• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes variabilis (Anura:Bufonidae)

    2018-06-28 03:17:44SoheylaYAGHOBISomayeVAISSIZeynabTaheriKHASandMozafarSHARIFI
    Asian Herpetological Research 2018年2期

    Soheyla YAGHOBI, Somaye VAISSI, Zeynab Taheri KHAS and Mozafar SHARIFI

    Razi University Centre for Environmental Studies, Department of Biology, Baghabrisham 67149, Kermanshah, Iran

    1. Introduction

    Amphibian populations worldwide are in decline due to a variety of factors including habitat destruction,climate change, diseases, introduction of exotic species,and environmental contamination (Petersonet al., 2002;Stuartet al., 2004). Susceptibility to these factors differs among species and populations (Langhanset al., 2009),and depends, in part, on environmental conditions such as water chemistry (Blaustein and Kiesecker, 2002).Salinity is one of several parameters of water chemistry that influences the survival, development, and fitness of amphibians, and may act as a significant factor in the decline of amphibians (Sparlinget al., 2000). Emphasis on the effects of sodium chloride on amphibians has been placed only recently (Karraker and Ruthig, 2009).However, many amphibian species breed in agricultural run off or storm water ponds, which are located along or close to roads and are expected to come into contact with road de-icing agents that are often applied just before their breeding seasons (Snodgrasset al. 2008).

    Road de-icers (dry or liquid chemicals able to lower the freezing point of water) are used in temperate and cold regions worldwide when harsh climatic conditions affect road traffic. In most cases, the active agent used in road de-icers is sodium chloride (Ramakrishna and Viraraghavan, 2005). The salts used in de-icers can run off through overland flow, groundwater infiltration and aerosol sprays to reach various wetlands in the washbasin and causes contamination (Marsalek, 2003; Karraker,2008). De-icing agents, primarily road salt, are applied to roads in 26 states in the United States (Daleyet al., 2009)and in a number of European countries (Karraker, 2007;Wijethungaet al., 2016), however, the scale of impacts of road salt on aquatic organisms remains largely understudied (Corsiet al., 2010; Findlay and Kelly, 2011;Petranka and Francis, 2013; Niyogiet al., 2016). In Iran a mixture of sand and salt is normally used as road de-icer in western and northern part of the country where there is normally a long period of freezing in winter. There are reports of associations between road de-icing, salinity in ground water along highway (Reyahiet al., 2011) and also in surface run off (Aghazadeh etal., 2012) in Iran.

    Salinity is one of the important environmental factors affecting survival, growth and distribution of many aquatic organisms (Kumluet al., 2000; Chandet al.,2015). Most amphibians do not adapt well to brackish water because their skin is highly permeable, posing problems for water and ion balance (Duellman and Trueb,1986). Moderate salinity of 2–9 ppt (parts per thousand)can decrease survival, growth, and development(Chinathambyet al., 2006; Sanzo and Hecnar, 2006), and cause morphological abnormalities, such as distortion of tail, abdominal edema and emaciated appearance together with reduction in body water content (Chinathambyet al.,2006; Karraker, 2007). Despite the evidences provided for some populations of amphibian showing that they can locally adapt to saline environments, evidence is emerging that this may not always be possible (Brady, 2013).Several reports of populations of various species such asRana temporaria,Buergeriajaponica,Kaloula pulchra,Microhyla ornata,andBufo bufohave further concluded that salinity causes negative effects onsurvival, growth,development, metamorphosis and behavior of tadpoles(Gordonet al., 1961; Ackrillet al., 1969; Ferreira and Jesus, 1973; Viertel, 1999; Haramura, 2007; Karrakeret al., 2010). In contrast, other species, such asFejervarya cancrivora,F. limnocharis,Bufotes balearicus,Epidalea calamita,Litoria aureaandHoplobatrachus tigerinuscan tolerate higher salinity by maintaining high level of urea in the blood (e. g.,F. cancrivora) or through gradual acclimation to increasing salinity in laboratory experiments (Christy and Dickman, 2002; Gomez-Mestre and Tejedo, 2003; Wu and Kam, 2009).

    Most studies on the effects of salt on amphibians have focused on the adult or larval stage, ignoring the eggs,despite some evidence suggesting that embryos and tadpoles may in fact be the most susceptible life-history stage to salt (Karraker and Ruthig, 2009; Nakkrasaeet al., 2016). Adult amphibians rely on integumentary system to retain body fluids through ionic exchange and the ability to hyper synthesize and retain urea to increase body osmolarity (Shoemaker and Nagy, 1977; Balinsky,1981; Katz, 1989). The green toad,Bufotes variabilis(Pallas, 1769), is a common toad of Iran and has a wide distribution in most provinces. This toad is rarely found in central and eastern areas of Iran (Masshaiiet al.,2008). Whether salinity change interferes with hatching,survival, growth and development ofB. variabilistadpoles is unknown. Therefore, main purposes of this study are to examine the influence of salinity on the (1)growth, (2) development and (3) survival of embryos and larvae ofB. variabilis.

    2. Materials and Methods

    Eggs (embryos within their jelly capsule, Gosner Stage 10–11) from a single cohort ofB. variabiliswere collected on May 2016 in Sarable (34°32' N, 47°01' E),Kermanshah Province, Iran. All eggs of the same trial were at the same stage. Eggs were cultured at various salinities, 0.20, 0.70, 1.70, 2.70, 3.70, 4.70, 5.70, 6.70,7.70, 8.70 and 10 g/l. The salinity we used in this study has been determined based on the expected toleration of a freshwater amphibians reported in the scientific literature ranging from tap water (0.20 g/l) to hyper saline water(10 g/l). Freshwater is generally defined as water in which salinity is less than 3 g/l and sea water as 35 g/l (Nielsenet al., 2003). Each treatment was replicated 3 times for a total of 33 containers (14 cm height and 14 cm diameter),each filled with 2l of dechlorinated tap water with salinity of 0.20 g/l. All containers had 20 eggs, Gosner Stage 14–15. In this study developmental stages are followed as defined by Gosner (1960): embryo <25, hatchling 17–20,larvae >25. The experiment was conducted on a 12h dark:12h light photoperiod at approximately 18°C. Light was supplied by 18 metal halide lamps hanged over laboratory benches to provide a broad spectrum of photosynthetically available irradiant. After hatching larvae were fed with raw spinach: 1 g four times per week for every container.We monitored experimental containers twice a day and removed the bodies of larvae that had died. The larvae were taken out and container were cleaned thoroughly.We did not use any chemical cleaner for this purpose.

    We evaluated the impact of salt water on growth of body size by measuring changes in snout to vent length(SVL) during larval period. Regression equations were used to derive the growth rates from the values of length of SVL. Survival was determined as the percent of remaining individuals during embryo and larval period.Photos were taken with a digital camera (SONY, DSCHX9V, 3.6V) on a tripod at a fixed height (30 cm). The larvae were put in a Petri dish which was located over latticed paper. Immediately after photography the larvae were released into their containers. All pictures were analyzed using Digimizer version 4.6.0 (http://digimizer.findmysoft.com/). We measured the snout to vent length(SVL: mm). SVLs were calculated by drawing a line from the tip of the snout to the tip of the vent. Measurements were performed at days 1, 6, 12, 18 and 24. When experiment was completed, the surviving larvae were returned to the pond where they were collected. One-way analysis of variance (ANOVA) was used to examine the effects of salinity on the rate of hatching and on growth,development and survival during embryonic, and larval period. All data are expressed as mean ± SD (standard deviation). The statistical program package SPSS (v. 16)was used for all analyses.

    3. Results

    In this study, salinity was found to markedly affect the rate of hatching among treatments (ANOVA,P≤0.001).Also, increase in water salinity extended hatching period.Eggs in salinity of 0.20 g/l to 3.70 g/l were hatched after 72 hours while eggs in salinity of 4.70 g/l to 5.70 g/l were hatched after 79.92 hours days. More delay in hatching was found for eggs in salinity 6.70 to 8.70 g/l,were hatched after 96 hours (Table 1). At salinity level of 10 g/1, all eggs shrank and died before hatching.Most unhatched eggs died as indicated by signs of opaqueness and shrinkage, while few eggs were alive but did not hatch. After being exposed to saline water for 24 h post hatching, there was a significant effect of salinity on survival (ANOVA,P≤0.001) of larvae.Approximately, 83.33% of hatched larvae in 0.20 g/l survived for 24 h. Hatched larvae in salinities of 0.70,1.70, 2.70, 3.70, 4.70, 5.70 and 6.70 g/l showed a survival rate of 71.66%, 78.33%, 80.66%, 78.66%, 75.33%, 70%and 66.33%, respectively, 24 h after hatching (Figure 1A). The percentage of survival of larvae to the end of the experiment (Gosner stage 30) was 80.00%, 66.66%,76.66%, 65%, 30% and 0.00% for the 0.20, 0.70, 1.70,2.70, 3.70 and 4.70 to 10 g/l treatments, respectively(Table 1, Figure 1). At salinities over 8.70 g/l unhatched and dead embryos appeared with signs of shrinkage and distorted appearance.

    Egg diameter ofB. variabiliswas on average 1.51 mm± 0.01, (Gosner stage 10–11) and jelly capsules diameter was 3.76 mm ± 0.12. Figure 2 and Table 1 demonstrates the average and standard deviation of the (SVL) during larval period ofB. variabilisfrom 6 to 24 days. Growth ofB. variabilisshowed significant difference in the third week (P≤0.05), (Figure 1B).Growth rate for SVL of larvae ofB. variabilisare shown in Table 1.Larvae growth rate of the 0.70 g/l (Linear regression, 0.26 mm/day) was fastest than 0.20 g/l (Linear regression, 0.24 mm/day) and followed by the 1.70 g/l (Linear regression,0.23 mm/day), 2.70 g/l (Linear regression, 0.22 mm/day)and 3.70 g/l (Linear regression, 0.15 mm/day).Various salinity treatments affected developmental rate in live embryos and larvae but this difference was not significant(ANOVA,P≤0.07). The Gosner stages for development of the eggs of the same clutch reared at four treatments of various salinity treatments at 6 to 24 days are shown in Table 1.

    4. Discussions

    The increase in water salinity in wetland and aquatic ecosystems can result from natural factors such as climate change or sea water intrusion into freshwater wetlands.Various man-made processes such as deforestation,excessive irrigation, salt mining, and road de-icing cause changes in water salinity (Nielsen and Brock, 2009).Increase in salt content in natural aquatic ecosystems under natural or anthropogenic processes is now recognized as a threat to the biological communitiesas a whole and represents an environmental stress for many species (Jinet al., 2011). Amphibians with their permeable skin are at risk in hyposaline and hypersaline water, because they gain or lose water across the skin surface at rates that may rapidly be fatal (Wijethungaet al., 2016). A highly permeable skin makes amphibian osmotically sensitive organisms, because their osmoregulation works at a certain range of water salinity(Gomez-Mestreet al., 2004; Haramura, 2007).

    Table 1 Percentage and time of hatching (Gosner stage 20) and survival rate of Bufotes variabilis larvae in various salinity treatments for 24 h (Gosner stage 26) and 24 days (Gosner stage 30) after hatching. Snout to vent length (SVL: Mean ± SD) was measured at 6 and 24 days.Growth rate (mm/day) of body size (SVL) is determined as daily increase of SVL during 6 and 24 days.

    Figure 1 Effect of different salinities on survival rate (%) of embryo (E) and larvae (L) of Bufotes variabilis from 1 to 24 days(age). ***: P≤0.001; **: P≤0.01; *: P≤0.05.

    Figure 2 Effect of different salinities on snout to vent length (mm)of larvae (L) of Bufotes variabilis from 1 to 24 days (age). ***:P≤0.001; **: P≤0.01; *: P≤0.05.

    Experimental evaluation of the impact of elevated salinity normally showed a considerable reduction in growth, and the rate of metamorphosis. These are also reports of associations between an increase in mortality rate in anuran adults and larvae (Christy and Dickman,2002). There is a general consensus in the literature that amphibian embryos are most sensitive to water salinity,followed by larvae, with adults being most tolerant (e. g.,Chinathambyet al., 2006; Brandet al., 2010; Petranka and Doyle, 2010; Bernabet al., 2013; Hopkinset al.,2014; Thirion, 2014). There are also some opposing data and evidence that show the sensitivity can also change with age within a particular life stage (Alexanderet al.,2012).

    Recent investigations indicated that de-icing salts were associated with reduced survival and increased frequency of malformations in some amphibians e.g. the Spotted Salamander,Ambystoma maculatum, and the Wood FrogRana sylvatica(Nakkrasaeet al., 2015). A reduction in survival in embryonicA. maculatumandR. sylvaticawas probably caused by physiological constraints imposed on embryos at higher salinities (Nakkrasaeet al., 2015).In contrast, survival of embryos and larvae of green frogs (Lithobates clamitans), which breed principally in permanent wetlands, was not significantly influenced but frequency of malformations increased with chloride concentration (Karraker, 2007). While a reduction in growth may result from the increased energy expense required for osmoregulation, delayed development may result from a decreased thyroid hormone (TH) level in response to hormonal involvement in osmoregulation(Gomez-Mestreet al., 2004).

    Present study covered embryonic, hatching and early larval periods in the course of 20 days after hatching. On this short period of exposure to different water salinity the reaction was slow or limited to retard development of eggs, hatchlings and larvae (Table 1) which may eventually lead to smaller size at metamorphosis. Weather this can result in a reduction in survival rate in adult is not known. There are several studies that show small body size at metamorphosis decreases the ability to tolerate dehydration (Newman and Dunham, 1994) and the likelihood of post-metamorphic survival (Smith,1987; Berven, 1990; Chelgrenet al., 2006). Present study did not cover entire developmental period but previous studies showed that time to metamorphosis of larvae decreased when reared in intermediate salinity treatments compared with freshwater or low salinity treatment.(Chinathambyet al., 2006; Sanzo and Hecnar, 2006;Wu and Kam, 2009).

    The Green Toad (B. variabilis)of Europe and the Middle East (Gordon, 1962) have been reported from aquatic environments of salinities as high as 2 g/l, in northern Europe (Gislén and Kauri, 1959). Results obtained from current experiment showed that impact of salinity on embryonic mortality, hatching and survival rate of larvae began at concentration over 3.70 g/l.Although present salinity of freshwater wetland where the eggs have been collected for this experiment is much lower than the water salinity in the laboratory but the interaction of a shortened metamorphosis period and a smaller body size at high salinity with other ecological factors is difficult to anticipate under natural condition.There are now increasing evidences showing that in many regions of the world a net negative impact of the recent climate change is expected to occur in freshwater ecosystems (IPCC 2007). However, the intensity and characteristics of the impact can significantly vary from region to region. In many arid and semi-arid regions such as Iran, trends toward warmer climate and increased precipitation variability are linked to warming streams and rivers (IPCC 2007). Amphibians are well adapted to environmental fluctuations but the novel situation resulting from the combined impact of various environmental factors may cause an irreversible impact on their existence.

    AcknowledgementsWe thank the Razi University for the support of this study as an MSc research project.Collection of Green Toad eggs was permitted by the Regional Office of Environment in Kermanshah Province.

    Ackrill P., Hornby R., Thomas S. 1969. Responses ofRana temporariaandRana esculentato prolonged exposure to a saline environment. Comp Biochem Physiol, 28(3): 1317–1329

    Aghazadeh N., Nojavan M., Mogaddam A. A. 2012. Effects of road-de-icing salt (NaCl) and saline water on water quality in the Urmia area, northwest of Iran.Arab J Geosci, 5(4): 565–570

    Alexander L. G., Lailvaux S. P., Pechmann J. H. K., DeVries Philip. J. 2012. Effects of salinity on early life stages of the Gulf Coast toad,Incilius nebulifer(Anura: Bufonidae). Copeia,2012(1): 106–114

    Balinsky J. B. 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia.J Exp Zool A Ecol Genet Physiol, 215(3): 335–350

    Bernab I., Bonacci A., Coscarelli F., Tripepi M., Brunelli E.2013. Effects of salinity stress onBufo balearicusandBufo bufotadpoles: tolerance, morphological gill alterations and Na+/K+-ATPase localization.Aquat Toxicol, 132: 119–133

    Berven K. A. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica).Ecology, 71(4): 1599–1608

    Blaustein A. R., Kiesecker J. M. 2002. Complexity in conservation: lessons from the global decline of amphibian populations.Ecol Lett, 5(4): 597–608

    Brady S. P. 2013. Microgeographic maladaptive performance and deme depression in response to roads and runoff.Peer J, 1: e163

    Brand A. B., Snodgrass J. W., Gallagher M. T., Casey R. E.,Van Meter R. 2010. Lethal and sublethal effects of embryonic and larval exposure ofHyla versicolorto stormwater pond sediments.Arch Environ Contam Toxicol, 58(2): 325–331

    Chand B. K., Trivedi R. K., Dubey S. K., Rout S. K., Beg M.M., Das U. K. 2015. Effect of salinity on survival and growth of giant freshwater prawnMacrobrachium rosenbergii(de Man).Aquacul Rep, 2: 26–33

    Chelgren N. D., Rosenberg D. K., Heppell S. S., and Gitelman A.I. 2006. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecol Appl, 16(1): 250–261

    Chinathamby K., Reina R. D., Bailey P. C. E., Lees B. K. 2006.Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog,Litoria ewingii.Aust J Zool,54(2): 97–105

    Christy M. T., Dickman C. R. 2002. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea).Amphiba-Reptila, 23(1): 1–11

    Corsi S. R., Graczyk, D. J., Geis, S. W., Booth N. L, Richards K. D. 2010. A fresh look at road salt: aquatic toxicity and waterquality impacts on local, regional, and national scales.Environ Sci Technol, 44(19): 7376–7382

    Daley, M. L., Potter J. D., McDowell W. H. 2009. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability.J N Am Benthol Soc, 28(4):929–940

    Duellman W. E., Trueb L. 1986. Biology of amphibians.New York: McGraw-Hill, 670

    Ferreira H. G., Jesus C. H. 1973. Salt adaptation inBufo bufo.J physiol, 228(3): 583–600

    Findlay S. E. G., Kelly V. R. 2011. Emerging indirect and longterm road salt effects on ecosystems. Ann N Y Acad Scien,1223(1): 58–68

    Gislén T., Kauri H. 1959. Zoogeography of the Swedish amphibians and reptiles: With notes on their growth and ecology. Stockholm,Almqvist and Wiksell. Acta vertebratica, Vol. 1, No. 3

    Gomez-Mestre I., Tejedo M. 2003. Local adaptation of an anuran amphibian to osmotically stressful environments.Evolution 57(8): 1889–1899

    Gomez-Mestre I., Tejedo M., Ramayo E., Estepa J. 2004.Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress.Physiol Biochem Zool, 77(2):267–274

    Gordon M. S. 1962. Osmotic regulation in the green toad (Bufo viridis).J Exp Biol, 39(2): 261–270

    Gordon M. S., Schmidt-Nielsen K., Kelly H. M. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). J Exp Biol,38(3): 659–678

    Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification.Herpetologica, 16(3):183–190

    Haramura T. 2007. Salinity tolerance of eggs of Buergeria japonica(Amphibia, Anura) inhabiting coastal areas.Zool sci, 24(8):820–823

    Haramura T. 2011. Use of oviposition sites by a rhacophorid frog inhabiting a coastal area in Japan.J Herpetol 45(4): 432–437

    Hopkins G. R., Brodie Jr. E. D., French S. S. 2014.Developmental and evolutionary history affect survival in stressful environments.PloS One, 9(4): e95174

    Jin L., Whitehead P., Siegel D. I., Findlay S. 2011. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams. Environ Pollut, 159(5): 1257–1265

    Karraker N. E. 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road de-icing salt?.Herpetol Conserv Biol, 2: 35–41

    Karraker N. E., Arrigoni J., Dudgeon D. 2010. Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: Species identity matters. Biol Conserva, 143(5): 1079–1086

    Karraker N. E., Gibbs J. P., Vonesh J. R. 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians.Ecol Appl, 18(3): 724–734

    Karraker N. E., Ruthig G. R. 2009. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.Environ Res, 109(1): 40–45

    Katz U. 1989. Strategies of adaptation to osmotic stress in anuran amphibia under salt and burrowing conditions.Comp Biochem Physiol Part A: Physiology, 93(3): 499–503

    Kumlu M., Eroldogan O. T., Aktas M. 2000. Effects of temperature and salinity on larval growth, survival and development ofPenaeus semisulcatus.Aquaculture, 188(1):167–173

    Langhans M., Peterson B., Walker A., Smith G. R., Rettig J. E.2009. Effects of salinity on survivorship of wood frog (Rana sylvatica) tadpoles. J Fresh Ecol, 24(2): 335–337

    Marsalek J. 2003. Road salts in urban stormwater: An emerging issue in stormwater management in cold climates. Water Sci Technol, 48(9): 61–70

    Masshaii N., Balouch M., Mobedi I. 2008. Report about helminth parasites of some Amphibians (Anura: Ranidae, Bufonidae) from the North and Northeast of Iran. J Sci Univ Tehran, 33(4): 9–13

    Nakkrasae L. I., Phummisutthigoon S., Charoenphandhu N. 2016. Low salinity increases survival, body weight and development in tadpoles of the Chinese edible frogHoplobatrachus rugulosus. Aquacul Res, 47(10): 3109–3118.

    Newman R. A., Dunham A. E. 1994. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii).Copeia,372–381

    Nielsen D. L., Brock M. A. 2009. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia. Clim Change, 95(3): 523–533

    Nielsen D. L., Brock M. A., Rees G. N., Baldwin D. S. 2003.Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot.51(6): 655–665

    Niyogi S., Blewett T. A., Gallagher T., Fehsenfeld S., Wood C.M. 2016. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).Aquat Toxicol, 178: 132–140

    Peterson A. T., Ortega-Huerta M. A., Bartley J., Sjnchez-Cordero V., Sobern J., Buddemeier R. H., Stockwell D. R.B. 2002. Future projections for Mexican faunas under global climate change scenarios.Nature, 416(6881): 626–629

    Petranka J. W., Doyle E. J. 2010. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment? Aquat Ecol, 44(1): 155–166

    Petranka J. W., Francis R. A. 2013. Effects of road salts on seasonal wetlands: poor prey performance may compromise growth of predatory salamanders. Wetlands, 33(4): 707–715

    Pora A. E., Stoicovici F. 1955. Cercetari asupra rolului sistemului nervos de laBufo viridisin fenomenele de adaptare la salinitate.Bull ttiint Acad romdne, 7: 59–89

    Ramakrishna D. M., Viraraghavan T. 2005. Environmental impact of chemical de-icers–a review.Water Air and Soil Pollut,166(1–4): 49–63

    Reyahi K., Nafea M. M., Mahjub H., Hashemy M., Parchian M.2011. Effects of road deicing salt on the quality of ground water resources in hamadan province, west of Iran. J res health sci,11(1): 39–44

    Sanzo D., Hecnar S. J. 2006. Effects of road de-icing salt (NaCl)on larval wood frogs (Rana sylvatica).Environ Pollut, 140(2):247–256

    Shoemaker V., Nagy K. A. 1977. Osmoregulation in amphibians and reptiles.Annu Rev Physiol, 39(1): 449–471

    Smith D. C. 1987. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis.Ecology, 68(2): 344–350

    Snodgrass J. W., Casey R. E., Joseph D., Simon J. A. 2008.Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species.Environ Pollut, 154(2): 291–297

    Sparling D. W., Bishop C. A., Linder G. 2000. The current status of amphibian and reptile ecotoxicological research. Society of Environmental Toxicology and Chemistry, 13pp

    Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S. L., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science,306(5702): 1783–1786

    Thirion J. M. 2014. salinity of the reproduction habitats of the Western spadefoot ToadPelobates cultripes(cuvier, 1829),along the atlantic coast of France. Herpetozoa, 27: 13–20

    Viertel B. 1999. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development(Amphibia, Anura).Amphiba-Reptila, 20(2): 161–171

    Wijethunga U., Greenlees M., Shine R. 2016. Living up to its name? The effect of salinity on development, growth, and phenotype of the “marine” toad (Rhinella marina). J Comp Physiol B, 186(2): 205–213

    Wu C. S., Kam Y. C. 2009. Effects of salinity on the survival,growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool Sci, 26(7):476–482

    久久性视频一级片| 国产精品不卡视频一区二区 | a级毛片免费高清观看在线播放| 欧美成人a在线观看| 国产中年淑女户外野战色| 极品教师在线视频| 亚洲欧美日韩东京热| 成人国产一区最新在线观看| 色吧在线观看| 成人无遮挡网站| 精品日产1卡2卡| 在线国产一区二区在线| 两个人的视频大全免费| 少妇的逼好多水| 嫁个100分男人电影在线观看| 极品教师在线视频| 伦理电影大哥的女人| av天堂中文字幕网| 精品人妻视频免费看| 色综合站精品国产| 18禁黄网站禁片午夜丰满| 精品久久久久久久久久免费视频| 精品国产亚洲在线| 日韩欧美三级三区| 一本一本综合久久| 可以在线观看毛片的网站| 一区二区三区激情视频| 国产欧美日韩一区二区三| 岛国在线免费视频观看| 亚洲欧美激情综合另类| 在线观看舔阴道视频| 日韩人妻高清精品专区| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 乱人视频在线观看| 国产精品美女特级片免费视频播放器| 午夜视频国产福利| 久久精品91蜜桃| 丰满的人妻完整版| 久久久久九九精品影院| 中文字幕久久专区| 国产乱人视频| 黄色视频,在线免费观看| 一进一出抽搐动态| 国产精品不卡视频一区二区 | 一卡2卡三卡四卡精品乱码亚洲| 一本综合久久免费| 18禁黄网站禁片免费观看直播| 99国产综合亚洲精品| 精品无人区乱码1区二区| 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 国模一区二区三区四区视频| 国产在线精品亚洲第一网站| 日韩欧美 国产精品| 亚洲精品色激情综合| 高清毛片免费观看视频网站| 中文字幕久久专区| 大型黄色视频在线免费观看| 我要看日韩黄色一级片| 国产69精品久久久久777片| 国产亚洲精品av在线| 男人舔奶头视频| 国产精品爽爽va在线观看网站| 简卡轻食公司| 在线观看舔阴道视频| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看| 2021天堂中文幕一二区在线观| 亚洲av电影在线进入| 99热6这里只有精品| 午夜视频国产福利| 一级a爱片免费观看的视频| 一个人免费在线观看电影| 桃色一区二区三区在线观看| 伊人久久精品亚洲午夜| eeuss影院久久| 欧美zozozo另类| 99久国产av精品| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| 1024手机看黄色片| 99久久99久久久精品蜜桃| 嫩草影视91久久| a级毛片a级免费在线| 国内精品久久久久久久电影| 国产精品99久久久久久久久| eeuss影院久久| 男女视频在线观看网站免费| 黄色丝袜av网址大全| 日本成人三级电影网站| 亚洲国产欧洲综合997久久,| 三级毛片av免费| 91在线观看av| 精品国产三级普通话版| 欧美成狂野欧美在线观看| 日韩大尺度精品在线看网址| av中文乱码字幕在线| 国产精品女同一区二区软件 | 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 乱码一卡2卡4卡精品| 亚洲中文字幕日韩| 变态另类丝袜制服| bbb黄色大片| 18+在线观看网站| 日韩欧美国产一区二区入口| 女人十人毛片免费观看3o分钟| 精品久久久久久成人av| 亚洲成人久久性| 色综合站精品国产| 99热这里只有精品一区| 1000部很黄的大片| 一个人免费在线观看电影| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av| 免费看a级黄色片| 久久国产乱子伦精品免费另类| 国产毛片a区久久久久| 亚洲精品亚洲一区二区| 亚洲av美国av| 日日干狠狠操夜夜爽| 51国产日韩欧美| 怎么达到女性高潮| 变态另类成人亚洲欧美熟女| 97人妻精品一区二区三区麻豆| 99热只有精品国产| а√天堂www在线а√下载| 国产亚洲欧美98| 天堂av国产一区二区熟女人妻| 一个人看视频在线观看www免费| 日韩中文字幕欧美一区二区| 自拍偷自拍亚洲精品老妇| 琪琪午夜伦伦电影理论片6080| 在线看三级毛片| 伊人久久精品亚洲午夜| 亚洲熟妇中文字幕五十中出| 成人av在线播放网站| 99热精品在线国产| 三级男女做爰猛烈吃奶摸视频| 国产野战对白在线观看| 亚洲精品粉嫩美女一区| 欧美日韩综合久久久久久 | 国产三级在线视频| 日本免费a在线| 日韩欧美在线二视频| 国产午夜福利久久久久久| 色综合站精品国产| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| 男女之事视频高清在线观看| 日韩欧美在线二视频| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 天堂影院成人在线观看| 国产高清视频在线播放一区| 色播亚洲综合网| 级片在线观看| 此物有八面人人有两片| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| or卡值多少钱| 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 亚洲国产欧美人成| 亚洲美女搞黄在线观看 | 天天一区二区日本电影三级| 国产黄a三级三级三级人| 色视频www国产| 变态另类成人亚洲欧美熟女| 有码 亚洲区| 91麻豆av在线| 日韩欧美 国产精品| 超碰av人人做人人爽久久| 亚洲不卡免费看| 三级国产精品欧美在线观看| 岛国在线免费视频观看| 亚洲在线自拍视频| 少妇被粗大猛烈的视频| 日韩 亚洲 欧美在线| 国产探花极品一区二区| 99久久精品热视频| 日韩av在线大香蕉| 如何舔出高潮| 欧美绝顶高潮抽搐喷水| 亚洲精品在线观看二区| 美女黄网站色视频| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 国产美女午夜福利| 久久香蕉精品热| 亚洲av电影在线进入| 内地一区二区视频在线| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 日韩亚洲欧美综合| 欧美不卡视频在线免费观看| 午夜福利免费观看在线| 国产 一区 欧美 日韩| 日韩免费av在线播放| 搡老妇女老女人老熟妇| 国产在线男女| 国产91精品成人一区二区三区| 国产中年淑女户外野战色| av福利片在线观看| 日韩欧美免费精品| 国产色婷婷99| 精华霜和精华液先用哪个| 久久九九热精品免费| 欧美日韩国产亚洲二区| 精品久久久久久久久av| 乱码一卡2卡4卡精品| 午夜福利18| 亚洲五月婷婷丁香| 精品福利观看| 免费看美女性在线毛片视频| 欧美潮喷喷水| 黄片小视频在线播放| 欧美丝袜亚洲另类 | 国产精品av视频在线免费观看| 国产人妻一区二区三区在| 黄色一级大片看看| 中文字幕熟女人妻在线| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 久久中文看片网| 毛片一级片免费看久久久久 | 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 一区二区三区高清视频在线| 国产一区二区激情短视频| 能在线免费观看的黄片| 免费一级毛片在线播放高清视频| 精品国产亚洲在线| 一二三四社区在线视频社区8| 一级作爱视频免费观看| 欧美潮喷喷水| 亚洲 国产 在线| 中文字幕熟女人妻在线| 国产亚洲欧美98| 天天一区二区日本电影三级| 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 亚洲欧美激情综合另类| 亚洲精品一卡2卡三卡4卡5卡| 国产精品精品国产色婷婷| 九色国产91popny在线| 久久欧美精品欧美久久欧美| 99riav亚洲国产免费| x7x7x7水蜜桃| 91久久精品电影网| 日韩欧美免费精品| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 嫁个100分男人电影在线观看| 欧美极品一区二区三区四区| 午夜日韩欧美国产| 97超级碰碰碰精品色视频在线观看| 尤物成人国产欧美一区二区三区| 亚洲av二区三区四区| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 欧美zozozo另类| 欧美中文日本在线观看视频| 日韩精品中文字幕看吧| 国产主播在线观看一区二区| 久久亚洲真实| 国产久久久一区二区三区| 激情在线观看视频在线高清| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 国产精品电影一区二区三区| 在线天堂最新版资源| 欧美在线黄色| 日韩欧美免费精品| 国产日本99.免费观看| a级一级毛片免费在线观看| 欧美三级亚洲精品| 亚洲激情在线av| 国产一区二区三区在线臀色熟女| 久久性视频一级片| 久久国产精品人妻蜜桃| 99久久九九国产精品国产免费| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 国产色婷婷99| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 一区福利在线观看| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在 | 免费电影在线观看免费观看| 欧美丝袜亚洲另类 | 国产伦精品一区二区三区视频9| 精品熟女少妇八av免费久了| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 天美传媒精品一区二区| 看片在线看免费视频| 久久精品影院6| 亚洲avbb在线观看| 亚洲自拍偷在线| 精品无人区乱码1区二区| 免费av不卡在线播放| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 国产不卡一卡二| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| 久久久久国内视频| 久久精品国产亚洲av涩爱 | 国产v大片淫在线免费观看| av天堂在线播放| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 一个人免费在线观看电影| 脱女人内裤的视频| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 少妇丰满av| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 97热精品久久久久久| 色5月婷婷丁香| 黄片小视频在线播放| 日韩欧美国产在线观看| 亚洲精品日韩av片在线观看| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 嫩草影院入口| 久久久久久久久久成人| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添小说| 久久精品国产清高在天天线| 校园春色视频在线观看| 一区福利在线观看| 中出人妻视频一区二区| 欧美在线黄色| 欧美成人免费av一区二区三区| 国产三级中文精品| xxxwww97欧美| 又粗又爽又猛毛片免费看| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 成人无遮挡网站| 欧美精品啪啪一区二区三区| 国产av不卡久久| 久久久久精品国产欧美久久久| 91av网一区二区| 国产精品日韩av在线免费观看| 日本免费a在线| 欧美最黄视频在线播放免费| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 久久亚洲真实| 日本成人三级电影网站| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点| 免费观看人在逋| 欧美高清成人免费视频www| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 哪里可以看免费的av片| 中文字幕av在线有码专区| 床上黄色一级片| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 久久人妻av系列| 久久人人爽人人爽人人片va | 久久精品人妻少妇| xxxwww97欧美| 久久人人精品亚洲av| 极品教师在线视频| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 国产av在哪里看| 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 欧美午夜高清在线| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| 久久人妻av系列| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 综合色av麻豆| 国产亚洲精品av在线| 日本a在线网址| 99久久99久久久精品蜜桃| 九九热线精品视视频播放| 免费观看精品视频网站| 国产国拍精品亚洲av在线观看| 99久久精品一区二区三区| www.999成人在线观看| 日日摸夜夜添夜夜添小说| 久久精品影院6| netflix在线观看网站| 久久精品综合一区二区三区| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 成人美女网站在线观看视频| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 久久精品影院6| 国产精品不卡视频一区二区 | 成人欧美大片| 深爱激情五月婷婷| 好看av亚洲va欧美ⅴa在| 日本a在线网址| 51午夜福利影视在线观看| 久久人妻av系列| 少妇人妻一区二区三区视频| 夜夜爽天天搞| 免费一级毛片在线播放高清视频| 国内少妇人妻偷人精品xxx网站| 嫁个100分男人电影在线观看| 韩国av一区二区三区四区| 亚洲国产精品999在线| 能在线免费观看的黄片| 日韩中文字幕欧美一区二区| 我要搜黄色片| 99热精品在线国产| 国产午夜精品久久久久久一区二区三区 | 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 欧美区成人在线视频| 久久久久久久午夜电影| 精品久久久久久久久久久久久| 国产av在哪里看| 69人妻影院| 国产成人a区在线观看| av在线观看视频网站免费| 一边摸一边抽搐一进一小说| 91狼人影院| 少妇的逼好多水| 波多野结衣高清作品| 久久精品国产99精品国产亚洲性色| av在线蜜桃| 亚洲精品久久国产高清桃花| 亚洲av二区三区四区| 国产精品自产拍在线观看55亚洲| 男女那种视频在线观看| 国产男靠女视频免费网站| 午夜老司机福利剧场| 日韩欧美在线乱码| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 久久香蕉精品热| 极品教师在线免费播放| 九色国产91popny在线| 午夜影院日韩av| 天美传媒精品一区二区| 欧美潮喷喷水| 久久精品夜夜夜夜夜久久蜜豆| 国产美女午夜福利| 国产精品98久久久久久宅男小说| 色综合站精品国产| 欧美国产日韩亚洲一区| 全区人妻精品视频| 成人无遮挡网站| 久久久久久久久中文| 国产伦精品一区二区三区视频9| 亚洲欧美激情综合另类| 动漫黄色视频在线观看| 欧美乱妇无乱码| 村上凉子中文字幕在线| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 国产av一区在线观看免费| 国产91精品成人一区二区三区| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图 | 国产精品久久久久久精品电影| 国产欧美日韩精品一区二区| 欧美一区二区国产精品久久精品| 伦理电影大哥的女人| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 国产成人欧美在线观看| 久久国产乱子免费精品| 淫妇啪啪啪对白视频| 九色成人免费人妻av| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 国产老妇女一区| 亚洲欧美激情综合另类| 日韩中字成人| 亚洲三级黄色毛片| 亚洲最大成人av| 国产老妇女一区| 欧美色视频一区免费| 亚洲国产精品999在线| 亚洲av二区三区四区| 日韩人妻高清精品专区| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 最近中文字幕高清免费大全6 | 亚洲人成网站在线播| 99热只有精品国产| 亚洲中文日韩欧美视频| 嫩草影院精品99| 亚洲一区二区三区不卡视频| 亚洲av一区综合| 国产毛片a区久久久久| 亚洲精品影视一区二区三区av| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 热99re8久久精品国产| 无遮挡黄片免费观看| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 国产熟女xx| 亚洲黑人精品在线| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频1000在线观看| 欧美日韩黄片免| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 精品日产1卡2卡| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 网址你懂的国产日韩在线| 最近在线观看免费完整版| 亚洲自拍偷在线| 久久久久精品国产欧美久久久| 成年女人永久免费观看视频| 久久精品国产亚洲av涩爱 | 国产精品不卡视频一区二区 | 国语自产精品视频在线第100页| 午夜老司机福利剧场| 日韩人妻高清精品专区| 人妻久久中文字幕网| 亚洲自偷自拍三级| 免费av观看视频| 69人妻影院| 午夜两性在线视频| 中文字幕精品亚洲无线码一区| 欧美bdsm另类| 天堂网av新在线| 观看美女的网站| 亚洲中文字幕日韩| 国产成人aa在线观看| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 在线观看66精品国产| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| 亚洲狠狠婷婷综合久久图片| 久久精品国产亚洲av涩爱 | 欧美潮喷喷水| 婷婷丁香在线五月| 亚洲精品成人久久久久久| 久久精品国产亚洲av天美| 国产精品三级大全| 免费无遮挡裸体视频| 99精品久久久久人妻精品| 男人舔女人下体高潮全视频| 欧美潮喷喷水| 丝袜美腿在线中文| 我的老师免费观看完整版| 久久草成人影院| 亚洲自偷自拍三级| 在线观看舔阴道视频| 极品教师在线免费播放| 亚洲国产高清在线一区二区三|