• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sexual Dimorphism, Female Reproductive Characteristics and Egg Incubation in an Oviparous Forest Skink (Sphenomorphus incognitus) from South China

    2018-06-28 03:17:44LiMAJianchiPEICuntongZHOUYuDUXiangJIandWenSHEN
    Asian Herpetological Research 2018年2期

    Li MA, Jianchi PEI, Cuntong ZHOU,3, Yu DU,4, Xiang JI and Wen SHEN

    1 School of Sports and Health, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China

    2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University,Nanjing 210023, Jiangsu, China

    3 College of Ecology, Lishui University, Lishui 323000, Zhejiang, China

    4 Hainan Key Lab for Herpetology, College of Tropical Biology and Agronomy, Hainan Tropical Ocean University,Sanya 572022, China

    1. Introduction

    Forest skinks of the reproductively bimodal genusSphenomorphusFitzinger, 1843 occur in South-East Asia,Asia, Indochina and Central America (Linkemet al.,2011). Of some 145 currently recognizedSphenomorphusspecies (Linkemet al., 2011), six (S. courcyanus,S.incognitus,S. indicus,S. maculatus,S. taiwanensisandS.tonkinensis) can be found in China, withS. taiwanensisendemic to Taiwan Province of the country (Huang,1999; Nguyenet al., 2011, 2012). Despite its wide geographic distribution, high species diversity and the fact that it is morphologically, zoogeographically and taxonomically well known, the ecology and biology of the genusSphenomorphusremain poorly studied. Several investigators have studied sexual dimorphism and female reproduction but, to the best of our knowledge, they only reported descriptive data for five species (S. incognitus:Huang, 2010;S. indicus: Huang 1996; Ji and Du, 2000;Jiet al., 2006;S. jagori: Auffenberg and Auffenberg,1989;S. maculates: Huang, 1999;S. taiwanensis: Huang,1997, 1998). Detailed data on female reproductive traits do not exist for all these species except forS. indicus(Ji and Du, 2000; Jiet al., 2006). For example, ten femaleS. incognitus(Huang, 2010), nine femaleS. taiwanensis(Huang, 1997) and a unknown number of femaleS.jagori(Auffenberg and Auffenberg, 1989) were measured for fecundity (clutch size), but in none of these species were egg mass and reproductive output (clutch mass)documented.

    Sphenomorphus incognitusstudied here ranges from Southern-Central China (Anhui, Fujian, Guangdong,Guangxi, Hainan, Hubei, Taiwan, Yunnan and Zhejiang)to North Vietnam (Huang, 1999; Lau, 2005; Nguyenet al., 2012; Tang and Huang, 2014; Chenet al., 2017).This medium sized (up to 107 mm snout-vent length,SVL), oviparous terrestrial skink shows a preference for stream habitats, forest edges and riverbeds (Huang,1999; Nguyenet al., 2012). The skink is morphologically similar toS. indicus, its viviparous congener, and this similarity contributes to the confusion about taxonomic identity, habitat use and geographic distribution of these two species (Chenet al., 2017). Previous studies presented very limited descriptive data forS. incognitusfrom mainland China (Huang, 1999), and a bit more detailed data for a population on Lanyu Island, Taiwan,China (Huang, 2010). From Huang’s (2010) study onS.incognitusfrom Lanyu Island we know the following.First, males are larger in terms of linear body size (SVL)and thusS. incognitusis among species that show malebiased sexual size dimorphism (SSD). Second, females exhibit spring and summer vitellogenesis and lay eggs from March to July. Third, females lay 3–6 eggs per clutch, with clutch size being independent of female SVL.Here, we presented data forS. incognitusfrom South China. Based on morphological measurements taken for adults in the field and clutches laid in the laboratory,we studied sexual dimorphism in body size and shape,female reproduction and egg incubation. Our aims were:(1) to show sexual dimorphism in several morphological characters (body size, head size, head width, abdomen length, and fore- and hind-limb lengths) likely to be associated with reproductive success and performance;(2) to investigate the relationships among egg size (and thus hatchling size), clutch size and female size; and(3) to examine the effects of constant versus fluctuating temperatures on incubation length and hatchling morphology.

    2. Materials and Methods

    We collected 263 adult skinks (92 females and 171 males) larger than 80 mm SVL in three consecutive years between 2013 and 2015 from Guangzhou, Wuzhishan and Zhaoqing in South China. Most of these skinks (65 females and all males) were released at their point of capture following the collection of morphological data.Measurements taken for each skink with Mitutoyo digital calipers included SVL, abdomen length (AL, between the insertion points of the fore- and hind-limbs), head length(HL, from the snout to the anterior edge of tympanum)and head width (HW, the posterior end of the mandible)(Sunet al., 2012). Of the 263 adults, 123 (42 females and 81 males) were also measured for fore-limb length (FLL,humerus plus ulna) and hind-limb length (HLL, femur plus tibia) (Jiet al., 2007).

    We palpated all adult females in the field and transported 27 females with enlarged follicles to our laboratory in Nanjing, where they were individually housed in 540 × 400 × 320 mm3plastic cages placed in a room inside which temperatures varied from 20 °C to 28 °C. All cages had a substrate consisting of moist soil (~150 mm depth) covered with cobblestones, grass and fallen leaves, and females were able to regulate body temperature using natural sunlight. Mealworms(Tenebrio molitor), house crickets (Achetus domesticus),cockroaches (Blaptica dubia) and water enriched with vitamin and minerals were provided or refreshed daily.

    Females laid a single clutch of eggs between early May and mid-August. We checked the cages at least thrice daily for freshly laid eggs after the first female laid eggs,thereby collecting, weighing and measuring (for length and width) eggs always less than 6 h post-laying. Postoviposition females were weighed and measured for SVL.Of the 27 females, two were excluded from analyses because they laid unfertilized eggs or abnormal eggs with condensed yolk. We calculated relative clutch mass(RCM) by dividing clutch mass by the post-oviposition female mass (Shine, 1992). To account for the influence of variation in female size on fecundity, we calculated relative fecundity by using the residuals derived from the regression of clutch size on female SVL (Olsson and Shine, 1997).

    We collected 142 fertilized egg, of which eight,each from one of eight clutches, were used to identify the Dufaure and Hubert’s (1961) stage of embryonic development at laying. The remaining eggs were individually placed into covered plastic jars (50 ml) with moist vermiculite at –12 kPa (Ji and Bra?a, 1999). All incubating egg were 2/3 buried in the substrate, with the surface near the embryo exposed to air inside the jar. Eggs from the same clutch were assigned as equally as possible among five incubators (Binder, Germany): three set at 22,25 and 28 °C, respectively; the other two set at 25 ± 3 °C and 25 ± 5 °C, respectively. Thermal fluctuations were maintained at 12 h (+) and 12 h (–) and were confirmed with Tinytalk temperature loggers (Gemini Pty, Australia)placed inside jars. We rotated jars at 4-d intervals to minimize the influence of thermal gradients. Substrate water potential was adjusted at 4-d intervals by weighing jars. Incubation length was defined as the time between laying and pipping. Upon emergence, hatchlings were collected, weighed and measured for SVL, AL, HL and HW.

    We used linear regression analysis to examine if the relationship between a selected pair of dependent and independent variables was significant. We calculated regression residuals of an examined morphological variable (AL, HL, HW, FLL, or HLL) against SVL, and then used one-way ANOVA to see if the variable differed between male and female adults. Data on egg size,incubation length and hatchling morphology from the same clutch were pooled to avoid pseudo-replication. We usedG-test and one-way ANOVA to see if eggs incubated under different thermal regimes differed in hatching success, mean mass at laying and mean incubation length.We used one-way ANCOVA to test for slope homogeneity of regressions lines and to see if hatchlings from eggs assigned to different treatments differed morphologically after accounting for egg mass at laying. Prior to parametric analyses, all data were tested for normality using the Kolmogorov-Smirnov test, and for homogeneity of variances using Bartlett’s test. All statistical procedures were performed in Statistica 8.0 (StatSoft; Tulsa, OK,USA), and statistical significance was assumed atP<0.05. Values are presented as mean ± standard error (SE)and range.

    3. Results and Discussion

    3.1. Sexual dimorphismThe largest male and female were 110 mm and 108 mm SVL, respectively. Both values are greater than the maximal sizes ever reported forS.incognitusfrom mainland China (107 mm SVL; Huang,1999) and Taiwan, China (94 mm SVL; Huang, 2010).The mean SVL did not differ between male (97 ± 0.5 mm)and female (96 ± 0.7 mm) adults (ANOVA;F1,261= 0.45,P= 0.50; Figure 1), suggesting thatS. incognitusfrom South China is sexually monomorphic in terms of adult body size (SVL). This pattern of SSD differs from malebiased SSD reported forS. incognitusfrom Taiwan, China(Huang, 2010), and it also does not support the hypothesis that lizards on islands are more likely to exhibit malebiased SSD (Hernández-Salinaset al., 2014). Much more adults were measured in this study (92 females and 171 males) than in the earlier one (43 females and 45 males;Huang, 2010), thus allowing more accurate determination of SSD.

    The evolution and maintenance of a given pattern of SSD often result from sexual differences in reproductive success relating to adult body size (Cooper and Vitt, 1989;Hews, 1990; Mouton and Van Wyk, 1993; Reeve and Fairbairn, 2001; Coxet al., 2003). Within scincid lizards,selection through male contest competition is the key factor for male-biased SSD inPlestiodonchinensis(Lin and Ji, 2000),Plestiodon elegans(Du and Ji, 2001; Zhang and Ji, 2004) andEutropismultifasciata(Jiet al., 2006),whereas selection on fecundity or reproductive output is the main cause for increased female size inS. indicus(Ji and Du, 2000),Scincella modestaandScincella reevesii(Yanget al., 2012). Sexual size monomorphism(SSM) often occurs in species where these two selective forces cancel each other out and has been documented in a wide range of lizard taxa. In lizard species so far studied in China, SSM has been documented inCalotes versicolor(Jiet al., 2002),Eremias argus(Chenet al.,2015),Eremias brenchleyi(Xu and Ji, 2003),Eremias multiocellata(Liet al., 2006),Japalura splendida(Lin, 2004),Phrynocephalus frontalis(Quet al., 2011),Phrynocephalus grumgrzimailoi(Liu and Shi, 2009),Phrynocephalus guinanensis(Jiet al., 2009),Shinisaurus crocodilurus(Heet al., 2011),Takydromus septentrionalis(Jiet al., 1998; Zhang and Ji, 2000) andTakydromus sexlineatus(Xuet al., 2014).

    Figure 1 Frequency distributions of SVL of adult Sphenomorphus incognitus (92 females and 171 males), showing sexual size monomorphism.

    The rates at which HL (Figure 2a) and HW (Figure 2b) increased with SVL were greater in adult males(ANCOVA for slope homogeneity, bothP< 0.001),and the rates at which AL (Figure 2c), FLL (Figure 2d)and HLL (Figure 2e) increased with SVL did not differ significantly between the sexes (ANCOVA for slope homogeneity; allP> 0.09). The mean values of residuals from the regressions of HL, HW, FLL and HLL on SVL were greater in adult males (ANOVA; allP< 0.0001),whereas the mean value of residuals from the regressions of AL (ANOVA;F1,261= 64.20,P< 0.0001) on SVL was greater in adult females. The greater relative head size in males and the greater relative abdomen size in females are the rule in nearly all lizard lineages (Olssonet al., 2002; Coxet al., 2003; Kratochvílet al., 2003;Pincheira-Donoso and Tregenza, 2011; Sunet al., 2012;see also Huang, 1996). It is therefore not surprising thatS. incognitusshares these features. Head size (both length and width) and abdomen length are sexually dimorphic largely because these traits are directly linked to the reproductive role of each sex (Bultéet al., 2008),although in some species the greater relative head size in males may also have a secondary role in reducing intersexual resource competition by amplifying food niche divergence between the sexes (Bra?a, 1996; Lin and Ji, 2000; Zhang and Ji, 2000, 2004). Sexual dimorphism in appendage (limb) length has been poorly known. LikePhrynocephalus przewalskii(Zhao and Liu, 2014) andS. incognitusfrom Taiwan, China (Huang, 2010),S.incognitusfrom South China shows male-biased sexual dimorphism in appendage length.

    3.2. Female reproductive characteristicsTable 1 shows female reproductive traits ofS. incognitusfrom South China. Females laid a single clutch of 3–10 eggs per breeding season from early May to mid-August, with the egg-laying season being about three months longer than that (from March to July) reported forS. incognitusfrom Taiwan, China (Huang, 2010). Clutch size was positively related to female SVL (r2= 0.18,F1,23= 5.09,P= 0.034), suggesting that, as in most other lizard species (Ramírez-Bautistaet al., 2017), female size is an important determinant of fecundity inS. incognitus. Such a relationship between clutch size and female SVL was nonetheless not statistically significant inS. incognitusfrom Taiwan, China (Huang, 2010). The mean clutch size was greater in South China (5.2; Table 1) than in Taiwan,China (4.0; Huang, 2010). This difference could be in part due to the fact that females of this study (81–108 mm SVL; Table 1) were larger than those studied in Taiwan,China (73–87 mm SVL; Huang, 2010), asS. incognitusis among species where larger females are more fecund than smaller ones. Egg mass and clutch mass had never been examined inS. incognitus. In this study, we found that neither clutch mass (r2= 0.12,F1,23= 3.23,P=0.085) nor egg mass (r2= 0.04,F1,23= 0.99,P= 0.33)was significantly related to female SVL. These findings suggest that female size is not an important determinant of reproductive output or investment per offspring inS. incognitus. Egg mass was independent of relative fecundity (r2= 0.03,F1,23= 0.64,P= 0.43), suggesting that, as inEutropis longicaudata(Sunet al., 2012) andS.modesta(Yanget al., 2012), the egg size-number tradeoff does not exist inS. incognitus.

    Among oviparous skinks so far studied in mainland China, the mean RCM was smaller inS. incognitus(0.25;Table 1) than inS. modesta(0.72; Yanget al., 2012),E.longicaudata(0.34; Sunet al., 2012),P. chinensis(0.33;Lin and Ji, 2000) andP. elegans(0.31; Du and Ji, 2001),the proportion of variation in clutch mass explained by female SVL was lower inS. incognitus(12%) than inP.chinensis(51%; Lin and Ji, 2000),P. elegans(46%; Du and Ji, 2001),E. longicaudata(42%; Sunet al., 2012) andS. modesta(37%; Yanget al., 2012), and the proportion of variation in clutch size explained by female SVL is lower inS. incognitus(18%) than inP. chinensis(52%;Lin and Ji, 2000),S. modesta(40%; Yanget al., 2012),P. elegans(37%; Du and Ji, 2001) andE. longicaudata(35%; Sunet al., 2012). These comparisons provide an inference that selection on increased maternal body size and thus increased body volume available to hold eggs is comparatively weak inS. incognitus.

    Figure 2 Linear regressions of head length (a), head width (b), abdomen length (c), fore-limb length (d) and hind-limb length (e) on SVL in adult Sphenomorphus incognitus. Filled circles: females; open circles: males.

    3.3. Egg incubation and hatchling phenotypeEmbryonic stages at laying ranged from Dufaure and Hubert’s (1961) stage 31 to 32, with a mean stage of 31.3.Embryonic stage at laying is a causal factor of inter- and intra-specific variation in incubation length in oviparous lizards (Wanget al., 2013). However, incubation length at any given temperature may vary considerably among species that differ in phylogeny, egg size and/or distribution (Linet al., 2010; Liet al., 2012, 2013; Sunet al., 2013). Within sincid lizards, for example, the mean incubation length at 28 °C is much longer inS. incognitus(~40 d; Table 2) than inS. modesta(~20 d; Luet al.,2006) andP. chinensis(~24 d; Luet al., 2012, 2014; Shenet al., 2017), although the mean DH stage at laying does not differ betweenS. incognitusandS. modesta(31.1; Luet al., 2006) and is about one stage earlier inS. incognitusthan inP. chinensis(~32.5; Luet al., 2012, 2014; Shenet al., 2017). InPhrynocephaluslizards the changeover from the DH stage 30 to 31 shortens the mean incubation length at 28 °C by 3 d (Wanget al., 2013; Zenget al.,2013).

    Eggs assigned to the five temperature treatments did not differ significantly in mean mass (F4,42= 2.44,P=0.06) or hatching success (G= 2.62,df= 4,P> 0.50).Hatching successes varied from 64% (16/25) in the 25 ± 5°C treatment to 82% (9/11) in the 28 °C treatment, with a mean of 74% (Table 2). Within each treatment incubation length was independent of egg mass (linear regression analysis: allP> 0.20). Mean values for incubation length differed among the five treatments (F4,42= 45.62,P<0.0001). For eggs incubated at constant temperatures,the mean incubation length was shortened by 22.0 and 13.2 d for every 3 °C increase from 22–28 °C (Table 2).This pattern of thermal sensitivity of incubation length is consistent with earlier studies on turtles (Jiet al., 2003,Duet al., 2007, 2010), lizards (Ji and Bra?a, 1999; Linet al., 2007; Wanget al., 2013; Shenet al., 2017), snakes(Ji and Du, 2001; Linet al., 2005; Linet al., 2010) and crocodiles (Pi?aet al., 2003; Charruau, 2012) where incubation length decreases at an ever decreasing rate as temperature increases across the range where successful embryonic development can take place, explaining why eggs take a longer time to hatch at fluctuating temperatures than at constant temperatures with the same mean in some species (Shine, 2004a; Haoet al., 2006;Bra?a and Ji, 2007; Leset al., 2007; Luet al., 2009; Liet al., 2012). However, contrast to what was expected the fluctuating temperature treatments result in shorter incubation lengths relative to constant temperatures inS.incognitus. This suggests that, as inBassiana duperreyi(Shine, 2004b),Lycaena tityrus(Fischeret al., 2011),Naja atra(Linet al., 2008) andXenochrophis piscator(Luet al., 2009), incubation at stable temperatures may lead to delayed hatchinginS. incognitus.

    Table 1 Reproductive traits of female Sphenomorphus incognitus (N = 25).

    Table 2 Hatching success and descriptive statistics (expressed as mean ± SE and range) for egg mass at laying (initial egg mass), incubation length and wet body mass and morphology of hatchling Sphenomorphus incognitus from eggs incubated under fi ve thermal regimes.

    Incubation temperatures higher than 28 °C substantially reduce hatching success and adversely affect hatchling phenotypes in forest skinks (Luet al., 2006; Liet al.,2012). Here we found that hatchlings from eggs incubated at 25 ± 5 °C did not differ from those from eggs incubated under other four thermal regimes in any examined trait after accounting for egg mass at laying (ANCOVA; allP> 0.19; Table 2). This finding is overall consistent with that reported for a wide range of reptile taxa, including turtles (Pelodiscus sinensis: Du and Ji, 2003; Jiet al.,2003), lizards (E. argus: Haoet al., 2006;Heteronotia binoei: Andrewarthaet al., 2010;Lacerta agilis: Liet al., 2013;P. chinensis: Chenet al., 2003) and snakes(Rhabdophis tigrinus lateralis: Chen and Ji, 2002;Ptyas mucosus: Lin and Ji, 2004;N. atra: Linet al., 2008;X.piscator: (Luet al., 2009). In all these species, incubation temperature has no role in modifying hatchling traits as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    4. Conclusions

    Sphenomorphus incognitusis a morphologically,zoogeographically and taxonomically well known species,but its ecology and biology remain sparsely studied. Here we used adults collected from South China to study sexual dimorphism, female reproduction and egg incubation in this species. From this study we know the following.First, the skink is a sexually monomorphic species in terms of adult SVL but shows sexual dimorphism in head size, abdomen length and limb length, with males being larger in head size (both length and width), longer in foreand hind-limb lengths and shorter in abdomen length than females of the same SVL. Second, females larger than 80 mm SVL lay a single clutch of 3–10 eggs per breeding season from early May to mid-August, with larger females generally laying more (but not always larger)eggs per clutch than do smaller ones. Third, the positive relationship between clutch mass and female SVL is not significant, and the offspring size-number tradeoff does not exist inS. incognitus. Fourth, embryonic stages at laying range from Dufaure and Hubert’s (1961)stage 31 to 32, and the mean incubation length at a given temperature is much longer inS. incognituscompared toS. modestawith nearly the same embryonic stage at laying. Last, eggs ofS. incognitusincubated at fluctuating temperatures take a shorter time to hatch than those incubated at stable temperatures with the same mean, and incubation temperature has no role in modifying hatchling morphology as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    AcknowledgementsOur experimental procedures complied with the current laws on animal welfare and research in China. We thank Yijing CHEN, Kun GUO, Min SHAO, Yanqing WU, Guangzheng ZHANG and Liang ZHANG for assistance during the research. For funding,we thank the National Natural Science Foundation of China (31470471), the Priority Academic Development Program of Jiangsu Higher Education Institutions and the Innovation of Graduate Student Training Project of Jiangsu Province (KYLX15_0737).

    Andrewartha S. J., Mitchell N. J., Frappell P. B. 2010. Does incubation temperature fluctuation influence hatchling phenotypes in reptiles? A test using parthenogenetic geckos.Physiol Biochem Zool, 83: 597–607

    Auffenberg W., Auffenberg T. 1989. Reproductive patterns in sympatric Philippine skinks (Sauria: Scincidae). Bull FL State Mus Biol Sci Ser, 34: 201–247

    Bra?a F. 1996. Sexual dimorphism in lacertid lizards: male head increase vs female abdomen increase.Oikos, 75: 511–523

    Bra?a F., Ji X. 2007. The selective basis for increased egg retention: Early incubation temperature determines hatchling phenotype in wall lizards. Biol J Linn Soc, 91: 441–447

    Bulté G., Irschick D. J., Blouin-Demerset G. 2008. The reproductive role hypothesis explains trophic morphology dimorphism in the northern map turtle. Funct Ecol, 22: 824–830

    Charruau P. 2012. Microclimate of American crocodile nests in Banco Chinchorro biosphere reserve, Mexico: Effect on incubation length, embryos survival and hatchlings sex. J Therm Biol, 37: 6–14

    Chen H. L., Ji X. 2002. The effects of thermal environments on duration of incubation, hatching success and hatchling traits in a colubrid snakeRhabdophis tigrinus lateralis(Boie). Acta Ecol Sin, 22: 1850–1858

    Chen S. Y., Bi J. H., He Z. C., Li S. R., Liu R., Wang Y., Zhao X.2015. Sexual dimorphism and reproductive output ofEremias argusfrom Ordos. Chin J Zool, 50: 214–220

    Chen X. J., Lin Z. H., Ji X. 2003. Further studies on influence of temperature on egg incubation in the Chinese skink,Eumeces chinensis. Zool Res, 24: 21–25

    Chen Z. Q., Wei H. H., Liu J. L., Wu Y. K., Le X. G., Cheng S.L., Guo H. X., Ding G. H. 2017. New record ofSphenomorphus incognitusfrom Zhejiang and Jiangxi provinces. Sichuan J Zool,36: 479–480

    Cooper W. E., Vitt L. J. 1989. Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. Am Nat, 133:729–735

    Cox R. M., Skelly S. L., John-Alder H. B. 2003. A comparative test of adaptive hypothesis for sexual size dimorphism in lizards.Evolution, 57: 1653–1669

    Du W. G., Hu L. J., Lu J. L., Zhu L. J. 2007. Effects of incubation temperature on embryonic development rate, sex ratio and post-hatching growth in the Chinese three-keeled pond turtle,Chinemys reevesii. Aquaculture, 272: 747–753

    Du W. G., Ji X. 2001. Growth, sexual dimorphism and female reproduction of blue-tailed skinks,Eumeces elegans. Zool Res,22: 279–286

    Du W. G., Ji X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles,Pelodiscussinensis. J Therm Biol, 28: 279–286

    Du W. G., Wang L., Shen J. W. 2010. Optimal temperatures for egg incubation in two geoemydid turtles:Ocadia sinensisandMauremys mutica. Aquaculture, 305: 138–142

    Dufaure J. P., Hubert J. 1961. Table de développement du lézard vivipare:Lacerta(Zootoca)viviparaJacquin. Arch Anat Microsc Morphol Exp, 50: 309–328

    Fischer K., K?lzow N., H?ltje H., Karl I. 2011. Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 166: 23–33

    Hao Q. L., Liu H. X., Ji X. 2006. Phenotypic variation in hatchling Mongolian racerunners (Eremias argus) from eggs incubated at constant versus fl uctuating temperatures. Acta Zool Sin, 52:1049–1057

    He N., Wu Z. J., Cai F. J., Wang Z. X., Yu H., Huang C. M.2011. Sexual dimorphism ofShinisaurus crocodilurus. Chin J Ecol, 30: 7–11

    Hernández-Salinas U., Ramírez-Bautista A., Pavón N. P.,Pacheco L. F. R. 2014. Morphometric variation in island and mainland populations of two lizard species from the Pacific Coast of Mexico. Rev Chil Hist Nat, 87: 21

    Hews, D. K. 1990. Examining hypotheses generated by field measures of sexual selection on male lizards,Uta palmeri.Evolution, 44: 1956–1966

    Huang Q. Y. 1999. Scincidae. In Zhao E. M., Zhao K. T., Zhou K.Y. (Eds.), Fauna Sinica, Reptilia,Vol. 2. Beijing: Science Press,271–360

    Huang W. S. 1996. Reproductive cycles and sexual dimorphism in the viviparous skink,Sphenomorphus indicus(Sauria:Scincidae), from Wushe, Central Taiwan. Zool Stud, 35: 55–61

    Huang W. S. 1997. Reproductive cycle of the skink,Sphenomorphus taiwanensis, in central Taiwan. J Herpetol, 31:287–290

    Huang W. S. 1998. Sexual size dimorphism and microhabitat use of two sympatric lizards,Sphenomorphus taiwanensisandTakydromus hsuehshanensis, from the central highlands of Taiwan. Zool Stud, 37: 303–308

    Huang W. S. 2010. Ecology and reproductive characteristics of the skinkSphenomorphus incognituson an East Asian Island, with comments on variations in clutch size with reproductive modes inSphenomorphus. Zool Stud, 49: 779–788

    Ji X, Bra?a F. 1999. Influence of thermal and hydric environments on embryonic use of energy and nutrients, and hatchling traits,in the wall lizards (Podarcismuralis). Comp Biochem Physiol,124A: 205–213

    Ji X., Chen F., Du W. G., Chen H. L. 2003. Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtlePelodiscus sinensis. J Zool, 261: 409–416

    Ji X., Du W. G. 2000. Sexual dimorphism in body size and head size and female reproduction in a viviparous skink,Sphenomorphus indicus. Zool Res, 21: 349–354

    Ji X., Huang H. Y., Hu X. Z., Du W. G. 2002. Geographic variation in female reproductive characteristics and egg incubation in the Chinese skink,Eumeces chinensis. Chin J Appl Ecol, 13: 680–684

    Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2007. Evolution of viviparity in warm-climate lizards: An experimental test of the maternal manipulation hypothesis. J Evol Biol, 20: 1037–1045

    Ji X., Lin L. H., Lin C. X., Qiu Q. B., Du Y. 2006. Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. J Herpetol, 40: 353–359

    Ji X., Lin L. H., Luo L. G., Lu H. L., Gao J. F., Han J. 2006.Gestation temperature affects sexual phenotype, morphology,locomotor performance and growth of neonatal brown forest skink,Sphenomorphus indicus. Biol J Linn Soc, 88: 453–463

    Ji X., Qiu Q. B., Diong C. H. 2002. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard,Calotes versicolorfrom a population in Hainan, southern China. J Herpetol, 36: 1–8

    Ji X., Wang Y. Z., Wang Z. 2009. New species ofPhrynocephalus(Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa,1988: 61–68

    Ji X., Zhang C. H. 2001. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zool Sin, 47: 250–259

    Ji X., Zhou W. H., He G. B., Zhang X. D. 1998. Sexual dimorphism and reproduction in the grass lizard,Takydromus septentrionalis. Russ J Herpetol, 5: 44–48

    Kratochvíl L., Fokt M., Rehák I., Frynta D. 2003.Misinterpretation of character scaling: A tale of sexual dimorphism in body shape of common lizards. Can J Zool, 81:1112–1117

    Lau M. 2005. The occurrence ofSphenomorphus incognitusin Hong Kong with notes on its diagnostic features and distribution.Porcupine, 32: 9–10

    Les H. L., Paitz R. T., Bowden R. M. 2007. Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. J Exp Zool A, 307: 274–280

    Li H., Ding G. H., Zhou Z. S., Ji X. 2013. Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizardLacerta agilis(Lacertidae). Acta Zool (Stockholm), 94:11–18

    Li H., Ji X., Qu Y. F., Gao J. F., Zhang L. 2006. Sexual dimorphism and female reproduction in the multi-ocellated racerunner,Eremias multiocellata(Lacertidae). Acta Zool Sin,52: 250–255

    Li H., Wang Z., Chen C., Ji X. 2012. Does the variance of incubation temperatures always constitute a selective force for the origin of reptilian viviparity? Curr Zool, 58: 812–819

    Lin C. X., Du Y., Qiu Q. B., Ji X. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin, 53: 437–445

    Lin L. H., Li H., An H., Ji X. 2008. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol, 33: 193–199

    Lin L. H., Ma X. M., Li H., Ji X. 2010. Phenotypic variation in hatchling Chinese ratsnakes (Zaocys dhumnades) from eggs incubated at constant temperatures. J Therm Biol, 35: 28–33

    Lin Z. H. 2004. Sexual dimorphism in head and body size and the growth during reproductive period in the lizard,Japalura splendida. Sichuan J Zool, 23: 277–280

    Lin Z. H., Ji X. 2000. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20: 304–310

    Lin Z. H., Ji X. 2004. Reproductive output and effects of incubation thermal environments on hatchling phenotypes of mucous rat snakesPtyas mucosus. Acta Zool Sin, 50: 541–550

    Lin Z. H., Ji X., Luo L. G., Ma X. M. 2005. Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake,Deinagkistrodon acutus(Viperidae). J Therm Biol, 30:289–297

    Linkem C. W., Diesmos A. C., Brown R. M. 2011. Molecular systematics of the Philippine forest skinks (Squamata: Scincidae:Sphenomorphus): Testing morphological hypotheses of interspecific relationships. Zool J Linn Soc, 163: 1217–1243

    Liu Y, Shi L. 2009. Ontogenetic shifts of sexual dimorphism inPhrynocephalus grumgrzimailoi(Agamidae). Sichuan J Zool,28: 710–713

    Lu H. L., Gao J. F., Ma X. H., Lin Z. H., Ji X. 2012. Tail loss affects fecundity but not offspring traits in the Chinese skink,Eumeces chinensis. Curr Zool, 58: 228–235

    Lu H. L., Hu R. B., Ji X. 2009. The variance of incubation temperatures does not affect the phenotype of hatchlings in a colubrid snake,Xenochrophis piscator(Colubridae). J Therm Biol, 34: 138–143

    Lu H. L., Ji X., Lin L. H., Zhang L. 2006. Relatively low upper threshold temperature in lizards using cool habitats. J Therm Biol, 31: 256–261

    Lu H. L., Lin Z. H., Li H., Ji X. 2014. Geographic variation in hatchling size in an oviparous skink: Effects of maternal investment and incubation thermal environment. Biol J Linn Soc, 113: 283–296

    Mouton P. F. N., Van Wyk J. H. 1993. Sexual dimorphism in cordylid lizards: A case study of the Drakensberg crag lizard,Pseudocordylus melanotus. Can J Zool, 71: 1715–1723

    Nguyen T. Q., Schmitz A., Nguyen T. T., Orlov N. L., B?hme W.,Ziegler T. 2011. Review of the genusSphenomorphusFitzinger,1843 (Squamata: Sauria: Scincidae) in Vietnam, with description of a new species from northern Vietnam and southern China and the first record ofSphenomorphus mimicusTaylor, 1962 from Vietnam. J Herpetol, 45: 145–154

    Nguyen T. Q., Tran T. T., Nguyen T. T., B?hme W., Ziegler T.2012. First record ofSphenomorphus incognitus(Thompson,1912) (Squamata: Scincidae) from Vietnam with some notes on natural history. Asian Herpetol Res, 3: 147–150

    Olsson M., Shine R. 1997. The limits to reproductive output:offspring size versus number in the sand lizard (Lacerta agilis).Am Nat, 149: 179–188

    Olsson M., Shine R., Wapstra E., Ujvari B., Madsen T. 2002.Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56: 1538–1542

    Pi?a C. I., Larriera A., Cabrera M. R. 2003. Effect of incubation temperature on incubation period, sex ratio, hatching success, and survivorship inCaiman latirostris(Crocodylia,Alligatoridae). J Herpetol, 37: 199–202

    Pincheira-Donoso D., Tregenza T. 2011. Fecundity selection and the evolution of reproductive output and sex-specific body size in theLiolaemuslizard adaptive radiation. Evol Biol, 38: 197–207

    Qu Y. F., Gao J. F., Mao L. X., Ji X. 2011. Sexual dimorphism and female reproduction in two sympatric toad-headed lizards,Phrynocephalus frontalisandP. versicolor(Agamidae). Anim Biol, 61: 139–151

    Ramírez-Bautista A., Cruz-Elizalde R., Hernández-Salinas U., Lozano A., Grummer J. A. 2017. Reproductive trait variation in theSceloporus scalarisspecies group (Squamata:Phrynosomatidae) from the Transvolcanic Belt, Mexico. Biol J Linn Soc, 122: 838–849

    Reeve J. P., Fairbairn D. J. 2001. Predicting the evolution of sexual size dimorphism. J Evol Biol, 14: 244–254

    Shen W., Pei J. C., Lin L. H., Ji X. 2017. Effects of constant versus fluctuating incubation temperatures on hatching success,incubation length and hatchling morphology in the Chinese skink (Plestiodon chinensis). Asian Herpetol Res, 8: 262–268

    Shine R. 1992. Relative clutch mass and body shape in lizards and snakes: its reproductive investment constrained or optimized?Evolution, 46: 828–833

    Shine R. 2004a. Incubation regimes of cold-climate reptiles: The thermal consequences of nest-site choice, viviparity and maternal basking. Biol J Linn Soc, 83: 145–155

    Shine R. 2004b. Seasonal shifts in nest temperature can modify the phenotypes of hatchling lizards, regardless of overall mean incubation temperature. Funct Ecol, 18: 43–49

    Sun B. J., Li S. L., Xu X. F., Zhao W. G., Luo L. G., Ji X., Du W. G. 2013. Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteriandEremias argus). Oecologia, 172: 645–652

    Sun Y. Y., Du Y., Yang J., Fu T. B., Lin C. X., Ji X. 2012. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size in lizards? Evol Biol, 39: 388–399

    Tang X. S., Huang S. 2014.Sphenomorphus incognitusfirstly found in Anhui province, China. Chin J Zool, 49: 609–612

    Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high altitudePhrynocephaluslizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia,174: 639–649

    Wang Z., Ma L., Shao M., Ji X. 2013. Differences in incubation length and hatchling morphology among five oviparousPhrynocephaluslizards (Agamidae) from China. Asian Herpetol Res, 4: 225–232

    Xu D. D., Luo S. T., Liu W. H., Yao X. M., Wu H. X. 2014. The intersexual differences of sexual dimorphism, feeding habits and locomotor performance at different temperatures of southern grass lizard (Takydromus sexlineatus) in Zhaoqing, China.Sichuan J Zool, 33: 808–814

    Xu X. F., Ji X. 2003. Ontogenetic shifts in sexual dimorphism in head size and food habits in the lacertid lizard,Eremias brenchleyi. Chin J Appl Ecol, 14: 557–561

    Yang J., Sun Y. Y., Fu T. B., Xu D. D., Ji X. 2012. Selection for increased maternal body-volume does not differ between twoScincellalizards with different reproductive modes. Zoology,115: 199–206

    Zeng Z. G., Zhao J. M., Sun B. J. 2013. Life history variation among geographically close populations of the toad-headed lizard (Phrynocephalus przewalskii): Exploring environmental and physiological associations. Acta Oecol, 51: 28–33

    Zhang Y. P., Ji X. 2000. Ontogenetic changes of sexual dimorphism in head size and food habit in grass lizard,Takydromus septentrionalis. Zool Res, 21: 181–186

    Zhang Y. P., Ji X. 2004. Sexual dimorphism in head size and food habits in the blue-tailed skink,Eumeces elegans. Acta Zool Sin,50: 745–752

    Zhao W., Liu N. F. 2014. The proximate causes of sexual size dimorphism inPhrynocephalus przewalskii. PLoS One, 9:e85963

    俄罗斯特黄特色一大片| 黄色成人免费大全| 成人国产av品久久久| 国产又色又爽无遮挡免费看| 亚洲国产看品久久| 无人区码免费观看不卡 | 日韩中文字幕视频在线看片| 91国产中文字幕| 国产免费福利视频在线观看| 国产欧美亚洲国产| 一本一本久久a久久精品综合妖精| www日本在线高清视频| 欧美另类亚洲清纯唯美| 青草久久国产| 亚洲男人天堂网一区| 99国产极品粉嫩在线观看| 精品少妇一区二区三区视频日本电影| 国产1区2区3区精品| 在线av久久热| 免费人妻精品一区二区三区视频| 亚洲九九香蕉| 精品乱码久久久久久99久播| 成人精品一区二区免费| 中文字幕色久视频| 中文字幕人妻熟女乱码| 欧美在线一区亚洲| 一进一出好大好爽视频| 欧美精品高潮呻吟av久久| 黑人巨大精品欧美一区二区mp4| 国产亚洲午夜精品一区二区久久| 中文欧美无线码| 国内毛片毛片毛片毛片毛片| 久久天堂一区二区三区四区| 久久久久久人人人人人| 在线观看免费视频日本深夜| 老熟妇乱子伦视频在线观看| 午夜日韩欧美国产| 日日夜夜操网爽| 精品少妇内射三级| 亚洲国产中文字幕在线视频| 中文欧美无线码| 捣出白浆h1v1| 国产淫语在线视频| 天天躁日日躁夜夜躁夜夜| 99久久国产精品久久久| 成年人黄色毛片网站| 一级,二级,三级黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品粉嫩美女一区| 99国产精品免费福利视频| 无遮挡黄片免费观看| 久久久久久免费高清国产稀缺| 无限看片的www在线观看| 高潮久久久久久久久久久不卡| 99热国产这里只有精品6| 亚洲性夜色夜夜综合| 人妻 亚洲 视频| 嫩草影视91久久| 午夜两性在线视频| 亚洲专区字幕在线| 一级毛片女人18水好多| 国产aⅴ精品一区二区三区波| 男人操女人黄网站| 国产精品久久久久久人妻精品电影 | 99re在线观看精品视频| 精品亚洲成国产av| 狠狠精品人妻久久久久久综合| 又紧又爽又黄一区二区| 动漫黄色视频在线观看| www.自偷自拍.com| 亚洲伊人色综图| 动漫黄色视频在线观看| 丰满少妇做爰视频| 9191精品国产免费久久| 成人精品一区二区免费| 午夜日韩欧美国产| 亚洲午夜理论影院| 国产成+人综合+亚洲专区| 亚洲午夜理论影院| 亚洲精品国产色婷婷电影| 三级毛片av免费| 日本av免费视频播放| 成人手机av| e午夜精品久久久久久久| 久久久国产一区二区| 精品一区二区三区av网在线观看 | 97人妻天天添夜夜摸| 岛国在线观看网站| 精品国内亚洲2022精品成人 | 中国美女看黄片| 中亚洲国语对白在线视频| 色精品久久人妻99蜜桃| 国产熟女午夜一区二区三区| av超薄肉色丝袜交足视频| 国产有黄有色有爽视频| 露出奶头的视频| av有码第一页| 精品人妻熟女毛片av久久网站| av在线播放免费不卡| 涩涩av久久男人的天堂| 中文亚洲av片在线观看爽 | 一本久久精品| 国产免费视频播放在线视频| 人人澡人人妻人| 欧美精品av麻豆av| 亚洲欧洲日产国产| 一本—道久久a久久精品蜜桃钙片| 日本一区二区免费在线视频| 精品国产乱码久久久久久小说| 久久精品亚洲av国产电影网| 久久久久久久久久久久大奶| 丝袜美腿诱惑在线| 黄色视频,在线免费观看| 久久久水蜜桃国产精品网| 精品少妇黑人巨大在线播放| videosex国产| 母亲3免费完整高清在线观看| 狠狠狠狠99中文字幕| 久久亚洲真实| 电影成人av| 桃红色精品国产亚洲av| 高清毛片免费观看视频网站 | 久久精品91无色码中文字幕| a在线观看视频网站| 国产av又大| 99久久国产精品久久久| 久久这里只有精品19| 精品午夜福利视频在线观看一区 | 美国免费a级毛片| 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一出视频| 国产视频一区二区在线看| 动漫黄色视频在线观看| 国产一区二区三区视频了| 一区二区三区激情视频| 亚洲中文字幕日韩| 老司机在亚洲福利影院| 午夜激情av网站| 国产精品一区二区精品视频观看| 老司机亚洲免费影院| 中文字幕精品免费在线观看视频| 人人澡人人妻人| 国产成人av激情在线播放| 人人妻人人添人人爽欧美一区卜| 欧美日韩国产mv在线观看视频| 51午夜福利影视在线观看| 天堂中文最新版在线下载| 国产黄频视频在线观看| 中文字幕人妻熟女乱码| 操出白浆在线播放| 日本wwww免费看| av片东京热男人的天堂| 91麻豆av在线| 看免费av毛片| 中文字幕精品免费在线观看视频| 国产精品熟女久久久久浪| 亚洲欧美日韩另类电影网站| 欧美国产精品va在线观看不卡| 久热爱精品视频在线9| 午夜视频精品福利| 国产精品影院久久| 国产欧美日韩一区二区三区在线| 波多野结衣av一区二区av| 天堂动漫精品| 中国美女看黄片| 18禁裸乳无遮挡动漫免费视频| 亚洲avbb在线观看| 最新美女视频免费是黄的| 热re99久久国产66热| 激情在线观看视频在线高清 | 国产激情久久老熟女| 黑人猛操日本美女一级片| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 日日爽夜夜爽网站| 亚洲成人手机| 国产亚洲精品一区二区www | 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| a级毛片黄视频| 91字幕亚洲| 国产精品.久久久| 国产有黄有色有爽视频| 国产av精品麻豆| 亚洲av日韩在线播放| 久9热在线精品视频| 在线av久久热| 亚洲精品国产色婷婷电影| 亚洲成人手机| 日韩一区二区三区影片| 中文字幕制服av| 国产日韩欧美在线精品| 国产伦理片在线播放av一区| 亚洲男人天堂网一区| 99国产精品免费福利视频| 一本一本久久a久久精品综合妖精| 国产欧美亚洲国产| 中文字幕人妻丝袜制服| 国产黄频视频在线观看| 桃花免费在线播放| 9色porny在线观看| 纯流量卡能插随身wifi吗| 韩国精品一区二区三区| av国产精品久久久久影院| 91精品三级在线观看| 国产一区二区三区视频了| 精品卡一卡二卡四卡免费| 国产精品98久久久久久宅男小说| 国产亚洲av高清不卡| 欧美国产精品va在线观看不卡| 日本黄色视频三级网站网址 | 久久中文字幕一级| 欧美激情极品国产一区二区三区| 性色av乱码一区二区三区2| 在线看a的网站| 国产成人av教育| 亚洲精品国产色婷婷电影| 亚洲 欧美一区二区三区| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 热re99久久精品国产66热6| 午夜精品国产一区二区电影| 国产一卡二卡三卡精品| 男女下面插进去视频免费观看| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 日韩大码丰满熟妇| 亚洲熟女精品中文字幕| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频 | 亚洲,欧美精品.| 极品教师在线免费播放| 欧美成狂野欧美在线观看| 国产97色在线日韩免费| 又紧又爽又黄一区二区| 视频区欧美日本亚洲| 一级片'在线观看视频| 久久婷婷成人综合色麻豆| 99精国产麻豆久久婷婷| 欧美大码av| 男女午夜视频在线观看| 欧美亚洲 丝袜 人妻 在线| 咕卡用的链子| 亚洲,欧美精品.| 中文字幕色久视频| 亚洲三区欧美一区| 美女高潮喷水抽搐中文字幕| 久久精品成人免费网站| 国产成人av教育| 操出白浆在线播放| 亚洲第一av免费看| 国产在线一区二区三区精| 欧美日韩黄片免| 免费黄频网站在线观看国产| 啦啦啦 在线观看视频| 久久久久久久精品吃奶| 国产欧美日韩综合在线一区二区| 人人澡人人妻人| 亚洲精品一卡2卡三卡4卡5卡| 欧美av亚洲av综合av国产av| 亚洲成av片中文字幕在线观看| 大型av网站在线播放| 国产国语露脸激情在线看| 91大片在线观看| 曰老女人黄片| 久热这里只有精品99| 亚洲av日韩在线播放| 少妇的丰满在线观看| 中文字幕高清在线视频| av免费在线观看网站| 欧美黑人精品巨大| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 欧美中文综合在线视频| 在线观看免费高清a一片| 激情视频va一区二区三区| 午夜福利乱码中文字幕| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 91大片在线观看| 中文字幕制服av| 中国美女看黄片| 久久 成人 亚洲| 欧美成人免费av一区二区三区 | 精品久久久久久久毛片微露脸| 男女高潮啪啪啪动态图| 亚洲欧美色中文字幕在线| 99热国产这里只有精品6| 又紧又爽又黄一区二区| 黑人欧美特级aaaaaa片| avwww免费| 性少妇av在线| 免费在线观看影片大全网站| 欧美亚洲 丝袜 人妻 在线| 成年版毛片免费区| 国产精品av久久久久免费| 免费在线观看日本一区| 欧美午夜高清在线| 777米奇影视久久| 97在线人人人人妻| 一进一出抽搐动态| 激情视频va一区二区三区| 夜夜爽天天搞| 欧美人与性动交α欧美软件| 国产精品一区二区在线观看99| 久久久久久久久免费视频了| 两个人免费观看高清视频| 日韩大片免费观看网站| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 久久国产精品影院| 高清黄色对白视频在线免费看| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 一本—道久久a久久精品蜜桃钙片| 韩国精品一区二区三区| av福利片在线| 黄色 视频免费看| 又大又爽又粗| 欧美日韩精品网址| 男女下面插进去视频免费观看| 一本久久精品| 久久国产精品大桥未久av| 丁香六月欧美| 久久久水蜜桃国产精品网| 欧美精品av麻豆av| av视频免费观看在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲色图 男人天堂 中文字幕| 一二三四在线观看免费中文在| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 人人妻人人澡人人爽人人夜夜| 国产男女内射视频| 亚洲精品在线美女| 亚洲欧美色中文字幕在线| 国产男靠女视频免费网站| cao死你这个sao货| 日日爽夜夜爽网站| 国产真人三级小视频在线观看| 欧美精品一区二区免费开放| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 汤姆久久久久久久影院中文字幕| 免费一级毛片在线播放高清视频 | 亚洲久久久国产精品| 欧美一级毛片孕妇| 亚洲国产成人一精品久久久| 日韩熟女老妇一区二区性免费视频| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看视频国产中文字幕亚洲| 久久久欧美国产精品| 亚洲人成电影免费在线| 一本久久精品| 久久毛片免费看一区二区三区| 电影成人av| 最新在线观看一区二区三区| 欧美 亚洲 国产 日韩一| tube8黄色片| 欧美精品一区二区大全| 亚洲午夜理论影院| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 成人免费观看视频高清| 国产成人免费无遮挡视频| av有码第一页| 一级毛片精品| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 一夜夜www| 老司机深夜福利视频在线观看| 日本a在线网址| 色老头精品视频在线观看| 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美软件| 国产福利在线免费观看视频| a级毛片黄视频| 亚洲一码二码三码区别大吗| 久久久久网色| 欧美在线一区亚洲| 变态另类成人亚洲欧美熟女 | 好男人电影高清在线观看| 高清毛片免费观看视频网站 | 日韩免费av在线播放| 亚洲av片天天在线观看| 三上悠亚av全集在线观看| 男女无遮挡免费网站观看| 国产精品自产拍在线观看55亚洲 | 国产精品成人在线| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| 高清毛片免费观看视频网站 | 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 黄网站色视频无遮挡免费观看| 国产亚洲精品久久久久5区| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久小说| 一级a爱视频在线免费观看| 极品教师在线免费播放| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 精品国产亚洲在线| 交换朋友夫妻互换小说| 一区二区三区国产精品乱码| 国产一卡二卡三卡精品| 人妻久久中文字幕网| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 两个人看的免费小视频| 亚洲少妇的诱惑av| 久久精品91无色码中文字幕| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 老司机影院毛片| 国产高清国产精品国产三级| 老熟女久久久| 亚洲五月婷婷丁香| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 在线观看66精品国产| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 亚洲免费av在线视频| 国产精品香港三级国产av潘金莲| 久久热在线av| 99久久人妻综合| 欧美日韩一级在线毛片| 这个男人来自地球电影免费观看| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 精品国产乱码久久久久久小说| videos熟女内射| 熟女少妇亚洲综合色aaa.| 热99久久久久精品小说推荐| 精品国内亚洲2022精品成人 | 91av网站免费观看| 欧美日韩av久久| 国产色视频综合| 丝瓜视频免费看黄片| 成人国语在线视频| 午夜福利一区二区在线看| 午夜免费鲁丝| 欧美激情高清一区二区三区| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 韩国精品一区二区三区| 免费久久久久久久精品成人欧美视频| www.999成人在线观看| 国产99久久九九免费精品| 露出奶头的视频| 亚洲午夜精品一区,二区,三区| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 日韩大片免费观看网站| 亚洲精品一二三| 啦啦啦中文免费视频观看日本| 亚洲人成77777在线视频| 一边摸一边抽搐一进一出视频| 久久性视频一级片| 国产精品影院久久| 国产男女内射视频| 亚洲熟妇熟女久久| 高清欧美精品videossex| 久久久久国内视频| 日韩制服丝袜自拍偷拍| 法律面前人人平等表现在哪些方面| 黄片小视频在线播放| 色综合婷婷激情| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 久久精品国产综合久久久| av有码第一页| 最新在线观看一区二区三区| 在线观看舔阴道视频| 色94色欧美一区二区| 丝袜美足系列| 成人亚洲精品一区在线观看| 丝袜美足系列| 欧美日韩中文字幕国产精品一区二区三区 | 丁香欧美五月| av片东京热男人的天堂| 欧美 日韩 精品 国产| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 日韩精品免费视频一区二区三区| 国产97色在线日韩免费| 老司机靠b影院| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 18禁美女被吸乳视频| 国产精品熟女久久久久浪| 国产伦人伦偷精品视频| 一本大道久久a久久精品| 欧美日韩亚洲综合一区二区三区_| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 热99re8久久精品国产| 亚洲国产成人一精品久久久| 超色免费av| 侵犯人妻中文字幕一二三四区| 国产黄频视频在线观看| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 国产精品影院久久| 日韩一卡2卡3卡4卡2021年| 大型黄色视频在线免费观看| 精品一区二区三区四区五区乱码| 男人舔女人的私密视频| 热99re8久久精品国产| www.自偷自拍.com| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| 老司机亚洲免费影院| 大香蕉久久网| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 日日摸夜夜添夜夜添小说| 露出奶头的视频| 老司机亚洲免费影院| 日韩人妻精品一区2区三区| 国产日韩欧美视频二区| 欧美乱妇无乱码| 亚洲精品中文字幕在线视频| av福利片在线| 女人高潮潮喷娇喘18禁视频| 久久久国产一区二区| 蜜桃在线观看..| 亚洲精品久久午夜乱码| 美女高潮到喷水免费观看| 一本久久精品| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠躁躁| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲伊人久久精品综合| 人人妻,人人澡人人爽秒播| 视频区图区小说| 91成人精品电影| av网站在线播放免费| 国产91精品成人一区二区三区 | 国产在线观看jvid| 免费久久久久久久精品成人欧美视频| 18禁国产床啪视频网站| 丁香六月欧美| 国产亚洲精品久久久久5区| 欧美日韩精品网址| 中文欧美无线码| 国产高清视频在线播放一区| 一区二区av电影网| 涩涩av久久男人的天堂| 91麻豆av在线| 欧美精品高潮呻吟av久久| 成年女人毛片免费观看观看9 | 日韩一区二区三区影片| 午夜福利在线观看吧| 久久久精品区二区三区| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 一本色道久久久久久精品综合| 国产高清激情床上av| 久久热在线av| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载| 九色亚洲精品在线播放| 日本av免费视频播放| 亚洲av成人不卡在线观看播放网| 一区二区av电影网| 丁香欧美五月| 一级毛片电影观看| 99国产精品免费福利视频| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 精品国产乱码久久久久久男人| 性少妇av在线| 激情视频va一区二区三区| 热99re8久久精品国产| 波多野结衣av一区二区av| 免费av中文字幕在线| 久久av网站| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人|