a comparison with the conventional solution for uniform permeability. A stochastic finite element model was put forward to study the wave-induced seabed response in a spatially random porous seabed by Zhang et al.[18].

    1. Mathematical formulation

    The Cartesian coordinates are chosen in such a way thatz= 0 coincides with the undisturbed upper surface. Thexaxis points horizontally rightwards and thezaxis points vertically upwards, withz=-Has the flat bottom, as shown in Fig. 1. With the assumptions that the fluids are inviscid and incompressible and that the motion is irrotational, the problem can be described by the potential flow theory.The whole flow domain is mathematically divided into three parts, an open water region Ω1(-∞<x<-b), a porous water region Ω2(-b<x<b) with a two-layer porous barrier mounted on seabed, and an open water region Ω3(b<x< ∞). In the porous water region Ω2,h0,h1andh2are the depths of the pure water region, and the first-layer and the second-layer porous water, respectively, whereh0+h1+h2=H.

    Fig. 1 Schematic diagram for waves propagation over a twolayer porous barrier on a seabed

    Assuming that the incident waves are simply time-harmonic with a given angular frequency ω, we have, via separating the time factor, the velocity potential, the surface elevationare the spatial elevations on the surfacez= 0 andtis the time variable. The spatial velocity potential Φ(x,z) satisfies the Laplace equation

    The boundary conditions on the free surface, in combination of the kinematic and dynamic conditions,can be formulated as

    wheregis the gravitational acceleration.

    The bottom boundary condition of the flat rigid seabed reads

    The velocity and pressure must be continuous at the interface between media for different layers,respectively. Three dimensionless physical parameters of the porous media, i.e., the porosity ε, the linear friction factorfand the inertial terms, are introduced by Sollitt and Cross[1]. The continuous conditions at the interface are written as, for -b<x<b,

    where Φm(x,z) withm= 0,1,2 are the spatial velocity potentials of the pure water (m= 0), the first layer porous region (m= 1) and the second layer porous region (m=2) in Ω2, εmwithm=0,1,2 are the porosity of the pure water (m= 0), the first layer porous region (m= 1) and the second layer porous region (m= 2),Gmwithm= 0,1,2 is calculated fromsm+ifm,smandfmare the inertial term and the linear friction factor of the first layer porous region (m= 1) and the second layer porous region (m= 2) whiles0=1 andf0=1 represent those for the pure water.

    The matching relations of the pressure and the velocity on the interfacex=±bbetween the open water region (Ω1, Ω3) and the porous water region Ω2are presented via the following equations:

    2. Method of solution

    2.1 Dispersion relations

    It is well known that the dispersion relation for the pure water in the regions1Ω and3Ω can be easily obtained as follows

    wherekis the wave number. For a given frequency ω, the dispersion relation Eq. (12) for the open water region yields one positive real rootk0, and has an infinite number of imaginary roots iki(i= 1,2,…),wherekiis positive and real. The real root corresponds to the propagating wave modes in the open water region and the imaginary roots ikicorrespond to the evanescent modes in the open water region.

    With the help of the general solutions of Eq. (1)consisting of eik~x+k~z, wherek~is the wave number of the porous region, the dispersion relation for the porous region can be derived by solving simultaneously Eqs. (2)-(7), which is formulated as

    whereγ1=G1/G2and γ2= ε1/ε2. In accordance with the expressions, γ1is a complex number while γ2is a positive real number. Only whens1/s2=f1/f2, γ1reduces to a positive one.

    As the value of the depthh2tends to zero,t2tends to zero and γ1and γ2tend to 1.

    The equation then reduces to the expression

    which is the same as the equation derived by Meng and Lu[19]. When1htends to zero and1ttends to zero, the above equation reduces to the expression

    which is similar to Eq. (12).

    From Eq. (13), we can obtain, for a given ω andf= 0, one positive real roots and an infinite number of imaginary roots. For a non-zero linear friction factorf, the equation will have an infinite number of complex roots=+i, where α~jand β~jwith (j= 0,1,2,3…) are real numbers,which are associated with the decaying propagating wave modes in the porous region. Amongj=0,1,2,3…), the waves corresponding tohave the smallest wavelength and decaying rate.

    2.2 Expression for the spatial velocity potential

    The plane incident waves from the negative infinity in the Cartesian coordinates are denoted by ζ0eikx, whereζ0is the wave amplitude. The velocity potentials referring to the open water region Ω1(-∞ <x< -b), the porous water region Ω2(-b<x<b) and the open water region Ω3(b<x< ∞)are marked with ΦΩ1, ΦΩ2and ΦΩ3, respectively.With the method of separation of variables, the velocity potentials ΦΩ1, ΦΩ2and ΦΩ3can be formulated by

    where

    whereU(k,z) andV(z) are the vertical eigenfunctions of the open water region and porous regions,respectively, the reflection coefficientsR0andRi,the transmission coefficientsT0andTi, and the intermediate variablesandare complex numbers to be determined, wherei= 1,2,… andare the summation symbols corresponding toi= 1,2,… andj= 0,1,2,…,respectively.

    2.3 Solutions for the reection and transmission coefficients

    The core process is to solve unknown expansion coefficients from the series equations. Substituting ΦΩ1, ΦΩ2and ΦΩ3in Eqs. (16)-(18) into the matching conditions Eqs. (8)-(11) for the interface atx=±b, we obtain, form= 0,1,2,

    From Eqs. (23)-(26), we notice that the left- and right-hand sides of the equations are functions of the vertical coordinatez. In order to obtain the unknown expansion coefficients, we use the orthogonality of the vertical eigenfunctions for the two-layer porous region and define an inner product as follows

    In the case ofn≠l, we have=0.

    Employing the inner product on both sides of Eqs.(23)-(26) with different vertical eigenfunctions(z)(n= 0,1,2,…) in the porous region, we eliminate the intermediate variablesandand derive

    When we seti=Mfrom the infinite summationa combination of Eqs. (28) and (29) yields a system of 2M+ 2 simultaneous equations for 2M+ 2 unknown expansion coefficients,R0,Ri,T0,Tiwithi=1,2,…M, which can readily be solved numerically.

    3. Numerical results and discussion

    For clarity, selecting two independent fundamental dimensions, the total depth of the fluidHand the gravitational accelerationgas a unit system allows us to nondimensionalize all the quantities:

    The nondimensional variables, throughout the rest of the paper, will be written without overhead hat symbols for convenience.

    Fig. 3 (Color online) The effects of f1 and f2 on the wave numbers, where h0 :h 1 : h 2 =8:1:1, ε1 = ε 2 = 0.4 and ω=0.3

    To begin with, Figs. 2-4 illustrate the effects of the parameters, which include the porosity and friction of media and the depth of the porous region, on the wave numbers (k0of the pure water region,of the porous region andof the porous region). In Fig. 2, the effects of ε1and ε2on the wave numbers is shown by different lines, whereh0:h1:h2=8:1:1,f1=1.0,f2=1.3 and ω=0.3. α~0decreases linearly andincreases nearly linearly no matter whether ε1or ε2decreases. Whenf=0,=0, which reveals that the amplitudes of the waves remain stable and there is no energy loss.Larger porosities result in larger wavelength and decaying rate of the waves.

    Figure 3 describes the effects off1andf2on the wave numbers, whereh0:h1:h2=8:1:1, ε1=ε2=0.4 and ω=0.3. As can be seen from the figure, the values ofincrease gradually with the increment of the friction, but the increasing relationship is nonlinear.reaches the peak aroundf1=1 orf2=1 and then declines slowly.

    Fig. 4 (Color online) The effects of the depth rates on the wave numbers, where ε1=0.9,ε2=0.8 and f1 =f2=1.1

    The effects of the depth rates on the wave numbers are displayed in Fig. 4, where ε1=0.9,ε2= 0.8,f1=f2=1.1 and ω=0.3. The porous media occupying more region cause the curves of the dispersion relation to move upwards. As for, there exists a maximum point and the values of the peak become larger as the depth of the porous region increases.

    Forf1=f2=0, we can calculateE= (R/I0)2+(T/I)2=1, which indicates the conservation of the

    0 energy; while forf1≠ 0 orf2≠ 0, the energy is dissipated due to the friction effect andE=represent the relative loss of the energy, whereECis the total energy of the reflected and transmitted waves when the computation is converged. Here we considerh0=0.5,h1=0.3,h2=0.2, ζ0= 0.01,b= 0.4,ω=2.0, ε1=0.9, ε2=0.8,f1=1.0,f2=1.1 ands1=s2=1. Table 1 is shown to examine the convergence of the result for differentM, whereMis the number of evanescent modes. AsMincreases,the corresponding reflectionand transmissioncoefficients converge. WhenM≥ 1 6, the numerical result for the energy is approximately conserved. The following figures are plotted withM= 16,h0=0.1,h1=0.4,h2=0.5, ζ0= 0.01 ands1=s2=1 for illustration.

    Table 1 The values of E and LE for different M

    Fig. 5 (Color online) The effects of kH on the coefficients, and ( R /I 0 )2+(T/I 0)2, where b =0.4, ε1=0.9, ε2=0.8, f1=1.0 and f2=1.1

    Figure 5 shows the effects of the non-dimensional water depthkHon the coefficientswhereb= 0.4,ε1=0.9, ε2=0.8,f1=1.0 andf2=1.1. As the increment ofkH, the reflection coefficientspresent a fluctuant profile and reaches the first peak atkH≈ 0 .75, while the transmission coefficientfirstly decreases and reaches the minimum atkH≈3.5.

    Fig. 6 (Color online) The effects of kH on the coefficients, and ( R /I )2+(T/I )2in the case of00 different ε1, where b=0.4, ε2=0.4 and f1=f2=1

    Fig. 7 (Color online) The effects of kH on the coefficients, and ( R /I )2+(T/I )2in the case of00 different ε2, where b=0.4, ε1=0.4 and f1=f2=1

    It is shown, in Figs. 6, 7, that the different porosities have remarkable influence on the reflection coefficientsand the transmission coefficientwhereb= 0.4,f1=f2=1. When ε2is fixed at about 0.4, the maximum ofincreases and the second peak becomes obvious as the decrease of ε1, while the value of the transmission coefficientis becoming larger for largerkH. From Fig.7, it can be seen thatis also insensitive to the changes of ε2, butis not. For ε1=0.4, the smaller ε2, the larger the peak values ofThe values ofhowever, remain unchanged for largerkH.

    Fig. 8 (Color online) The effects of kH on the coefficients, and ( R /I0 )2+(T/I 0)2in the case of different f1, where b=0.4, ε1=0.9 and ε2=0.8

    Figures 8, 9 respectively showand (R/I0)2+(T/I0)2for different friction factorsf1andf2of the porous region, whereb= 0.4,ε1=0.9 and ε2=0.8. The large friction factors enlarge the reflection coefficientand weaken the transmission coefficien tdue to the resistance and dissipation effects in the porous region.

    Fig. 9 (Color online) The effects of kH on the coefficients, and ( R /I0 )2+(T/I0 )2in the case of0 different f2, where b=0.4, ε1=0.9 and ε2=0.8

    The effects of the width of the porous region on the coefficientsand (R/I0)2+(T/I0)2for different ε1and ε2are illustrated in Fig. 10, whereω=1.0,f1=1.0 andf2=1.1. It is obvious that the loss of the energy increases with increasing value ofb/H. The reflection coefficientsexhibit fluctuant behavior with the increment ofb/Hand finally remain steady forb/H≥ 2 .And the values ofdecline all the way back to the near-zero. Furthermore, we consider the impact of the porosity on the coefficients. The decrease of ε1and ε2will cause more reflected waves and the increase of the peak values ofThe curves with small ε1and ε2have a fast descent rate.

    Fig. 10 (Color online) The effects of the width of b/ H on the coefficients , and ( R /I )2+(T/I )200 in the case of different ε1 and ε2, where ω=1.0,f1 =1.0 and f2=1.1

    4. Conclusions

    This paper herein has presented an semianalytical method for the problem that the simple time-harmonic incident waves with a given angular frequent propagate over a two-layer porous barrier.With the framework of the linear potential flow theory,we adopt the method of matched eigenfunction expansions and define a new form of the inner product for the two-layer porous barrier to simplify the series in the simultaneous equations. A suitable truncation number of the series will save much calculating time without sacrificing the accuracy of the solution.

    We have discussed the influence of the characteristics of the porous media on the dispersion relation,reflected and transmitted energy. The relationships between the wave numberand the porosity (ε1or ε2) are linear, but the relationships betweenand the friction (f1orf2) are nonlinear. The small porosities and large friction cause the wavelength to become short. The reflection coefficients have a fluctuant profile with the increase ofkH. With the decrease of the porosity ε1and ε2, the reflection coefficientscrease and the profiles exhibit fluctuant obviously, while for largerkH, the transmission coefficientsincrease to some extent.The large friction will enhance the reflection waves and reduce the transmission ones. Moreover, when the width of the porous region reaches a certain value, the reflection coefficient will remain constant, but the transmission waves will disappear.

    Acknowledgements

    The authors would like to thank Professor S. Q.Dai of Shanghai University for his helpful suggestions and thank the anonymous reviewers for their constructive comments.

    [1] Sollitt C. K., Cross R. H. Wave transmission through permeable breakwaters [J].Coastal Engineering Proceedings, 1972, 1(13): 1827-1846.

    [2] Chwang A. T. A porous-wavemaker theory [J].Journal of Fluid Mechanics, 1983, 132: 395-406.

    [3] Sahoo T., Chan A. T., Chwang A. T. Scattering of oblique surface waves by permeable barriers [J].Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000,126(4): 196-205.

    [4] Das S., Bora S. N. Wave damping by a vertical porous structure placed near and away from a rigid vertical wall[J].Geophysical and Astrophysical Fluid Dynamics, 2014,108(2): 147-167.

    [5] Zhao Y., Liu Y., Li H. J. Wave interaction with a partially reflecting vertical wall protected by a submerged porous bar [J].Journal of Ocean University of China, 2016, 15(4):619-626.

    [6] Zhang J., Li Q., Ding C. et al. Experimental investigation of wave-driven pore-water pressure and wave attenuation in a sandy seabed [J].Advances in Mechanical Engineering, 2016, 8(6): 1-10.

    [7] Zhai Y., Zhang J., Jiang L. et al. Experimental study of wave motion and pore pressure around a submerged impermeable breakwater in a sandy seabed [J].International Journal of Offshore and Polar Engineering, 2016, 28(1):87-95.

    [8] Jeng D. S. Wave dispersion equation in a porous seabed[J].Ocean Engineering, 2001, 28(12): 1585-1599.

    [9] Metallinos A. S., Repousis E. G., Memos C. D. Wave propagation over a submerged porous breakwater with steep slopes [J].Ocean Engineering, 2016, 111: 424-438.

    [10] Mohapatra S. The interaction of oblique flexural gravity incident waves with a small bottom deformation on a porous ocean-bed: Green’s function approach [J].Journal of Marine Science and Application, 2016, 15(2): 112-122.

    [11] Das S., Behera H., Sahoo T. Flexural gravity wave motion over poroelastic bed [J].Wave Motion, 2016, 63: 135-148.[12] Shoushtari S. M. H. J., Cartwright N. Modelling the effects of porous media deformation on the propagation of water-table waves in a sandy unconfined aquifer [J].Hydrogeology Journal, 2017, 25(2): 287-295.

    [13] Ye J. H., Jeng D. S. Response of porous seabed to nature loadings: Waves and currents [J].Journal of Engineering Mechanics, 2011, 138(6): 601-613.

    [14] Zhang Y., Jeng D. S., Gao F. P. et al. An analytical solution for response of a porous seabed to combined wave and current loading [J].Ocean Engineering, 2013, 57:240-247.

    [15] Zhang X., Zhang G., Xu C. Stability analysis on a porous seabed under wave and current loading [J].Marine Georesources and Geotechnology, 2017, 35(5): 710-718.

    [16] Seymour B. R., Jeng D. S., Hsu J. R. C. Transient soil response in a porous seabed with variable permeability [J].Ocean Engineering, 1996, 23(1): 27-46.

    [17] Jeng D. S., Seymour B. R. Response in seabed of finite depth with variable permeability [J].Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(10): 902-911.

    [18] Zhang L. L., Cheng Y., Li J. H. et al. Wave-induced oscillatory response in a randomly heterogeneous porous seabed [J].Ocean Engineering, 2016, 111: 116-127.

    [19] Meng Q. R., Lu D. Q. Scattering of gravity waves by a porous rectangular barrier on a seabed [J].Journal of Hydrodynamics, 2016, 28(3): 519-522.

    猜你喜歡
    林強
    林強
    書香兩岸(2020年3期)2020-06-29 12:33:45
    山村人物譜
    海燕(2019年7期)2019-11-15 08:11:24
    二 月
    中外文摘(2018年14期)2018-06-28 02:54:26
    宅男的一日運動
    恐怖玩笑
    林強 典藏欣賞
    寶藏(2017年7期)2017-08-09 08:15:19
    堅決不收禮
    上海故事(2017年2期)2017-02-22 18:02:29
    為了四女兒的嫁妝!南非首例華商擊斃劫匪案內幕
    自行車代駕
    是什么讓“失戀聯(lián)盟”墜入深淵
    中外文摘(2013年18期)2013-11-13 02:33:54
    中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 天美传媒精品一区二区| 国产精品免费大片| 色婷婷av一区二区三区视频| 精品国产一区二区久久| 亚洲欧美精品自产自拍| 老司机影院毛片| 日韩,欧美,国产一区二区三区| 午夜免费观看性视频| 男女无遮挡免费网站观看| 久久精品国产鲁丝片午夜精品| 午夜精品国产一区二区电影| 亚洲国产欧美日韩在线播放| 韩国高清视频一区二区三区| 久久久久网色| 97人妻天天添夜夜摸| 一级黄片播放器| 国产精品嫩草影院av在线观看| 国产精品久久久久成人av| 老司机亚洲免费影院| 日本欧美国产在线视频| 午夜福利影视在线免费观看| 免费观看性生交大片5| 9色porny在线观看| 久久综合国产亚洲精品| 亚洲国产精品一区三区| 爱豆传媒免费全集在线观看| 日韩三级伦理在线观看| 亚洲内射少妇av| 久久热在线av| 看非洲黑人一级黄片| 超色免费av| 一区二区三区精品91| 精品国产露脸久久av麻豆| 免费观看在线日韩| 一级毛片黄色毛片免费观看视频| 夫妻性生交免费视频一级片| 人体艺术视频欧美日本| 寂寞人妻少妇视频99o| 成年美女黄网站色视频大全免费| 亚洲第一区二区三区不卡| 国产精品av久久久久免费| 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全免费视频 | 日本vs欧美在线观看视频| 美女国产视频在线观看| 亚洲伊人久久精品综合| 少妇人妻久久综合中文| 美女国产视频在线观看| 国产成人免费观看mmmm| 精品一区二区免费观看| 国产97色在线日韩免费| av免费在线看不卡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人精品一二三区| 亚洲综合色惰| 女人精品久久久久毛片| 最黄视频免费看| 日本vs欧美在线观看视频| 在线观看三级黄色| 免费av中文字幕在线| 两个人看的免费小视频| 丰满迷人的少妇在线观看| 日本av手机在线免费观看| 国产1区2区3区精品| 啦啦啦啦在线视频资源| 亚洲欧美一区二区三区国产| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 丁香六月天网| 美女中出高潮动态图| 考比视频在线观看| 午夜福利,免费看| 夫妻性生交免费视频一级片| 免费观看在线日韩| 亚洲精品自拍成人| 国产精品国产三级专区第一集| 男人操女人黄网站| 亚洲国产av新网站| 在线观看三级黄色| 少妇熟女欧美另类| 成人二区视频| 黑人巨大精品欧美一区二区蜜桃| 18禁观看日本| 一级爰片在线观看| 一区福利在线观看| 国产午夜精品一二区理论片| 中文字幕人妻丝袜一区二区 | 宅男免费午夜| 性高湖久久久久久久久免费观看| 最近中文字幕2019免费版| 免费观看av网站的网址| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 欧美精品一区二区免费开放| 国产国语露脸激情在线看| 一本色道久久久久久精品综合| 成人国产麻豆网| 成年人午夜在线观看视频| 免费大片黄手机在线观看| 久久久久久伊人网av| 精品国产一区二区久久| 欧美精品一区二区大全| a级片在线免费高清观看视频| www日本在线高清视频| 看免费av毛片| 色视频在线一区二区三区| 国产高清国产精品国产三级| 黄色怎么调成土黄色| 亚洲国产av新网站| 亚洲av福利一区| 91久久精品国产一区二区三区| 国产人伦9x9x在线观看 | 久久精品国产鲁丝片午夜精品| 一级爰片在线观看| 日韩在线高清观看一区二区三区| 女性生殖器流出的白浆| 你懂的网址亚洲精品在线观看| 母亲3免费完整高清在线观看 | 男女国产视频网站| 国产精品一区二区在线不卡| av卡一久久| 免费黄色在线免费观看| 免费黄网站久久成人精品| 老女人水多毛片| 赤兔流量卡办理| 成人亚洲精品一区在线观看| 国产成人精品久久久久久| 电影成人av| 菩萨蛮人人尽说江南好唐韦庄| 中文精品一卡2卡3卡4更新| 中文字幕最新亚洲高清| 午夜老司机福利剧场| 亚洲欧美一区二区三区国产| 午夜精品国产一区二区电影| 亚洲国产看品久久| 亚洲精品av麻豆狂野| 亚洲精品国产av成人精品| 久久人人爽人人片av| 香蕉精品网在线| 日韩视频在线欧美| av有码第一页| 永久网站在线| 麻豆av在线久日| 日韩伦理黄色片| 十分钟在线观看高清视频www| 日本猛色少妇xxxxx猛交久久| 精品一区在线观看国产| 中文字幕av电影在线播放| 超碰成人久久| 亚洲三区欧美一区| 建设人人有责人人尽责人人享有的| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费视频网站a站| 久久亚洲国产成人精品v| 亚洲成色77777| 一级片免费观看大全| 最黄视频免费看| 一级片'在线观看视频| 777米奇影视久久| 一本—道久久a久久精品蜜桃钙片| 一边亲一边摸免费视频| 成人影院久久| 又粗又硬又长又爽又黄的视频| 亚洲一级一片aⅴ在线观看| 精品国产乱码久久久久久小说| 成年女人毛片免费观看观看9 | 1024香蕉在线观看| 久久久久久久久久久免费av| 天堂中文最新版在线下载| 亚洲人成电影观看| 99热国产这里只有精品6| 免费不卡的大黄色大毛片视频在线观看| 欧美另类一区| 啦啦啦在线免费观看视频4| 在线 av 中文字幕| 伊人久久大香线蕉亚洲五| 美女中出高潮动态图| 女人久久www免费人成看片| 麻豆av在线久日| 精品一区二区免费观看| 我的亚洲天堂| 人妻少妇偷人精品九色| 自线自在国产av| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 一级,二级,三级黄色视频| 亚洲美女视频黄频| 黑人欧美特级aaaaaa片| 老司机亚洲免费影院| 韩国精品一区二区三区| 美女中出高潮动态图| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 国产成人精品婷婷| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| tube8黄色片| 欧美激情极品国产一区二区三区| 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 亚洲国产精品一区三区| 91精品伊人久久大香线蕉| 一级a爱视频在线免费观看| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 18在线观看网站| 七月丁香在线播放| 91在线精品国自产拍蜜月| 99热全是精品| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久噜噜老黄| av一本久久久久| 我要看黄色一级片免费的| 中文字幕制服av| 亚洲精品一二三| 中文字幕人妻丝袜制服| 国产国语露脸激情在线看| 成人漫画全彩无遮挡| 国产精品无大码| 丰满乱子伦码专区| 热99国产精品久久久久久7| 老熟女久久久| 伦精品一区二区三区| 亚洲精品视频女| 十分钟在线观看高清视频www| 看免费av毛片| 建设人人有责人人尽责人人享有的| 久久久a久久爽久久v久久| 亚洲经典国产精华液单| 日本av免费视频播放| 国产精品 欧美亚洲| 一本久久精品| 女人被躁到高潮嗷嗷叫费观| 亚洲三级黄色毛片| 丝袜美腿诱惑在线| 成人国产麻豆网| 我的亚洲天堂| 日韩一区二区三区影片| 日韩欧美一区视频在线观看| 人体艺术视频欧美日本| 中文字幕人妻熟女乱码| 久久久久久久久免费视频了| 亚洲欧美精品综合一区二区三区 | 一本大道久久a久久精品| 天天躁日日躁夜夜躁夜夜| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区国产| 99热全是精品| 国产一级毛片在线| 涩涩av久久男人的天堂| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| 国产野战对白在线观看| 一级片免费观看大全| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 国产成人精品在线电影| 高清av免费在线| 久久久久网色| 久久精品aⅴ一区二区三区四区 | 黄色怎么调成土黄色| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 中文字幕亚洲精品专区| 国产精品无大码| 777久久人妻少妇嫩草av网站| 色网站视频免费| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| 国产极品粉嫩免费观看在线| 韩国av在线不卡| 国产免费现黄频在线看| 欧美精品国产亚洲| 久久久久久人人人人人| 满18在线观看网站| 国产日韩一区二区三区精品不卡| 亚洲图色成人| 亚洲精品自拍成人| 9色porny在线观看| 中文字幕亚洲精品专区| 欧美激情高清一区二区三区 | 夫妻午夜视频| 国产乱来视频区| 日本黄色日本黄色录像| 亚洲欧美成人综合另类久久久| av不卡在线播放| 国产淫语在线视频| 久久久久久久久久久久大奶| 成人漫画全彩无遮挡| 国产精品久久久久久精品古装| 亚洲成色77777| 亚洲av男天堂| 少妇熟女欧美另类| 中文字幕人妻丝袜制服| 午夜老司机福利剧场| 九草在线视频观看| 久久97久久精品| 国产伦理片在线播放av一区| 男女国产视频网站| 另类亚洲欧美激情| www.熟女人妻精品国产| 亚洲精品久久成人aⅴ小说| 国产97色在线日韩免费| www.自偷自拍.com| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 国产精品国产三级专区第一集| 亚洲一区中文字幕在线| 男女下面插进去视频免费观看| 一级毛片我不卡| 女性生殖器流出的白浆| 午夜福利视频精品| 国产精品.久久久| 校园人妻丝袜中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲一区二区精品| 久久99精品国语久久久| 一区二区三区激情视频| av在线观看视频网站免费| 欧美日韩精品网址| av网站免费在线观看视频| 超碰成人久久| 国产成人精品久久久久久| 咕卡用的链子| 国产精品av久久久久免费| av卡一久久| 国产一区二区激情短视频 | 亚洲,欧美,日韩| 精品一区在线观看国产| 免费看不卡的av| 国产男女内射视频| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 成人黄色视频免费在线看| 激情视频va一区二区三区| 18在线观看网站| 少妇人妻精品综合一区二区| 2022亚洲国产成人精品| 一区二区三区激情视频| 午夜av观看不卡| 妹子高潮喷水视频| 男人操女人黄网站| 中文字幕亚洲精品专区| 一区二区av电影网| 新久久久久国产一级毛片| 一区二区av电影网| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 国产亚洲av片在线观看秒播厂| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 少妇人妻 视频| 999久久久国产精品视频| 日本色播在线视频| 中文字幕制服av| 欧美bdsm另类| 九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看| 老熟女久久久| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| 老女人水多毛片| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av片在线观看秒播厂| 色吧在线观看| 久久久久久久亚洲中文字幕| 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 中国国产av一级| 午夜福利,免费看| 国产综合精华液| 亚洲在久久综合| 久久99热这里只频精品6学生| 91精品三级在线观看| 久久99热这里只频精品6学生| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| av在线播放精品| av有码第一页| 9191精品国产免费久久| 亚洲欧美精品自产自拍| 曰老女人黄片| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 哪个播放器可以免费观看大片| 女人被躁到高潮嗷嗷叫费观| 菩萨蛮人人尽说江南好唐韦庄| av在线app专区| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美色中文字幕在线| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 国产综合精华液| 国产在线视频一区二区| 99久久综合免费| 久久久久久久久久人人人人人人| 国产精品熟女久久久久浪| 成年美女黄网站色视频大全免费| 国产精品99久久99久久久不卡 | 女性被躁到高潮视频| 精品福利永久在线观看| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 侵犯人妻中文字幕一二三四区| 亚洲av国产av综合av卡| 丝袜在线中文字幕| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 久久ye,这里只有精品| 深夜精品福利| 丝袜美足系列| 大话2 男鬼变身卡| 日韩一区二区三区影片| 如日韩欧美国产精品一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲熟女精品中文字幕| 亚洲美女搞黄在线观看| 国产精品人妻久久久影院| 精品一品国产午夜福利视频| 两个人看的免费小视频| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 永久网站在线| 99热全是精品| 国产欧美日韩综合在线一区二区| 日本91视频免费播放| 精品久久蜜臀av无| kizo精华| 国产免费视频播放在线视频| 熟女电影av网| 久久久久国产精品人妻一区二区| 91国产中文字幕| 999久久久国产精品视频| 桃花免费在线播放| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 国产一区二区激情短视频 | 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 久久久久精品久久久久真实原创| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 精品国产国语对白av| 大话2 男鬼变身卡| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 亚洲欧美色中文字幕在线| 国产精品欧美亚洲77777| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 国产av码专区亚洲av| 国产精品久久久久久精品电影小说| 国产精品国产三级专区第一集| 女的被弄到高潮叫床怎么办| 桃花免费在线播放| 亚洲人成网站在线观看播放| 日日爽夜夜爽网站| 久久精品国产亚洲av高清一级| 亚洲精品成人av观看孕妇| 欧美日韩精品成人综合77777| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 尾随美女入室| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠久久av| 婷婷色av中文字幕| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 久久久久久久精品精品| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| av福利片在线| 日本欧美视频一区| 黑人欧美特级aaaaaa片| 欧美日韩综合久久久久久| a 毛片基地| 制服诱惑二区| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 十八禁网站网址无遮挡| 午夜老司机福利剧场| 国产精品 国内视频| 晚上一个人看的免费电影| 18禁裸乳无遮挡动漫免费视频| 国产午夜精品一二区理论片| 少妇猛男粗大的猛烈进出视频| 男女免费视频国产| 蜜桃国产av成人99| 可以免费在线观看a视频的电影网站 | 在线观看人妻少妇| 在线观看国产h片| 女人久久www免费人成看片| www日本在线高清视频| 国产精品成人在线| 涩涩av久久男人的天堂| av天堂久久9| videosex国产| 国产精品久久久久久精品电影小说| 午夜av观看不卡| 午夜福利视频在线观看免费| 中文字幕最新亚洲高清| 国产高清不卡午夜福利| 亚洲精品第二区| 精品国产一区二区久久| 午夜福利一区二区在线看| 国产免费视频播放在线视频| av网站免费在线观看视频| 18禁动态无遮挡网站| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 一本久久精品| 91国产中文字幕| 老女人水多毛片| 亚洲国产精品一区三区| 人体艺术视频欧美日本| 国产精品一二三区在线看| 99热网站在线观看| a级片在线免费高清观看视频| 国产成人a∨麻豆精品| 久久久久久久久久久久大奶| 久久人人97超碰香蕉20202| 色哟哟·www| 国产精品.久久久| 黄色视频在线播放观看不卡| 日韩不卡一区二区三区视频在线| 久久久精品免费免费高清| 国产成人a∨麻豆精品| 久久久久久久久久久久大奶| 自线自在国产av| 黑人猛操日本美女一级片| 久久久国产精品麻豆| 国产精品免费视频内射| 亚洲美女视频黄频| 18+在线观看网站| 99久久综合免费| 亚洲av国产av综合av卡| 新久久久久国产一级毛片| 久久热在线av| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 欧美日韩亚洲国产一区二区在线观看 | 卡戴珊不雅视频在线播放| 老鸭窝网址在线观看| 一边摸一边做爽爽视频免费| 制服诱惑二区| 老熟女久久久| 久久精品久久久久久噜噜老黄| 男女国产视频网站| 亚洲精品第二区| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 天天躁狠狠躁夜夜躁狠狠躁| www.熟女人妻精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 欧美日韩国产mv在线观看视频| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 蜜桃国产av成人99| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 欧美中文综合在线视频| 免费在线观看完整版高清| 91在线精品国自产拍蜜月| 久久精品人人爽人人爽视色| av不卡在线播放| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 亚洲第一区二区三区不卡| av不卡在线播放| 亚洲激情五月婷婷啪啪| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片| 巨乳人妻的诱惑在线观看| 日韩三级伦理在线观看| videos熟女内射| 又粗又硬又长又爽又黄的视频| 18禁国产床啪视频网站| 久久精品久久精品一区二区三区| 九草在线视频观看| 最近手机中文字幕大全| 国产成人精品久久二区二区91 | 美女xxoo啪啪120秒动态图| 日韩欧美一区视频在线观看| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 91精品伊人久久大香线蕉| av.在线天堂| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 青青草视频在线视频观看| 国产成人aa在线观看| 欧美精品一区二区大全| 亚洲三区欧美一区| 欧美日韩视频精品一区| 九九爱精品视频在线观看|