• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three New Ranidae Mitogenomes and the Evolution of Mitochondrial Gene Rearrangements among Ranidae Species

    2018-06-28 03:17:38JiandongYANGJiaojiaoYUJiabinLIUMingZHOUBiaoLIandBoOUYANG
    Asian Herpetological Research 2018年2期

    Jiandong YANG, Jiaojiao YU, Jiabin LIU, Ming ZHOU, Biao LI and Bo OUYANG

    1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China

    2 Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China

    1. Introduction

    Previous studies had revealed that the gene organization in vertebrate mitogenomes is conserved and that the mitochondrial D-loop region and the 37 genes were arranged in same manner among vertebrates (Andersonet al., 1981; Roeet al., 1985; Tzenget al., 1992; Zardoyaet al., 1995). However, numerous gene rearrangements in the mitogenome can independently evolve (Alamet al.,2010; Chenet al., 2011; Desjardins and Morais, 1990;Kurabayashiet al., 2006, 2008, 2010; Liuet al., 2005;Mindellet al., 1998; Moritz and Brown, 1987; Sanoet al., 2005; Suet al., 2007; Zhanget al., 2013). Gene rearrangements involve duplications, losses, translocation,inversion, and/or shuffling of the D-loop region (also known as the control region), the replication origin of the light strand (OL) and the codon genes (including rRNA genes, tRNA genes and protein-coding genes).Although distinct mitogenome structural features have been reported for some amphibians, most amphibians(including caecilians, salamanders, archaeobatrachians,and mesobatrachians) generally conform to the typical Vertebrate-type mitochondrial gene arrangement (Liuet al., 2016; Mueller and Boore, 2005; Pabijanet al.,2008; San Mauroet al., 2004, 2006, 2014; Xiaet al.,2010; Zhanget al., 2008; Zhang and Wake, 2009).Surprisingly, the gene arrangements in the neobatrachian group are especially diverse and complex, and notably,their four tRNA genes (LTPF-trn) are commonly rearranged, which is distinguishable from the vertebrate ancestral gene order (Kurabayashiet al., 2010; Sumidaet al., 2001; Xiaet al., 2014).

    The vertebrate mitochondrial rearrangements appear to be unique, random, generally rare events that are exceptionally unlikely to arise independently in independent evolutionary lineages (Boore and Brown, 1998; Liu and Huang, 2010; Xiaet al., 2010,2014), although a few convergent or parallel gene rearrangements have been observed in vertebrate mtDNAs(Morrisonet al., 2002; Weiet al., 2014). The exceptional mitochondrial gene rearrangement has been thought to have significant implication for animal phylogenetic analysis and is considered a powerful phylogenetic marker also applicable to explore phylogenetic relationships among various groups at different taxonomic levels (Boore and Brown, 1998; Maceyet al., 1997; San Mauroet al., 2004, 2014; Weiet al., 2014; Xiaet al.,2010; Xueet al., 2016; Zhanget al., 2008, 2009, 2013).For example,Odorrana tormota, a species famous for its ultrasonic communication, was previously regarded as a member ofAmolops(Frost, 2017). However, this frog shares the same mitochondrial gene arrangement (thetrnHwas translocated to D-loop downstream, forming aHLTPF-trncluster) with mostOdorranafrogs, not with theAmolopsfrogs (conventionalLTPF-trncluster) (Suet al., 2007).

    The family Ranidae, also known as ranid frogs, is one of the most species-rich and fascinating groups of vertebrates (Cheet al., 2007; Liet al., 2014; Frost,2017). Ranidae represents one of the main components of Neobatrachia and contains approximately 380 described species, belonging to 23–24 genera (AmphibiaWeb, 2017;Frost, 2017). A total of 31 complete and 12 near-complete ranid mitochondrial genomes have been submitted to GenBank, and many novel gene rearrangement types have also been discovered (e.g. Liet al., 2014, 2016a, b;Kurabayashiet al., 2010; Suet al., 2007). Kurabayashiet al.(2010) reported the partial or complete mtDNAs of 10 ranids and found most mitogenomes were different from the typical Neobatrachian-type gene arrangement.The diversity of mitochondrial gene arrangements in ranid species is unexpected high (Kurabayashiet al., 2010).

    Here, we decode the mitochondrial genomes of three ranid frogs, conduct comparative genome analysis with all available Ranidae mitogenome sequences submitted to GenBank, and perform the phylogenetic analysis among Ranidae species. Our aim was to conduct an in-depth investigation, including examining the phylogenetic relationships, redescribing the novel mitogenome structures, analyzing exhaustively the genome reorganization types, and inferring the possible mechanisms and evolutionary pathways of gene rearrangements as well as its systematic implication among ranid frogs. Our study helps to understand mitogenome evolution and phylogenetic relationships of Ranidae species.

    2. Materials and Methods

    2.1. Specimen collection, DNA extraction, and PCR amplificationSpecimens ofRana kukunoris,R. chaochiaoensisandR. omeimontiswere obtained from Zoige County (33.57066° N, 102.96348° E, 3446 m a.s.l.), Shimian County (29.02461° N, 102.38626°E, 2 085 m a.s.l.), and Yucheng District (29.97900° N,102.98117° E, 618 m a.s.l.) in Sichuan Province, China,respectively, and stored at -80°C. A TaKaRa MiniBEST Universal Genomic DNA Extraction Kit Ver.5.0 (Takara,Dalian, China) was used to extract total genomic DNA from a frozen tissue sample of the thigh muscle according to the detailed manufacturer’s protocol. Primer sets used to amplify the entire mitogenomes of the threeRanaspecies are shown in Table S1.

    2.2. Sequence assembly and annotationThe overlapping sequence fragments were assembled by the program Seqmen (DNAstar, Madison, WI, USA).The annotations of rRNA genes (rRNAs), tRNAs,protein coding genes (PCGs) and D-loop region and the definitions of their respective gene boundaries were performed by the MitoAnnotator service (http://mitofish.aori.u-tokyo.ac.jp/annotation/input.html). The ARWEN program (http://mbio-serv2.mbioekol.lu.se/ARWEN/) was also utilized to infer the tRNAs via their proposed cloverleaf secondary structure and anticodon sequences. All annotation results were verified via alignment with homologous regions from other reportedRanamitochondrial genomes. Finally, the mitochondrial genetic diagrams were generated by the OGDRAW program (http://ogdraw.mpimp-golm.mpg.de).

    2.3. Data collectionWe downloaded 32 complete and 12 partial Ranidae mitochondrial genomes from GenBank(Table 1). Eight non-Ranidae mitogenomes were used as out-groups in the phylogenetic analysis. The taxonomic names of all species were based on ‘Amphibian Species of the World 6.0’ (Frost, 2017). There were many errors in some mitogenome annotations previously submitted to GenBank, and these mitogenome sequences should be re-annotated in systematic or comparative research(Cameron, 2014). In order to avoid interference caused by these errors in our subsequent analysis, we reanalyzed all sequences using the online services MitoAnnotator and ARWEN. The important corrections were listed in Figure S1.

    2.4. Genome rearrangement analysisWe compared and analyzed re-annotated mitogenomes, together with the three newRanafrog data, with respect to mitogenome gene order (Chenet al., 2011). The definition of mitogenome organization types is based on the comparative results. To clarify, if the gene arrangements of the new mitogenome deviate from the typical Vertebrate-type gene arrangement (Type A) and the typical Neobatrachian-type gene arrangement (Type B), we will divide it into a new type (Figure 1). The long intergenic spacer frequently found in the closely related species and the pseudogene are also taken into account.If we cannot determine that the long intergenic spacer(more than 20 bp in size) frequently found in the closely related species is a pseudogene via homologous sequence alignments, for convenience, we will temporarily call it as“gap” in this study.

    2.5. Phylogenetic tree analysisFirstly, all termination codons of 13 PCGs nucleotide sequences were manually deleted. Then, the remaining fragments of each PCG were separately aligned based on their translated amino acid sequences by Muscle implemented in MEGA6.06(Tamuraet al., 2013), and the two rRNAs sequences were separately aligned by ClustalX2 (Larkinet al.,2007). Subsequently, all ambiguous alignment regions were trimmed by the Gblocks Server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html), the type of sequence was set to Codons (for PCGs) or DNA (for rRNAs) and all options for a less stringent selection were selected. Finally, the 15 trimmed alignments were concatenated into a single dataset to infer the phylogenetic relationships of Ranidae. For the concatenated sequence matrix, two phylogenetic trees were constructed using both Bayesian inference (BI) and maximum likelihood(ML) approaches. The ML analysis was conducted by PhyML3.1 (Guindonet al., 2010) under the GTR + I +G evolutionary model determined by jModelTest2.1.5(Darribaet al., 2012), with 100 replicates for the nonparametric bootstrap analysis. The BI analysis was performed by MrBayes3.2.2 (Ronquist and Huelsenbeck,2003). For the BI analysis, we firstly partitioned the data into 15 partitions by gene, and then used jModelTest2.1.5 to select the best- fit model of nucleotide substitution for each partition with the Bayesian Information Criterion,which was preferred for model selection (Luoet al.,2010). We performed two independent runs for 5 000 000 generations, sampled every 1 000 generations,conservatively discarded the first 25% of generations as burn-in, and visualized the majority-rule (>50%)consensus trees using FigTree1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

    Figure 1 Mitochondrial genomic organizations of Ranidae frogs. Each tRNA gene is represented by the standard one-letter amino acid code,and S1 = trnSUCN, S2 = trnSAGY, L1 = trnLCUN, L2 = trnLUUR. Other genes are abbreviated as follows: 12S and 16S, 12S and 16S ribosomal RNA;ATP6 and ATP8, adenine triphosphatase subunits 6 and 8; CO1–3, cytochrome c oxidase subunits 1–3; CYTB, cytochrome b; ND1–6 and 4L,NADH dehydrogenase subunits 1–6 and 4L. OL, CR, Ψ, and gap denote replication origin of light strand, D-loop region, pseudogene, and intengenic spacer region, respectively. Genes encoded by the heavy and light strand are denoted at the top and bottom of each gene rectangle box, respectively. The sizes of the boxes do not reflect actual gene length.

    3. Results

    3.1. Mitogenome Characterization and analysis of three new Rana mitogenomes

    3.1.1. Genome organizationThe complete nucleotide sequences of theR. chaochiaoensis,R. kukunorisandR. omeimontismitogenomes have been determined successfully in this study and submitted to the GenBank database under accession numbers KU246048–KU246050 (Table 1). All three mitogenomes were circular, consisting of two rRNAs, 13 PCGs, 22 tRNAs and four intergenic spacer regions (Table S2; Figure S2).The largest intergenic spacer region was located betweenCYTBandtrnLCUN, which was the typical position of D-loop region. We determined the smaller one located in theWANCY-trncluster as OLregion based on its typical stem-loop structure and the surrounding 5’-GCCGG-3’motif (on the light strand). The remaining two gaps were discovered at the two flanks ofND5gene (Figure S2).All three mitogenomes retained the identical genomic organization (Figure 1; Figure S2), and they were 18 591 bp, 18 863 bp, and 19 934 bp in size, respectively (Table 1). The overall base composition of the light strand was 28.85%–29.51% for T, 28.04%–28.45% for C, 27.46%–27.88% for A and 14.56%–15.06% for G with an A + T bias (56.49%–57.39%).

    3.1.2. Ribosomal RNA and Protein-Coding genesThe12Sand16S rRNAof three mitogenomes were located betweentrnFandtrnLUURand separated bytrnV. The size of12Sand16S rRNAwere 931 bp and 1582 bp forR.omeimontis, 930 bp and 1576 bp forR. chaochiaoensis,and 929 bp and 1 576 bp forR. kukunoris, respectively(Table S2). The overall base composition of two rRNAs were shown as A > C > T > G.

    All mitochondrial genomes shared a set of 13 PCGs,includingND1–6,ND4L,CO1–3,ATP8,ATP6andCYTB, and onlyND6was encoded on the L-strain (Table S2; Figure S2). Most PCGs began with the typical ATG codon, exceptingCO1,ATP6andND4Linitiated with GTG, andND1started at ATC (forR. omeimontis) and GTG (R. chaochiaoensisandR. kukunoris). Six PCGs harbored the traditional complete termination codons TAA (ATP8,ND4LandCYTB), AGA (ND5andND6) and AGG (CO1), whereas the remaining seven PCGs used T(Table S2).

    3.1.3. Transfer RNA genesExcluding thetrnSAGYgene,the inferred secondary structures of the other 21 tRNAs of the three mitogenomes conform to the common structural features of mitochondrial tRNAs (Table S2; Figure 1).The base mutations of tRNAs among three mitogenomes existed in the stems and the loops structure.

    3.2. Molecular phylogenetic analysisThe final concatenated mtDNA sequence matrix for 48 species was 13 737 bp in size, including 8 777 variable sites of which 974 were singleton sites. Two phylogenetic reconstruction methods (ML and BI) yielded identical tree topologies based on 13 PCGs and two rRNAs, and they favored the following clades and/or relationships of Ranidae (Figure 2): (1) the most basal position of the genusAmnirana;(2) the secondary basal position of the genusGlandirana;(3) the clade ofPelophylax+Amolops; (4) the paraphyly ofBabinainterweaved withSylvirana; (5) the clade ofOdorrana; (6) the monophyly ofLithobatesandRana;(7) the cladeBabina+ (Odorrana+ (Lithobates+Rana)).Within the lineage Ranidae, clade 7 formed the sister taxon to clade 3, but no sufficient statistical support existed for this relationship (BP = 41, BPP = 0.90).

    3.3. Ranidae gene rearrangement analysisAccording to our comparison of genome organization, we summarized 10 different gene arrangements (Figure 1;Table 2). All rearrangements occurred in both theND4–trnTand thetrnW–CO1regions (Figure 1; Figure 3).

    Our results showed that Type B (also termed as the typical Neobatrachian-type arrangement) was the most common type in ranid (or neobatrachian) mitogenomes.AllPelophylaxfrogs and another twoAmolopsfrogs,A.rickettiandA. wuyiensis(namely theA. rickettispecies group), expressed the Type B. Additionally, Type B was the most basic type, and another nine novel types (from Type C to Type K) were derived from it via diverse rearrangement pathways.

    Type C was only discovered inAmnirana albolabris(Figure 2; Table 2). In this type, the positions betweentrnAandtrnN-OL-trnCwere exchanged accompanied with the insertions of some non-coding regions and finally yielding the noveltrnW-gap-trnN-OL-trnC-gaptrnA-gap-trnYorder (Figure 3). Type D was unique to theGlandiranafrogs, which was characterized by thetrnSAGYpseudogene next totrnH(Figure 2; Table 2). Type E was shared byAmolops mantzorumspecies group, which was different from the Type B possessed by theA. rickettispecies group in terms of location of the OLstructure(Figure 2; Table 2). The OLwas translocated from the downstream to the upstream position of thetrnA-trnN,and then several non-coding regions were inserted into this block, yielding the distinctivetrnW-gap-OL-gap-trnA-trnN-gap-trnC-trnYorder (Figure 3).

    Figure 2 The ML and BI phylogeny trees derived from the concatenated sequences of 13 protein coding genes and two rRNA genes among Ranidae. Numbers above the lines or beside the nodes are rapid bootstrap proportions calculated with 1 000 replicates and Bayesian posterior probabilities, respectively. The different color represents the different genomic rearrangement features of each species.

    (Continued Table 1)

    Table 2 Frequency of each mitochondrial genome rearrangement type in family Ranidae.

    Table 3 The mitochondrial genome types in the nine genera of the family Ranidae.

    Type F was the most common type (32.50%) in ranid mitogenomes so far (Table 3). Type F appeared in most ofRana(including our three species), allLithobates, severalBabinaand oneSylviranafrogs(Figure 2; Table 2). Type G was shared by the twoBabinafrogs (Figure 2; Table 2). A large number of gene rearrangements were found in Type G. The variation of gene rearrangement inOdorranawas quite large, and fourOdorranaspecies held the three types (H, I, and J). In all threeOdorranarearrangement types, thetrnHwas translocated to D-loop downstream,forming aHLTPF-trncluster. Moreover, the position exchange betweentrnNand OLwas only discovered in Type I (O. ishikawae) and Type J (O. schmackeri).In particular, the OLregion was triplicate in Type I (O.ishikawae).R. kunyuensisandR. coreanashared the identical arrangement order Type K. Compared with Type F, this type showed more complex variations: one additional D-loop region was inserted into the upstream ofTPF-trncluster, and theND5was translocated from the typicaltrnSAGYdownstream to thetrnLCUNdownstream(Figure 3).

    4. Discussion

    4.1. Characteristics analysis of the Rana mitogenomesThreeRanamitogenomes shared the identical genomic organization with those ofR.cf.chensinensis,R.dybowskii,R. huanrensisandR. draytonii(Donget al.,2016; Li et al., 2016a; Figure S1), and this genomic organization was similar to the typical Neobatrachiantype (Kurabayashiet al., 2010; Sumidaet al., 2001).The variation of molecular size and base composition of entire genome among all publishedRanamitogenomes were primarily due to the duplication of D-loop region and the variable numbers of tandem repeat element in D-loop region (Donget al., 2016; Li et al., 2016a, b). The incomplete termination codon T frequently appeared in seven PCGs, and it was completed by post-transcriptional polyadenylation (Ojalaet al., 1981).

    Figure 3 Putative mechanism of gene rearrangement of the mitochondrial genome according to the duplication and random loss model. The information of each gene or region is the same as those in Figure 1. The solid arrows represent duplication events and the dashed arrows represent random loss events. The green and blue boxes represent duplication regions; the gray and black boxes represent partial loss and complete deletion, respectively.

    4.2. Molecular phylogenetic analysisOverall, the genus level phylogeny reconstructed in our study was congruent with the hypotheses from Liet al.(2014) and Buet al.(2016) but conflicted with other results from some researchers (e.g. Cheet al., 2007; Kurabayashiet al.,2010; Niet al., 2016; Pyron and Wiens, 2011; Wienset al., 2009; Xiaet al., 2014). Our trees placedGlandiranaat a more basal position with strong support(BP = 84, BPP = 1.00), which was in agreement with the result of Buet al.(2016) but different from other reports that located theGlandiranain a nested position within the Ranidae phylogenetic tree with weak statistical support(e.g. Cheet al., 2007; Kurabayashiet al., 2010; Niet al., 2016; Xiaet al., 2014). By reviewing the previous work, we found [Babina] and [Lithobates+Rana] had been considered as the sister group ofOdorrana. Using the single gene or very few genes (e.g. two rRNAs), Cheet al.(2007), Kurabayashiet al.(2010), Wienset al.(2009) and Xiaet al.(2014) found [Babina] was the sister group ofOdorrana. Kakehashiet al.(2013) reconstructed the same phylogenetic relationship using two rRNAs and 13 PCGs and proposed plausible explanation according to the probable gene rearrangement mechanisms (see below).

    However, our results robustly supported that[Lithobates+Rana] was the sister group ofOdorrana,which was compatible with other studies based on 13 PCGs (e.g. Bu et al., 2016; Liet al., 2014; Niet al., 2016;Xueet al., 2016). Kakehashiet al.(2013) also noted that the genusBabinaspecies formed a monophyletic group (BP = 100). However, theS. guentheriwas nested inBabinaclade in our phylogenetic trees, as previously reported by Niet al.(2016). The taxonomic history ofS.guentheriwas somewhat complicated (Wuet al., 2016).From 1882 to 2010, this species was successively placed into several genera, such asRana,Hylorana,Hylarana,andBoulengerana(see Frost, 2017). Most recently, it has been classified intoSylviranabased on two mitochondrial and four nuclear gene data (Oliveret al., 2015).Nonetheless, more convincing evidence is indispensable for determining the taxonomic status of this frog.

    4.3. Extensive gene rearrangement in RanidaeKurabayashiet al.(2010) stated that the diversity of the mitochondrial genome reorganization in ranids was unexpected. In this study, we summarized 10 different gene orders, and found that all rearrangements occurred at theND4–trnFregion and thetrnW–CO1region.In Caudata mitogenomes, the gene rearrangements also appeared at the two regions (Xiaet al., 2010). In Gymnophiona mitogenomes, the gene rearrangements occurred more at thetrnW–CO1region (San Mauroet al., 2006). Liet al.(2010) indicated that the Anura mitogenome rearrangements mainly occurred at the flanks of D-loopregion, the margin of OLstructure and theIQM-trngenes cluster. Moreover, we found many rearranged patterns, such asWAOLOLOLNCY,WOLANCY,WNOLCAYandWAOLNCY, are discovered in some Ranidae mitochondrial genomes (Figure 1; Figure 2). Therefore,we speculated thetrnW–CO1region and theND4–trnFregion should be the hotspots of Ranidae mitochondrial genomes rearrangement.

    AllAmolopsmitogenomes analyzed in this study were classified as Type B and Type E, and they were different from the previously determinedA. larutensisrearrangement type (Kurabayashiet al., 2010; Figure 1),implying that theAmolopsgene rearrangements were various. In particular, the OLregion was triplicate inO.ishikawaemitogenome (Type I). The triploidization of the OLwas unique to this frog in Ranidae, but it was also discovered in the mitogenome ofCallulina kreffti(Brevicipitidae), another Neobatrachia frog (Zhanget al.,2013). In addition, the diploidization of the OLwas found in theA. larutensismitogenome (Kurabayashiet al.,2010).

    Interestingly,R. kunyuensisandR. coreanashared one additional D-loop region and duplicate D-loop regions was not unique to these two ranids (Liet al., 2016b),because it was also discovered in another Ranidae speciesA. larutensis(Kurabayashiet al., 2010), and other Neobatrachia taxa, such as Afrobatrachia frogs(Kurabayashi and Sumida, 2013), Mantellidae frogs(Kurabayashiet al., 2006, 2008),Rhacophorus schlegelii(Sanoet al., 2005), andHoplobatrachusspp. (Alamet al., 2010; Yuet al., 2012b). Wanget al.(2015) found that the duplicated D-loop regions within one individual were almost identical in the bushtits mitochondrial genomes, and further supposed that homologous recombination occurred between paralogous D-loop regions from different mtDNA molecule was proposed as the most suitable mechanism for concerted evolution of the duplicated D-loop regions. Unfortunately, in this study we cannot speculate the mechanism for thisRanaduplicated D-loop regions.

    4.4. Mechanisms and systematic implication of mitochondrial gene rearrangementGenerally, the vertebrate mitochondrial gene rearrangement was relatively rare and random (Xiaet al., 2014). As stated by many scholars, all observed gene rearrangement events of vertebrate mitogenomes could be classified as translocation, inversion, shuffling, deletion, or duplication(Dowtonet al., 2003; Maceyet al., 1997), and gene shuffling was the prevailing gene rearrangement type(Maceyet al., 1997). In our study, only gene translocation and duplication were discovered in these Ranidae mitogenomes, and gene shuffling was more common than gene duplication (Figure 1; Figure 3). Unlike the D-loop region and OLstructure, which tend to gene duplication,the tRNAs genes and PCGs tend to gene shuffling(Figure 1; Figure 3). For the formation of rearrangement types, several different rearrangement mechanisms were proposed, such as the tandem duplication and random loss model (Maceyet al., 1997; Moritz and Brown, 1987), the tandem duplication and non-random loss model (Lavrovet al., 2002), and the intramitochondrial recombination model (Poultonet al., 1993).

    Currently, the duplication and random loss model can be used to explain for most of the animal mitogenome reorganization (e.g. Kakehashiet al., 2013; Kurabayashiet al., 2008). In this model, initially, a duplication including a part of the entire genome happened accidentally because of replication errors (either slippedstrand mispairing or inaccurate termination); then,one of the duplicates of the included genes (or noncoding region) was converted into a pseudogene and subsequently excised from the genome through an accumulation of natural mutations (Dowtonet al., 2003;Maceyet al., 1997; Moritz and Brown, 1987). In the present study, the duplication and random loss model also could explain all rearrangement events discovered in the Ranidae mitogenomes (Figure 3), although some of our views were not compatible with previous views(e.g. Kakehashiet al., 2013; Kurabayashiet al., 2010).Additionally, it was almost impossible that the same gene order was generated independently through different pathways among different taxa.

    The vertebrate mitochondrial rearrangement was regarded as unique, random, and a generally rare event(Boore and Brown, 1998; Liu and Huang, 2010; Xiaet al., 2010, 2014), and the occurrence of identical gene rearrangements in two or more lineages indicated that this gene rearrangement type was a synapomorphic type and these lineages were derived from a common ancestor (Maceyet al., 1997), although a few convergent or parallel gene rearrangements have been observed in the vertebrate mtDNAs (e.g. Morrisonet al., 2002;Weiet al., 2014). The remarkable mitochondrial gene rearrangement contributes to our understanding of phylogenetic relationships and is now considered as a valuable molecular marker (Boore and Brown, 1998;Kurabayashiet al., 2008, 2010; Maceyet al., 1997), being widely applied to explore the phylogenetic relationships among various groups at different taxonomic levels (e.g.Kakehashiet al., 2013; Kurabayashiet al., 2006, 2010;Liuet al., 2016; San Mauroet al., 2004, 2014; Weiet al., 2014; Xiaet al., 2010; Xueet al., 2016; Zhanget al., 2008, 2009, 2013).

    As mentioned above, the previous studies considered[Babina] or [Lithobates+Rana] as the sister taxon ofOdorrana(e.g. Kakehashiet al., 2013; Kurabayashiet al., 2010; Niet al., 2016; Xueet al., 2016). Additionally,Kakehashiet al.(2013) further pointed out that the[Babina+Odorrana] clade shared a common ancestral gene arrangement type.

    Alternatively, we proposed another explanation: all taxa, incluingBabina,Sylvirana,Odorrana,Lithobates,andRana, shared a common ancestral gene order Type F (Figure 2; Figure 3), but this order was completely different from the pattern (ND4-trnH-trnS2-ND5-ND6-trnE-CYTB-D-loop-trnH-trnS2-ND5-ND6-trnE-trnL1-trnT-trnP-trnF-12S-trnV-12S) inferred by Kakehashiet al.(2013). Several lineages possessed their distinctive gene rearrangements, includingGlandiranaspp.,Amolops mantzorumspecies group,Amolops rickettispecies group,Pelophylaxspp., and theRana+Lithobateslineage (excludingR. kunyuensisandR. coreana). The genusAmolopswas a complicated group. In siblingA.larutensis, a lot of mitochondrial gene rearrangements(including duplication of D-loop region, duplication of OL, transpositions oftrnK,trnHandtrnG-ND3block)had been discovered by Kurabayashiet al.(2010).Considering the fact that this species possessed a nested position withinAmolops, Kurabayashiet al.(2010)inferred the genomic reorganization was likely to have occurred in a common ancestor ofAmolops, or during the diversification of this taxon. Now, the latter was confirmed by more available mitogenomes. InGlandiranaspp., thetrnSAGYpseudogene was proved as a valuable molecular marker for its phylogenetic analysis.

    5. Conclusion

    The threeRanafrogs shared the identical mitogenome arrangement type, which was extremely similar to the typical Neobatrachian-type arrangement shared by most frogs. The phylogenetic analysis using PCGs and rRNAs sequences from 55 mitogenomes demonstrated that the genusAmniranaoccupied the most basal position among the Ranidae and the [Lithobates+Rana] was the closest sister group ofOdorrana. The diversity of Ranidae mitogenome arrangements was unexpected high, and the 47 mitogenomes of 40 ranids were classified into 10 different gene rearrangement types. Some taxa owned their distinctive gene rearrangement characteristics,which had significant implication for their phylogeny analysis. The tandem duplication and random loss model can explain all rearrangement events discovered in all Ranidae mitogenomes.

    AcknowledgementsWe wish to offer our sincere thanks to everyone who helped make this paper a reality.This work was supported by the Innovative Research Team in University of Sichuan Bureau of Education(No.14TD0002) and the Scientific Research Fund of Sichuan Provincial Education Department (No.11ZA077).

    Alam M. S., Kurabayashi A., Hayashi Y., Sano N., Khan M. R.,Fujii T., Sumida M. 2010. Complete mitochondrial genomes and novel gene rearrangements in two dicroglossid frogs,Hoplobatrachus tigerinusandEuphlyctis hexadactylus, from Bangladesh. Genes Genet Syst, 85: 219–232

    Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H. L.,Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B.A., Sanger F., Schreier P. H., Smith A. J. H., Staden R., Young I. G. 1981. Sequence and organization of the mitochondrial human genome. Nature, 290: 457–465

    AmphibiaWeb. 2017. Information on amphibian biology and conservation. Retrieved from http://amphibiaweb.org

    Boore J. L., Brown W. M. 1998. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev, 8: 668–674

    Bu X., Zhang L., He K., Jiang Y., Nie L. 2016. The complete mitochondrial genome of theOdorrana schmackeri(Anura,Ranidae). Mitochondrial DNA Part B, 1: 162–163

    Cameron S. L. 2014. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol, 39: 400–411

    Che J., Pang J., Zhao H., Wu G. F., Zhao E. M., Zhang Y. P.2007. Phylogeny of Raninae (Anura: Ranidae) inferred from mitochondrial and nuclear sequences. Mol Phylogenet Evol, 43:1–13

    Chen G., Wang B., Liu J., Xie F., Jiang J. 2011. Complete mitochondrial genome ofNanorana pleskei(Amphibia:Anura: Dicroglossidae) and evolutionary characteristics of the amphibian mitochondrial genomes. Curr Zool, 57: 785–805

    Chen Z., Zhang J., Zhai X., Zhu Y., Chen X. 2015. Complete mitochondrial genome of the green odorous frogOdorrana margaretae(Anura: Ranidae). Mitochondrial DNA Part A, 26:487–488

    Darriba D., Taboada G. L., Doallo R., Posada D. 2012.jModelTest 2: More models, new heuristics and parallel computing. Nat Methods, 9: 772

    Desjardins P., Morais R. 1990. Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates. J Mol Biol, 212: 599–634

    Dong B., Yu Z., Yang B. 2016. The complete mitochondrial genome of theRana huanrensis(Anura: Ranidae). Mitochondrial DNA Part A, 27: 4551–4552

    Dowton M., Castro L. R., Campbell S. L., Bargon S. D., Austin A. D. 2003. Frequent mitochondrial gene rearrangements at the hymenopteran nad3–nad5 junction. J Mol Evol,56: 517–526

    Frost D. R. 2017. Amphibian Species of the World: an Online Reference Version 6.0. Retrieved from http://research.amnh.org/herpetology/amphibia/index.html

    Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 59: 307–321

    Kakehashi R., Kurabayashi A., Oumi S., Katsuren S., Hoso M.,Sumida M. 2013. Mitochondrial genomes of Japanese Babina frogs (Ranidae, Anura): unique gene arrangements and the phylogenetic position of genusBabina. Genes Genet Syst, 88:59–67

    Kumazawa Y., Endo H. 2004. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptileoriented primers and novel generearrangements. DNA Res, 11:115-125

    Kurabayashi A., Sumida M. 2013. Afrobatrachian mitochondrial genomes: Genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics, 14: 633

    Kurabayashi A., Sumida M., Yonekawa H., Glaw F., Vences M.,Hasegawa M. 2008. Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol, 25: 874–891

    Kurabayashi A., Usuki C., Mikami N., Fujii T., Yonekawa H.,Sumida M., Hasegawa M. 2006. Complete nucleotide sequence of the mitochondrial genome of a Malagasy poison frogMantella madagascariensis: evolutionary implications on mitochondrial genomes of higher anuran groups. Mol Phylogenet Evol, 39:223–236

    Kurabayashi A., Yoshikawa N., Sato N., Hayashi Y., Oumi S., Fujii T., Sumida M. 2010. Complete mitochondrial DNA sequence of the endangered frogOdorrana ishikawae(family Ranidae) and unexpected diversity of mt gene arrangements in ranids. Mol Phylogenet Evol, 56: 543–553

    Larkin M. A., Blackshields G., Brown N. P., Chenna R.,McGettigan P. A., McWilliam H., Valentin F., Wallace I. M.,Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics,23: 2947–2948

    Lavrov D. V., Boore J. L., Brown W. M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol, 19: 163–169

    Li J., Lei G., Fu C. 2016a. Complete mitochondrial genomes of two brown frogs,Rana dybowskiiandRanacf.chensinensis(Anura: Ranidae). Mitochondrial DNA Part A, 27: 155–156

    Li J., Yin W., Xia R., Lei G., Fu C. 2016b. Complete mitochondrial genome of a brown frog,Rana kunyuensis(Anura: Ranidae).Mitochondrial DNA Part A, 27: 34–35

    Li X. Q., Zhang M., Wang Y. S., Wu X. B. 2010. Research rogress on mitochondrial genomes and gene rearrangements in Anura. In: Ji X. (Ed) Herpetological sinaca 12thedn. Southeast University Press, Nanjing, pp: 387–394

    Li Y., Zhang H., Wu X., Xue H., Yan P., Wu X. 2014. A novel mitogenomic rearrangement forOdorrana schmackeri(Anura:Ranidae) and phylogeny of Ranidae inferred from thirteen mitochondrial protein-coding genes. Amphibia-Reptilia, 35:331–343

    Liu J., Xue R., Wang Y., Li D., Yan Q., Yang J. 2016. The nearcomplete mitogenome sequence of the Omei Horned ToadMegophrys omeimontisLiu, 1950 (Anura, Megophryidae).Mitochondrial DNA Part A, 27: 2389–2390

    Liu N., Huang Y. 2010. Complete mitochondrial genome sequence ofAcrida Cinerea(Acrididae: Orthoptera) and comparative analysis of mitochondrial genomes in orthoptera. Int J Genomics,2010: 319486

    Liu Z. Q., Wang Y. Q., Su B. 2005. The mitochondrial genome organization of the rice frog,Fejervarya limnocharis(Amphibia:Anura): a new gene order in the vertebrate mtDNA. Gene, 346:145–151

    Luo A., Qiao H., Zhang Y., Shi W., Ho S. Y. W., Xu W.,Zhang A., Zhu C. 2010. Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evol Biol, 10: 242

    Macey J. R., Larson A., Ananjeva N. B., Fang Z., Papenfuss T. J. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol, 14: 91–104

    Mindell D. P., Sorenson M. D., Dimcheffe D. E. 1998. Multiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci USA, 95: 10693–10697

    Moritz C., Brown W. M. 1987. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA, 84: 7183–7187

    Morrison C. L., Harvey A. W., Lavery S., Tieu K., Huang Y.,Cunningham W. C. 2002. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form. Proc R Soc Lond B, 269: 345–350

    Mueller R. L., Boore J. L. 2005. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol, 22: 2104–2112

    Ni N., Yu D., Storey K. B., Zheng R., Zhang J. 2016. The complete mitochondrial genome ofLithobates sylvaticus(Anura:Ranidae). Mitochondrial DNA Part A, 27: 2460–2461

    Ojala D., Montoya J., Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290: 470–474

    Oliver L. A., Prendini E., Kraus F., Raxworthy C. J. 2015.Systematics and biogeography of theHylaranafrog (Anura:Ranidae) radiation across tropical Australasia, Southeast Asia,and Africa. Mol Phylogenet Evol, 90: 176–192

    Pabijan M., Spolsky C., Uzzell T., Szymura J. M. 2008.Comparative analysis of mitochondrial genomes inBombina(Anura; Bombinatoridae). J Mol Evol, 67: 246–256

    Poulton J., Deadman M. E., Bindoff L., Morten K., Land J.,Brown G. 1993. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Hum Mol Genet, 2: 23–30

    Pyron R. A., Wiens J. J. 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol, 61: 543–583

    Roe B. A., Ma D. P., Wilson R. K. E., Wong J. F. H. 1985.The complete nucleotide sequence of theXenopus laevismitochondrial genome. J Biol Chem, 260: 9759–9774

    Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572–1574

    San Mauro D., Gower D. J., Oommen O. V., Wilkinson M., Zardoya R. 2004. Phylogeny of caecilian amphibians(Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol Phylogenet Evol, 33: 413–427

    San Mauro D., Gower D. J., Zardoya R., Wilkinson M. 2006. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol, 23: 227–234

    San Mauro D., Gower D. J., Müller H., Loader S. P., Zardoya R., Nussbaum R. A., Wilkinson M. 2014. Life-history evolution and mitogenomic phylogeny of caecilian amphibians.Mol Phylogenet Evol, 73: 177–189

    Sano N., Kurabayashi A., Fujii T., Yonekawa H., Sumida M.2005. Complete nucleotide sequence of the mitochondrial genome of Schlegel's tree frogRhacophorus schlegelii(family Rhacophoridae): duplicated control regions and gene rearrangements. Genes Genet Syst, 80: 213–224

    Su X., Wu X. B., Yan P., Cao S. Y., Hu Y. L. 2007. Rearrangement of a mitochondrial tRNA gene of the concave-eared torrent frog,Amolops tormotus. Gene, 394: 25–34

    Sumida M., Kanamori Y., Kaneda H., Kato Y., Nishioka M.,Hasegawa M., Yonekawa H. 2001. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frogRana nigromaculata. Genes Genet Syst, 76: 311–325

    Sumida M., KondoY., Kanamori Y., Nishioka M. 2002. Interand intraspecific evolutionary relationships of the rice frogRana limnocharisand the allied speciesR. cancrivorainferred from crossing experiments and mitochondrial DNA sequences of the 12S and 16S rRNA genes. Mol Phylogenet Evol, 25: 293–305

    Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013.MEGA6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

    Tzeng C. S., Hui C. F., Shen S. C., Huang P. C. 1992. The complete nucleotide sequence of theCrossostoma lacustremitochondrial genome: conservation and variations among vertebrates. Nucl Acids Res, 20: 4853–4858

    Wang X., Huang Y., Liu N., Yang J., Lei F. 2015. Seven complete mitochondrial genome sequences of bushtits (Passeriformes,Aegithalidae,Aegithalos): the evolution pattern in duplicated control regions. Mitochondrial DNA, 26: 1–7

    Wei S. J., Li Q., Achterberg K. V., Chen X. X. 2014. Two mitochondrial genomes from the families Bethylidae and Mutillidae: independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol Phylogenet Evol, 77: 1–10

    Wiens J. J., Sukumaran J., Pyron R. A., Brown R. M. 2009.Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution, 63: 1217–1231

    Wu X., Li Y., Zhang H., Jiang Z., Xue H., Yan P., Wu X. 2016.The complete mitochondrial genome ofHylarana guentheri(Amphidia, Anura, Ranidae). Mitochondrial DNA Part A, 27:1223–1224

    Xia Y., Peng R., Zeng X. M. 2010. Characteristics of mitochondrial gene rearrangement in Caudata. In: Ji X. (ed) Herpetological sinaca 12thedn. Southeast University Press, Nanjing, pp: 363–371

    Xia Y., Zheng Y., Miura I., Wong P. B., Murphy R. W., Zeng X.2014. The evolution of mitochondrial genomes in modern frogs(Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization. BMC Genomics, 15: 691

    Xue R., Liu J., Yu J., Yang J. 2016. The complete mitogenome ofAmolops loloensisand related phylogenetic relationship among Ranidae. Mitochondrial DNA Part A, 27: 4629–4630

    Yan L., Geng Z. Z., Yan P., Wu X. B. 2016. The complete mitochondrial genome ofGlandirana tientaiensis(Ranidae,Anura). Mitochondrial DNA Part A, 27: 1154–1155

    Yu D., Zhang J., Zheng R. 2012a. The complete mitochondrial genome ofBabina adenopleura(Anura: Ranidae). Mitochondrial DNA Part A, 23: 423–425

    Yu D., Zhang J., Zheng R., Shao C. 2012b. The complete mitochondrial genome ofHoplobatrachus rugulosus(Anura:Dicroglossidae). Mitochondrial DNA Part A, 23: 336–337

    Zardoya R., Garrido-Pertierra A., Bautista J. M. 1995. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout,Oncorhynchus mykiss. J Mol Evol,41: 942–951

    Zhang P., Papenfuss T. J., Wake M. H., Qu L., Wake D. B.2008. Phylogeny and biogeography of the family Salamandridae(Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol, 49: 586–597

    Zhang P., Wake M. H. 2009. A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia:Gymnophiona). Mol Phylogenet Evol, 53: 479–491

    Zhang P., Liang D., Mao R. L., Hillis D. M., Wake D. B.,Cannatella D. C. 2013. Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol, 30: 1899–1915

    www.999成人在线观看| 免费搜索国产男女视频| 精品久久久久久,| 国产精品综合久久久久久久免费| 国产白丝娇喘喷水9色精品| 精品久久久久久久久久免费视频| 日韩欧美国产在线观看| 亚洲国产精品久久男人天堂| 亚洲美女搞黄在线观看 | 久久久久久九九精品二区国产| 两个人的视频大全免费| 亚洲最大成人中文| 国产精品野战在线观看| 亚洲不卡免费看| 成人鲁丝片一二三区免费| 精品欧美国产一区二区三| 天天躁日日操中文字幕| 观看美女的网站| 国产一区二区在线av高清观看| av中文乱码字幕在线| 夜夜看夜夜爽夜夜摸| 在线播放无遮挡| 色av中文字幕| 麻豆av噜噜一区二区三区| 桃红色精品国产亚洲av| 免费搜索国产男女视频| 久久6这里有精品| 99国产综合亚洲精品| 琪琪午夜伦伦电影理论片6080| 欧美黑人欧美精品刺激| 99久久精品热视频| av欧美777| 美女免费视频网站| 成人av一区二区三区在线看| 99视频精品全部免费 在线| 脱女人内裤的视频| 国产又黄又爽又无遮挡在线| 亚洲av电影不卡..在线观看| 成年女人毛片免费观看观看9| 欧美成狂野欧美在线观看| 在线观看午夜福利视频| 91久久精品国产一区二区成人| 噜噜噜噜噜久久久久久91| 精品久久国产蜜桃| 欧美黄色片欧美黄色片| 嫩草影视91久久| 三级国产精品欧美在线观看| 国产视频一区二区在线看| 精品福利观看| 久久精品国产亚洲av涩爱 | 欧美色欧美亚洲另类二区| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产高清国产av| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 欧美日本视频| 真人做人爱边吃奶动态| 国产探花在线观看一区二区| 久久久久久久亚洲中文字幕 | 亚洲专区中文字幕在线| 动漫黄色视频在线观看| 成人特级黄色片久久久久久久| 一级黄色大片毛片| 欧美最新免费一区二区三区 | 亚洲自拍偷在线| 国产男靠女视频免费网站| 又粗又爽又猛毛片免费看| 麻豆成人av在线观看| 亚洲av二区三区四区| 婷婷亚洲欧美| 婷婷精品国产亚洲av| 国产黄片美女视频| 老熟妇乱子伦视频在线观看| 精品一区二区三区av网在线观看| 亚洲第一电影网av| 亚洲美女搞黄在线观看 | 看十八女毛片水多多多| 搞女人的毛片| 老女人水多毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 国产午夜精品久久久久久一区二区三区 | 国产高潮美女av| 一区二区三区高清视频在线| 成人av一区二区三区在线看| ponron亚洲| 91午夜精品亚洲一区二区三区 | 国产探花极品一区二区| 亚洲,欧美,日韩| 欧美激情国产日韩精品一区| 成人永久免费在线观看视频| 国产伦一二天堂av在线观看| 国产精品不卡视频一区二区 | 中文亚洲av片在线观看爽| 变态另类成人亚洲欧美熟女| 观看免费一级毛片| 亚洲av电影不卡..在线观看| 俺也久久电影网| 久久6这里有精品| 亚洲黑人精品在线| 丝袜美腿在线中文| 天美传媒精品一区二区| 精品免费久久久久久久清纯| 国产精品爽爽va在线观看网站| 国产精品自产拍在线观看55亚洲| 极品教师在线免费播放| 在线观看美女被高潮喷水网站 | 国模一区二区三区四区视频| 十八禁人妻一区二区| 亚洲欧美清纯卡通| 在线观看午夜福利视频| 国产麻豆成人av免费视频| 亚洲欧美日韩高清专用| 亚洲人成伊人成综合网2020| 老司机福利观看| 窝窝影院91人妻| 成年版毛片免费区| ponron亚洲| av欧美777| 成人特级av手机在线观看| 亚洲黑人精品在线| 简卡轻食公司| 欧美成人免费av一区二区三区| 怎么达到女性高潮| 少妇高潮的动态图| 每晚都被弄得嗷嗷叫到高潮| 午夜福利18| 久久久久久久久久黄片| 欧美性感艳星| 成年人黄色毛片网站| 如何舔出高潮| 波多野结衣巨乳人妻| 麻豆成人av在线观看| 午夜福利18| 久久人人爽人人爽人人片va | 一级av片app| 国产高清三级在线| 久久精品国产亚洲av涩爱 | 99热只有精品国产| 国内毛片毛片毛片毛片毛片| 亚洲欧美清纯卡通| 国产精品久久久久久久久免 | 成人国产一区最新在线观看| 国产主播在线观看一区二区| 九九热线精品视视频播放| 夜夜爽天天搞| 97超级碰碰碰精品色视频在线观看| 老女人水多毛片| 欧美日韩瑟瑟在线播放| 大型黄色视频在线免费观看| 色综合亚洲欧美另类图片| 国产精品自产拍在线观看55亚洲| 国产亚洲精品久久久com| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 婷婷精品国产亚洲av| 最好的美女福利视频网| 88av欧美| 欧美在线一区亚洲| 国产麻豆成人av免费视频| 国产 一区 欧美 日韩| 国产精品亚洲美女久久久| 成人毛片a级毛片在线播放| 热99在线观看视频| 听说在线观看完整版免费高清| 亚洲成av人片免费观看| 欧美另类亚洲清纯唯美| 亚洲成av人片在线播放无| 国产一级毛片七仙女欲春2| 欧美bdsm另类| 乱人视频在线观看| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 国产伦一二天堂av在线观看| 国产高清视频在线播放一区| 草草在线视频免费看| 性色av乱码一区二区三区2| 精品熟女少妇八av免费久了| a级一级毛片免费在线观看| 熟女电影av网| 美女免费视频网站| 综合色av麻豆| 嫁个100分男人电影在线观看| 欧美极品一区二区三区四区| 在线国产一区二区在线| 三级国产精品欧美在线观看| 一进一出好大好爽视频| 亚洲av熟女| 国产精品伦人一区二区| 日韩欧美在线乱码| 国产精品一区二区性色av| 久久精品国产亚洲av香蕉五月| 观看美女的网站| 国内精品久久久久久久电影| 免费人成在线观看视频色| 欧美区成人在线视频| 男人舔女人下体高潮全视频| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区精品| 精品久久久久久久久久久久久| 少妇高潮的动态图| 最好的美女福利视频网| 精品久久国产蜜桃| 久久九九热精品免费| 在线播放国产精品三级| 国产精品国产高清国产av| 午夜免费成人在线视频| 亚洲精品粉嫩美女一区| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 午夜精品在线福利| av在线老鸭窝| 午夜两性在线视频| 亚洲美女视频黄频| 亚洲av第一区精品v没综合| 在线免费观看不下载黄p国产 | 91狼人影院| 成人国产一区最新在线观看| 精品久久久久久久久av| 给我免费播放毛片高清在线观看| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区免费观看 | 中国美女看黄片| 内地一区二区视频在线| 亚洲欧美日韩东京热| 精品人妻视频免费看| 亚洲av一区综合| 在线看三级毛片| 国产精品人妻久久久久久| 老熟妇仑乱视频hdxx| АⅤ资源中文在线天堂| 在现免费观看毛片| 真实男女啪啪啪动态图| 一区二区三区激情视频| 国产私拍福利视频在线观看| 欧美成人一区二区免费高清观看| 欧美极品一区二区三区四区| 亚洲,欧美,日韩| 国产三级在线视频| 我要看日韩黄色一级片| x7x7x7水蜜桃| 在线观看舔阴道视频| 神马国产精品三级电影在线观看| 国产成人福利小说| a在线观看视频网站| 又爽又黄a免费视频| 国产精品一区二区三区四区免费观看 | 久久性视频一级片| 亚洲人成网站高清观看| 成年女人看的毛片在线观看| 亚州av有码| 成年人黄色毛片网站| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 国模一区二区三区四区视频| 中文在线观看免费www的网站| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| www.熟女人妻精品国产| 国产白丝娇喘喷水9色精品| 在线观看一区二区三区| 欧美日韩乱码在线| 一级av片app| 亚洲成av人片在线播放无| 婷婷精品国产亚洲av在线| 露出奶头的视频| 国产日本99.免费观看| 欧美激情国产日韩精品一区| 日韩成人在线观看一区二区三区| 欧美日韩乱码在线| 色av中文字幕| 黄色日韩在线| 精品久久久久久久久亚洲 | 欧美黑人巨大hd| 在线播放国产精品三级| 动漫黄色视频在线观看| 久久精品影院6| bbb黄色大片| 91九色精品人成在线观看| 午夜影院日韩av| 69av精品久久久久久| www.熟女人妻精品国产| 亚洲中文字幕日韩| 久久久久久久久大av| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 国产高清视频在线播放一区| 九九热线精品视视频播放| 麻豆av噜噜一区二区三区| 亚洲最大成人中文| 黄色女人牲交| 国模一区二区三区四区视频| 淫妇啪啪啪对白视频| 精品人妻偷拍中文字幕| 舔av片在线| 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 岛国在线免费视频观看| 日本在线视频免费播放| 午夜两性在线视频| 久久人人爽人人爽人人片va | 国产在线男女| 2021天堂中文幕一二区在线观| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 99在线视频只有这里精品首页| 在线国产一区二区在线| 欧美在线黄色| 中国美女看黄片| 欧美潮喷喷水| 久久国产乱子伦精品免费另类| 一个人观看的视频www高清免费观看| 国产又黄又爽又无遮挡在线| 三级国产精品欧美在线观看| 嫩草影院精品99| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 精品午夜福利在线看| 在线免费观看不下载黄p国产 | 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 久久久国产成人精品二区| 白带黄色成豆腐渣| 精品午夜福利在线看| 国产视频内射| 国产精品1区2区在线观看.| 久久精品影院6| 美女高潮的动态| 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 国产成人欧美在线观看| 国语自产精品视频在线第100页| 日韩欧美三级三区| 国产人妻一区二区三区在| 搞女人的毛片| 国产精品,欧美在线| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 日韩欧美在线乱码| 精品一区二区三区视频在线观看免费| 久久精品久久久久久噜噜老黄 | 精品熟女少妇八av免费久了| 亚洲美女搞黄在线观看 | av欧美777| 俄罗斯特黄特色一大片| 精品一区二区三区视频在线| 亚洲男人的天堂狠狠| netflix在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 18禁黄网站禁片免费观看直播| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 国产高清视频在线播放一区| 黄色女人牲交| 岛国在线免费视频观看| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人| av福利片在线观看| 在线免费观看的www视频| 精品无人区乱码1区二区| 少妇高潮的动态图| 久久精品影院6| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 久久亚洲真实| 亚洲在线自拍视频| 美女大奶头视频| 真人一进一出gif抽搐免费| 色5月婷婷丁香| 在线免费观看的www视频| 日本黄色片子视频| 欧美日韩综合久久久久久 | 国产高清激情床上av| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 国产精品一区二区三区四区久久| 最新在线观看一区二区三区| 国产老妇女一区| 我要看日韩黄色一级片| 又爽又黄a免费视频| 99国产极品粉嫩在线观看| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 国产亚洲欧美98| 动漫黄色视频在线观看| 一个人免费在线观看电影| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 一进一出抽搐动态| av天堂中文字幕网| 90打野战视频偷拍视频| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 欧美乱色亚洲激情| 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 国产一区二区三区视频了| 久久6这里有精品| 赤兔流量卡办理| 色吧在线观看| 国产精品久久久久久久久免 | 欧美性猛交黑人性爽| 欧美国产日韩亚洲一区| 此物有八面人人有两片| 俺也久久电影网| 少妇熟女aⅴ在线视频| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器| 欧美不卡视频在线免费观看| 久久久久久大精品| 男女那种视频在线观看| av国产免费在线观看| 51国产日韩欧美| 久久香蕉精品热| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 亚洲av.av天堂| 成熟少妇高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 99riav亚洲国产免费| 757午夜福利合集在线观看| 亚洲五月天丁香| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添av毛片 | www.999成人在线观看| 亚洲国产精品久久男人天堂| 好男人电影高清在线观看| 国模一区二区三区四区视频| 国产成+人综合+亚洲专区| 91字幕亚洲| 日本 欧美在线| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 精品人妻视频免费看| 午夜激情欧美在线| 不卡一级毛片| 毛片一级片免费看久久久久 | av黄色大香蕉| 日韩中字成人| 色视频www国产| 悠悠久久av| 99riav亚洲国产免费| 激情在线观看视频在线高清| a级毛片a级免费在线| 欧美最黄视频在线播放免费| 国产精品免费一区二区三区在线| 99久国产av精品| 午夜影院日韩av| 午夜激情欧美在线| 免费在线观看影片大全网站| 久久久久九九精品影院| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 天堂网av新在线| 我的女老师完整版在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人中文字幕在线播放| 国产视频内射| 波多野结衣高清无吗| 成人性生交大片免费视频hd| 999久久久精品免费观看国产| 亚洲精品影视一区二区三区av| 国产成+人综合+亚洲专区| 久久久久久大精品| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 亚洲avbb在线观看| 精品久久久久久久久亚洲 | 日本在线视频免费播放| 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 亚洲精品亚洲一区二区| 国产真实乱freesex| 麻豆久久精品国产亚洲av| 毛片女人毛片| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看| 欧美日韩瑟瑟在线播放| 一夜夜www| 一本综合久久免费| 极品教师在线免费播放| 久久久久久久久中文| 色综合站精品国产| 脱女人内裤的视频| 亚洲av成人av| 中文字幕久久专区| 99热只有精品国产| 观看免费一级毛片| 99热只有精品国产| 九色国产91popny在线| 我的女老师完整版在线观看| 欧美国产日韩亚洲一区| 男女做爰动态图高潮gif福利片| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 婷婷丁香在线五月| eeuss影院久久| 精品久久久久久成人av| 久久精品国产自在天天线| 夜夜夜夜夜久久久久| 午夜福利在线在线| 国产日本99.免费观看| 婷婷精品国产亚洲av在线| 国产成人av教育| 亚洲精品在线观看二区| 一级黄片播放器| 精品人妻1区二区| 免费在线观看亚洲国产| 婷婷精品国产亚洲av在线| 午夜激情欧美在线| 久久久久亚洲av毛片大全| 国产美女午夜福利| 午夜福利在线在线| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 老司机午夜福利在线观看视频| 色在线成人网| 亚洲第一欧美日韩一区二区三区| 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 久久精品国产清高在天天线| 真实男女啪啪啪动态图| 亚洲av成人av| 午夜视频国产福利| 丰满乱子伦码专区| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 国产精品国产高清国产av| 中亚洲国语对白在线视频| av天堂中文字幕网| 一本久久中文字幕| 麻豆久久精品国产亚洲av| 一进一出抽搐动态| 最好的美女福利视频网| 99久国产av精品| 亚洲美女视频黄频| 国产av一区在线观看免费| 99热只有精品国产| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 欧美+日韩+精品| 丝袜美腿在线中文| 欧美日韩综合久久久久久 | 国产亚洲欧美在线一区二区| 国产精品人妻久久久久久| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 日韩欧美精品免费久久 | 国产精品嫩草影院av在线观看 | 日韩精品中文字幕看吧| 97热精品久久久久久| 色哟哟哟哟哟哟| 51国产日韩欧美| 午夜福利18| 免费黄网站久久成人精品 | 国产又黄又爽又无遮挡在线| 亚州av有码| 麻豆一二三区av精品| 深爱激情五月婷婷| 人人妻人人看人人澡| www.999成人在线观看| 中文字幕久久专区| 国产精品自产拍在线观看55亚洲| 国内精品一区二区在线观看| 午夜老司机福利剧场| 欧美一区二区精品小视频在线| 两人在一起打扑克的视频| 欧美bdsm另类| av在线老鸭窝| 淫秽高清视频在线观看| 99国产精品一区二区三区| 毛片一级片免费看久久久久 | 欧美乱色亚洲激情| 亚洲精品影视一区二区三区av| 日本黄大片高清| xxxwww97欧美| 欧美bdsm另类| 精品一区二区三区av网在线观看| 国产精品久久久久久人妻精品电影| 又紧又爽又黄一区二区| 1024手机看黄色片| av中文乱码字幕在线| 亚洲avbb在线观看| 男女床上黄色一级片免费看| 免费av观看视频| 免费人成视频x8x8入口观看|