• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amphibian Species Contribute Similarly to Taxonomic, but not Functional and Phylogenetic Diversity: Inferences from Amphibian Biodiversity on Emei Mountain

    2018-06-28 03:17:44TianZHAOBinWANGGuochengSHUChengLIandJianpingJIANG
    Asian Herpetological Research 2018年2期

    Tian ZHAO, Bin WANG, Guocheng SHU, Cheng LI and Jianping JIANG

    CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    1. Introduction

    Biological diversity plays an important role in supporting ecosystem functioning and provides key ecosystem services to human beings (Balvaneraet al., 2006;Cardinaleet al., 2006). Unfortunately, with the expansion of human populations and urbanization, human-induced perturbations (e.g., habitat degradation, biological invasions, climate change, and pollution) have caused widespread loss of biodiversity at both local and global scales (Dunneet al., 2002; Cardinaleet al., 2012).Given that the loss of biodiversity may induce various ecological and economic consequences, conservationists have devoted much attention to biodiversity. Most previous conservation studies focused primarily on species richness (i.e., taxonomic diversity), based on the assumption that species can be treated as ecological equivalents within communities (Perringset al., 1995).In recent decades, however, a growing number of studies indicate that species richness represents only one measure of biodiversity, thus demanding more comprehensive approaches (Naeemet al., 2012; Poolet al., 2014). It is now recognized that in addition to taxonomic diversity,species-specific functional traits and genetic relatedness,mediate the stability and resilience of ecosystems(Villégeret al., 2010; Rudolfet al., 2014). Therefore,biodiversity conservation strategies should also include functional diversity (i.e., the range of species traits within a community; Poolet al., 2014) and phylogenetic history(i.e., evolutionary relationships among species; Faith,1992) of communities.

    This is especially true for communities under multiple disturbances in a changing world. The rapid and consistent response of functional diversity can provide advance warning of disturbances to ecosystems.Moreover, phylogenetic diversity has been proposed as a measure to predict how evolutionary plasticity within communities will respond to disturbances in the future (Faith, 1992), and to better explain ecosystem productivity (Cadotteet al., 2009). Incorporating multiple facets of biodiversity in conservation strategies can thus provide unique opportunities to better understand community structures and dynamics (Webbet al., 2002;Graham and Fine, 2008), to ensure the provision of goods and services (Díazet al., 2007), and to identify species of conservation interest (Mace, 2003; Knappet al., 2008).

    Theoretical studies suggest that the best way to conserve biodiversity is to protect individual species that preserve different biodiversity components (Devictoret al., 2010). Indeed, this policy is unfeasible because of limited resources. Instead, current conservation activities have focused on species that are rare, endemic,distinctive, or at risk of extinction (Myerset al., 2000;Kieret al., 2009). However, do these species of high conservation value contribute more to biodiversity, and therefore potentially induce stronger cascading effects on ecosystem functioning, than other species? Or do individual species that contribute equally to multiple facets of biodiversity still relatively uncommon (but see Devictoret al., 2010; Poolet al., 2014), especially for amphibian species that play a key functional role in the link between aquatic and terrestrial ecosystems.

    The aim of the present study is to assess the contribution of individual amphibian species to different aspects of biodiversity. We predict that amphibian species will contribute in different ways to taxonomic, functional and phylogenetic diversity. Specifically, we first explored the role of individual species in taxonomic, functional and phylogenetic diversity, which allowed us to identify the ecological and evolutionary importance of each species. Then, we tested whether species listed by the IUCN as being of conservation interest (i.e. endangered,vulnerable and near threatened species) contribute more to taxonomic, functional and phylogenetic diversity than species without elevated conservation status (i.e.,species of least concern). This can help us to recognize the conservation value of species for different facets of biodiversity that are not traditionally considered in conservation activities.

    2. Materials and Methods

    2.1. Study area and field surveysThe study area, Emei Mountain, is located in southwest Sichuan Province,China. This mountain is a series of ranges spread over 1100km2. In total, 104 nocturnal surveys were conducted along 52 transects (200 m × 2 m) from April to October in 2013 and 2014, using the same combination of distance sampling and quadrat sampling methods, with four transects sampled per night. Distance sampling is considered as a positive and effective method for anurans(Fogarty and Vilella, 2001; Funket al., 2003), and quadrat sampling is effective for stream amphibians (Dodd, 2010).Two persons first intensively searched the transect along the edge of stream by turning over logs, stones, and leaf litter, and hand-collected all individuals (Herbeck and Semlitsch, 2000; Naniwadekar and Vasudevan, 2006). Ten quadrats of one square meter area were then randomly selected within the stream, all the rocks were carefully removed, and individual amphibians were collected using a hand net (Dodd, 2010). All individuals were identified to species, measured (snout-vent length to the nearest mm), photographed, toe-clipped, and then released at the site of capture.

    These transects, at elevations from 476–3000m, have a gradient of environmental conditions. Specifically, lower transects are close to lentic aquatic ecosystems (e.g.,swamps and ponds), and are dominated by evergreen broad-leaved forest. Transects in middle and higher elevations are located along slowly flowing pools and stream tributaries, respectively, with evergreen and deciduous broad-leaved forests gradually replaced by coniferous and mixed forests. Transects were selected at random, but include all suitable habitats for amphibian species.

    2.2. Selection of functional traitsBased on published literatures, a set of 11 functional traits reflecting morphology, resource use, and life history strategy were selected (Trochetet al., 2014; Tsianou and Kallimanis,2016; Table 1). These traits described the unique relationship between each species and the environment,and importantly, reflected the ecological function of species in those ecosystems. Qualitative and quantitativemeasurements were made using digital calipers and visual observation; values of some traits were derived from Feiet al. (2009). These functional traits were snout vent length (SVL; cm), sexual maturity (SM; 1 year, 1-3 years,or >3 years), clutch position (=oviposition site) (CP;ground, lotic habitat, lentic habitat, or arboreal), number of eggs per clutch (NEC), egg size (diameter) (ES;mm), duration of breeding activity (DBA; prolonged,or explosive), spawning site (SS; aquatic, or terrestrial),life history habit (LHH; aquatic, or terrestrial), time partitioning (diel activity) (TP; nocturnal, or diurnal), diet[DI; carnivorous (i.e., all salamander species), mainly feeding on pests, mainly feeding on other insects] and mobility mode (mode of locomotion) (MM; jumper,walker, runner, climber, or swimmer). Considering the deficiency of data on amphibian species traits (reviewed in Trochetet al., 2014), selection of functional traits was also based on the availability of complete trait data.

    Table 1 Eleven functional traits associated with morphology, reproduction, habitat, food acquisition, and locomotion (adapted from Tsianou and Kallimanis, 2016).

    2.3. Phylogenetic analysesSequence data were obtained from GenBank. Sequences were edited manually in BioEdit v7.0.5, aligned in Mega 6.0 using the ClustalW algorithm with default parameters (Tamuraet al., 2013),and were checked by eye for ambiguous alignments.We used Bayesian inference (BI; performed in MrBayes 3.1.2; Ronquist and Huelsenbeck, 2003) and Maximumlikelihood (ML; performed under the GTRGAMMA model using RAxML Web Server; Stamatakis, 2006)to reconstruct a mitochondrial gene tree using partial fragments of the 12S and 16S ribosomal genes, and the complete t-RNAvaline. The best- fitting model, GTR+G, was developed using ModelTest 3.7 (Posada and Crandall,1998). For the bayesian analysis, we ran four concurrent Markov Chains for five million generations, sampling every 100 generations . The first 25% sampled trees were discarded as burn in. The resulting trees were combined to calculate posterior probabilities for each node in a 50% majority-rule consensus tree. Branch support in the maximum likelihood analysis was assessed using 1000 nonparametric bootstrap replicates. Nodes in the trees were considered well supported when Bayesian posterior probabilities were ≥0.95 and ML bootstrap support was≥70% (Hillis and Bull, 1993).

    2.4. Statistical analysesAll sampled species were considered to be the regional species pool. Species were then classified into three categories based on their IUCN conservation status. EN: critically endangered or endangered; VU/NT: vulnerable and near threatened; and LC: least concern. Species in the vulnerable and nearthreatened categories were pooled to ensure a sufficient sample size for statistical analysis. Since the functional traits data were measured on both discrete and continuous scales, we first used Gower’s coefficient to construct a dissimilarity matrix of all functional traits (Pavoineet al., 2009). We then used a principal coordinates analysis (PCoA) to build a multidimensional functional space following Villégeret al. (2008), to define the position of each species in functional space. Functional distances using Gower’s metric were significantly correlated with the Euclidean distances between species pairs in functional space (Mantel test,r2= 0.776,P<0.001), providing evidence that functional diversity can effectively capture community trait diversity (Poolet al., 2014). Following Maireet al. (2015), the first four synthetic principal components of the PCoA analysis were retained to describe the functional space, as they produced a mean-squared deviation index of 0.002,demonstrating that these components can sufficiently describe interspecific distances. The four axes accounted for 68.83% (PC1 = 24.73%, PC2 = 20.53%, PC3 =12.47% and PC4 = 11.10%; Figure 1 and Table 2) of theinitial inertia in trait values. Each species had a distinctive position in functional space, which was used below to calculate the contribution of individual species to overall aspects of biodiversity.

    Figure 1 Distribution of all species in the functional space defined by the regional species pool, based on the four first PCA axes. (A) PC1 and PC2 of the functional space, (B) PC3 and PC4 of the functional space. EN (critically endangered or endangered), VU/NT (vulnerable and near threatened) and LC (least concerned) species were plotted in red, blue, and green, respectively. Colored surfaces correspond to the functional space occupied by each category, and crosses to the center of gravity of the convex hulls. Species codes are in Table 3.

    Table 2 Pearson correlation coefficients between the first four synthetic principal components of the PCoA analysis axes and the 11 functional traits. Statistically significant correlation coefficients are in bold.

    Contribution of individual species to multiple facets of biodiversityTaxonomic diversity was represented by the number of species, functional diversity by functional richness index, and phylogenetic diversity by the total branch length of species within the community(Poolet al., 2014). We simulated randomly assembled communities to identify the contribution of individual amphibian species to different facets of biodiversity because (1) it was easy to obtain a large number of communities, which produced a gradient in species richness; (2) the local stochastic processes involved in community assembly can be mimicked by random sampling from a regional species pool (Loreau, 2001);and (3) simulations allow for control of concurrent changes in species richness and random extinctions of species (Larsenet al., 2005). Based on the fourdimension functional space, random communities should contain more than four species to allow calculation of functional richness. Therefore, five species were first selected randomly from the regional species pool using a bootstrap procedure with 1000 repetitions (i.e., a set of 1000 random communities, each with five species, was obtained). Since we assumed that the regional species pool containedSspecies in total, the same protocols were then performed to obtain a set of 1000 random communities with six species, a set of 1000 random communities with seven species, and so on, up to a set of 1000 random communities with (S– 1) species. In total,(S– 5) × 1000 random communities were simulated. The abundance of each species was not considered as it did not affect the taxonomic, functional, and phylogenetic diversity indices we used.

    The contribution of each species to different aspects of biodiversity was quantified as follows: the taxonomic,functional, and phylogenetic diversity of each random community were calculated firstly, and then all the diversity indices were recalculated by removing each species. The differences in diversity values before and after species removal were computed. The relative contribution of each species was assessed by calculating the mean percentage of diversity change within each random communities.

    Contribution of conservation status to facets biodiversityThe mean relative contribution to biodiversity of species of the same conservation status was calculated to explore whether species of conservation interest (i.e., EN and VU/NT species) contribute more to taxonomic, functional and phylogenetic diversity than species without elevated conservation status (i.e., LC species) do. Since the three groups have different number of species, we used Nemenyi–Damico–Wolfe–Dunn tests(Nemenyi, 1963) (a nonparametric Tukey-type, multiple comparisonpost hoctest) to compare the difference of biodiversity contribution between pairwise categories,All statistical analyses were conducted in R 3.3.2 (R development Core Team, 2017).

    3. Results

    A total of 24 amphibian species were detected in the regional species pool, with 5 EN species, 5 VU/NT species, and 14 LC species. The number of individual animals of each species ranged from 1 to 10, with a mean of 4.2 ± 3.2 SD. The most abundant amphibian species were Spiny-bellied frog (Quasipaa boulengeri) and Baoxing treefrog (Rhacophorus dugritei), which made up 31.75% of the total individuals. The rarest species was Longdong stream salamander (Batrachuperus londongensis), with only one individual found.

    3.1. Contribution of individual species to biodiversityAll 24 species contributed similarly to taxonomic diversity, but differently to functional and phylogenetic diversity of simulated random communities (Table 3).Specifically, the Asiatic toad (Bufo gargarizans), the Omei music frog (Nidirana daunchina) and the Spinybellied frog (Quasipaa boulengeri) were the speciesthat contributed the most to functional diversity (i.e.35.76% ± 0.16% SE, 21.27% ± 0.11% SE, and 16.85%± 0.09% SE; respectively). Species that contributed the least to functional diversity were the Shaping horned toad(Megophrys shapingensis; 1.09% ± 0.03% SE), the Omei mustache toad (Vibrissaphora boringii; 1.47% ± 0.04%SE) and the Jinding odontoid toad (Scutiger chintingensis;1.57% ± 0.04% SE). In terms of phylogenetic diversity,the Sichuan sucker frog (Amolops granulosus), the Omei tooth toad (Oreolalax omeimontis) and the Green odorous frog (Odorrana margaretae) were the substantial contributors (i.e. 10.83% ± 0.06% SE, 10.34% ± 0.05%SE, 10.26% ± 0.06% SE; respectively), while the Jinding odontoid toad (Scutiger chintingensis), the Oshan metacarpal-tubercled toad (Paramegophrys oshanensis)and the Omei horned toad (Megophrys omeimontis)contributed less (6.06% ± 0.04% SE, 6.47% ± 0.04%SE, 6.86% ± 0.04% SE; respectively) than other species(Table 3).

    Table 3 Contribution of individual species to different components of biodiversity (TD: taxonomic diversity; FD: functional diversity; PD:phylogenetic diversity).

    Figure 2 Box plots of each IUCN conservation status’ (EN:critically endangered or endangered; VU/NT: vulnerable and near threatened; and LC: least concern) contribution to different components of biodiversity (TD: taxonomic diversity; FD:functional diversity; and PD: phylogenetic diversity). Error bars indicate the standard error.

    3.2. Contribution of conservation status to biodiversityThe relative contributions of EN species to taxonomic,functional and phylogenetic diversity were 6.52% ±0.04% SE, 7.46% ± 1.20% SE, 7.63% ± 0.29% SE;respectively. The relative contributions of VU/NT species to taxonomic, functional and phylogenetic diversity were 6.40% ± 0.08% SE, 6.69% ± 0.59%SE, 8.02% ± 0.19% SE; respectively. For LC species,the relative contributions to taxonomic, functional and phylogenetic diversity were 6.43% ± 0.02% SE, 10.21%± 0.62% SE, 8.70% ± 0.10% SE; respectively. Nemenyi–Damico–Wolfe–Dunn multiple comparisonpost hoctests indicated that there were no signi fi cant differences between pairwise categories of conservation status of the relative contribution to taxonomic diversity (EN - VU/NT:P= 0.88, EN - LC:P= 0.76, VU/NT - LC:P= 0.94;respectively), functional diversity (EN - VU/NT:P= 1.00,EN - LC:P= 0.83, VU/NT - LC:P= 0.86; respectively)and phylogenetic diversity (EN - VU/NT:P= 0.94, EN- LC:P= 0.31, VU/NT - LC:P= 0.48; respectively)(Figure 2).

    4. Discussion

    Our results revealed that amphibian species contributed similarly to taxonomic diversity, but differently to functional and phylogenetic diversity. This was primarily driven by the diverse functional attributes of individual species present in the functional space, and the phylogenetic relationships between species.

    Traditional conservation theories suggested that the maximum protection of taxonomic diversity (species richness) can preserve multiple facets of biodiversity simultaneously (Devictoret al., 2010). However, it is impossible to protect all the species simultaneously, and it has been suggested that endemic and distinctive species be given conservation priority (Myerset al., 2000; Kieret al., 2009). Given that not all endemic and distinctive species contributed substantially to taxonomic, functional and phylogenetic diversity in the present study, we argue that effective conservation strategies should not only focus on speciesper se, but that such strategies need a comprehensive method that includes species richness,functional traits, and their evolutionary relationships(Brooks, 2006; Lee and Jetz, 2008).

    In fact, one of the important research areas in conservation ecology was the unraveling of linkages between species traits, genetic relatedness, and extinction risk, which were critical criteria for prioritizing conservation efforts (Murray and Hose, 2005). Our results showed that amphibian species that contributed the most to functional diversity usually exhibited specific functional attributes (e.g., the Omei music frog and Spiny-bellied frog), demonstrating that these species may play distinct functional roles in ecosystems. These species displayed larger body size, smaller number of eggs per clutch, larger egg size, and shorter breeding period. More importantly, these traits may lead to higher vulnerability when species are under various types of disturbances.This can be explained by the fact that species with larger body size generally have a longer life cycle (Cardillo,2005), and species with low fecundity have a slower population turnover, thus impeding rapid population restoration after historical contractions or catastrophic population crashes (Williams and Hero, 1998; Heroet al., 2005; Sodhiet al., 2008). Moreover, these species are mainly carnivorous, with poor capacity for locomotion,leading to high predation risk and over-exploitation by humans (Collins and Crump, 2009; Chanet al., 2014). In addition, our findings were also consistent with Lipset al.(2003), showing that riparian amphibians were generally more easily affected than terrestrial species, probably because many potential causal factors of population decline are stream-borne, such as disease and pollution(Williams and Hero, 1998). Similarly, species that contributed the most to phylogenetic diversity usually showed distinctive evolutionary relationships (e.g.,the Sichuan sucker frog and Omei tooth toad). These“phylogenetically rare” species should be considered to have priority for protection as their extinction will cause larger loss of evolutionary information within the community (Winteret al., 2013). Interestingly, we found that the degree of relative contribution of a species to functional and phylogenetic diversity were not similar.This result indicated that species within a community may have redundant functional traits, but show a unique position in the phylogeny (e.g.Amolops granulosusandRana omeimontis), or species with distinct functional traits may represent phylogenetic conservatism within a community (e.g.,Bufo gargarizansandParamegophrys oshanensis; Poolet al., 2014). All of these observations demonstrated that the conservation importance of species was affected by both their functional and phylogenetic attributes (Faith, 1992; Díaz and Cabido, 2001). And importantly, our results may give potential conservation priority for each species, with higher priority given to the conservation of species contributing most to functional and/or phylogenetic diversity in a given region.

    Species in categories of conservation interest did not display a significantly higher contribution to any aspect of biodiversity in our study area. Indeed, the local extirpation of either endangered or least concern species can result in dramatic loss in specific facet of community biodiversity. For instance,Quasipaa boulengeri(EN)andBufo gargarizans(LC) contributed substantially to functional diversity, whileOreolalax omeimontis(EN)andAmolops granulosus(LC) contributed substantially to phylogenetic diversity. Therefore, a set of species assemblages that include diverse threatened and common species should be protected to maintain a variety of biodiversity facets (Poolet al., 2014).

    In conclusion, the present study revealed the contribution of individual species to multiple biodiversity facets. Our results suggested that species of conservation interest were not always the greatest contributors to taxonomic, functional, and phylogenetic diversity.Moreover, our results suggest that the integrated diversity components of threatened and common species within a community may help preserve community biodiversity.In turn this can allow conservationists to optimize conservation strategies and protect biodiversity effectively(de Carvalho and Tejerina-Garro, 2015). Given that this study was constrained to a limited area (i.e., local scale),and biodiversity crisis is a global problem in space/time,how to maintain biodiversity across larger temporal and spatial scales in a changing world should be further studied (Geringet al., 2003).

    AcknowledgementsWe are grateful to Dengwei YANG and Jiongyu LIU for their help in the field. We thank David CANNATELLA and Jianwei GUO for editing the English. Tian ZHAO was supported by China Scholarship Council (CSC). This work was supported by the National Natural Science Foundation of China (31700353), the National Key Research and Development Program of China (2017YFC0505202), the West Light Foundation of Chinese Academy of Sciences (2016XBZG_XBQNXZ_B_007), and China Biodiversity Observation Networks(Sino BON).

    Reference

    Balvanera P., Pfisterer A. B., Buchmann N., He J. S.,Nakashizuka T., Raffaelli D., Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett, 9: 1146–1156

    Brooks T. M. 2006. Global biodiversity conservation priorities.Science, 313: 58–61

    Cadotte M. W., Cavender-Bares J., Tilman D., Oakley T. H.2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4:e5695

    Cardillo M. 2005. Multiple causes of high extinction risk in large mammal species. Science, 309: 1239–1241

    Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U.,Perrings C., Venail P., Narwani A., Mace G. M., Tilman D.,Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. S., Naeem S. 2012.Biodiversity loss and its impact on humanity. Nature, 486: 59–67

    Cardinale B. J., Srivastava D. S., Emmett Duffy J, Wright J.P., Downing A. L., Sankaran M., Jouseau C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443: 989–992

    de Carvalho R. A., Tejerina-Garro F. L. 2015. Relationships between taxonomic and functional components of diversity:Implications for conservation of tropical freshwater fishes.Freshw Biol, 60: 1854–1862

    Chan H. K., Shoemaker K. T., Karraker N. E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol Conserv, 170: 3–9

    Collins J. P., Crump M. L. 2009. Extinction in our times: global amphibian decline. New York: Oxford University Press.

    Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W.,Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol Lett, 13: 1030–1040

    Díaz S., Cabido M. 2001. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol Evol, 16:646–655

    Díaz S., Lavorel S., de Bello F., Quetier F., Grigulis K., Robson T. M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci, 104: 20684–20689

    Dodd C. K. 2010. Amphibian ecology and conservation: A handbook of techniques. New York: Oxford University Press

    Dunne J. A., Williams R. J., Martinez N. D. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett, 5: 558–567

    Faith D. P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv, 61: 1–10

    Fei L., Hu S., Ye C., Tian W., Jiang J., Wu G., Li J., Wang Y.2009. Fauna Sinica, Amphibia, Vol.2, Anura. Beijing, China:Science Press (In Chinese)

    Fogarty J. H., Vilella F. J. 2001. Evaluating methodologies to survey eleutherodactylus frogs in Montane forests of Puerto Rico. Wildl Soc Bull, 29: 948–955

    Funk W. C., Almeida-Reinoso D., Nogales-Sornosa F.,Bustamante M. R. 2003. Monitoring population trends of eleutherodactylus frogs. J Herpetol, 37: 245–256

    Gering J. C., Crist T. O., Veech J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conserv Biol, 17:488–499

    Graham C. H., Fine P. V. A. 2008. Phylogenetic beta diversity:Linking ecological and evolutionary processes across space in time. Ecol Lett, 11: 1265–1277

    Herbeck L. A., Semlitsch R. D. 2000. Life history and ecology of the southern redback salamander,Plethodon serratus, in Missouri. J Herpetol, 34: 341–347

    Hero J. M., Williams S. E., Magnusson W. E. 2005. Ecological traits of declining amphibians in upland areas of eastern Australia. J Zool, 267: 221–232

    Hillis D. M., Bull J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol, 42: 182–192

    Kier G., Kreft H., Lee T. M., Jetz W., Ibisch P. L., Nowicki C.,Mutke J., Barthlott W. 2009. A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci, 106: 9322–9327

    Knapp S., Kühn I., Schweiger O., Klotz S. 2008. Challenging urban species diversity: Contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett, 11: 1054–1064

    Larsen T. H., Williams N. M., Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning: Altered community structure disrupts function. Ecol Lett, 8: 538–547

    Lee T. M., Jetz W. 2008. Future battlegrounds for conservation under global change. Proc R Soc B Biol Sci, 275: 1261–1270

    Lips K. R., Reeve J. D., Witters L. R. 2003. Ecological traits predicting amphibian population declines in central America.Conserv Biol, 17: 1078–1088

    Loreau M. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294: 804–808

    Mace G. M. 2003. Preserving the tree of life. Science, 300: 1707–1709

    Maire E., Grenouillet G, Brosse S, Villéger S. 2015. How many dimensions are needed to accurately assess functional diversity?A pragmatic approach for assessing the quality of functional spaces: Assessing functional space quality. Glob Ecol Biogeogr.24:728–740.

    Murray BR, Hose GC. 2005. Life-history and ecological correlates of decline and extinction in the endemic Australian frog fauna.Austral Ecol, 30: 564–571

    Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858

    Naeem S., Duffy J. E., Zavaleta E. 2012. The functions of biological diversity in an age of extinction. Science, 336: 1401–1406

    Naniwadekar R., Vasudevan K. 2006. Patterns in diversity of anurans along an elevational gradient in the Western Ghats,South India: Patterns in diversity of anurans. J Biogeogr, 34:842–853

    Nemenyi P. B. 1963. Distribution-free multiple comparisons. Ph.D.Thesis. Princeton University

    Pavoine S., Vallet J., Dufour A. B., Gachet S., Daniel H. 2009. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos,118: 391–402

    Perrings C. A , M?ler K. G., Folke C., Holling C. S., Jansson B. O. 1995. Biodiversity conservation: problems and policies.Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Pool T. K., Grenouillet G, Villéger S. 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers Distrib, 20: 1235–1244

    Posada D., Crandall K. A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14: 817–818

    R development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

    Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572–1574

    Rudolf V. H. W., Rasmussen N. L., Dibble C. J., Van Allen B.G. 2014. Resolving the roles of body size and species identity in driving functional diversity. Proc R Soc B Biol Sci, 281:20133203–20133203

    Sodhi N. S., Bickford D., Diesmos A. C., Lee T. M., Koh L. P.,Brook B. W., Sekercioglu C. H., Bradshaw C. J. A. 2008.Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE, 3: e1636

    Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22: 2688–2690

    Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013.MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

    Trochet A., Moulherat S., Calvez O., Stevens V., Clobert J.,Schmeller D. 2014. A database of life-history traits of European amphibians. Biodivers Data J, 2: e4123

    Tsianou M. A., Kallimanis A. S. 2016. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv, 25: 117–132

    Villéger S., Mason N. W. H., Mouillot D. 2008. New multidimensional functional diversity indices for a multifaced framework in functional ecology. Ecology, 89: 2290–2301

    Villéger S., Miranda J. R., Hernández D. F., Mouillot D. 2010.Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl,20: 1512–1522

    Webb C. O., Ackerly D. D., McPeek M. A., Donoghue M. J.2002. Phylogenies and community ecology. Annu Rev Ecol Syst,33: 475–505

    Williams S. E., Hero J. M. 1998. Rainforest frogs of the Australian Wet Tropics: Guild classification and the ecological similarity of declining species. Proc R Soc B Biol Sci, 265: 597–602

    Winter M., Devictor V., Schweiger O. 2013. Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol, 28: 199–204

    99热全是精品| 精品第一国产精品| 欧美日韩福利视频一区二区| 国产有黄有色有爽视频| 免费少妇av软件| 黄网站色视频无遮挡免费观看| 高清不卡的av网站| 成人黄色视频免费在线看| 大香蕉久久网| 韩国精品一区二区三区| 国产有黄有色有爽视频| 一区二区日韩欧美中文字幕| 晚上一个人看的免费电影| 亚洲av电影在线观看一区二区三区| 日韩av不卡免费在线播放| 老汉色av国产亚洲站长工具| www.自偷自拍.com| 9热在线视频观看99| 男女高潮啪啪啪动态图| 免费在线观看黄色视频的| 男女免费视频国产| 在线精品无人区一区二区三| 一个人免费看片子| 国产精品久久久久久久久免| 亚洲四区av| 看免费av毛片| 欧美中文综合在线视频| 日韩精品有码人妻一区| 亚洲av欧美aⅴ国产| 黄色视频不卡| avwww免费| www.自偷自拍.com| 亚洲精品成人av观看孕妇| 亚洲婷婷狠狠爱综合网| 激情五月婷婷亚洲| 久久精品国产亚洲av高清一级| 中文字幕人妻丝袜一区二区 | 久久久欧美国产精品| 男人舔女人的私密视频| 777久久人妻少妇嫩草av网站| 欧美日韩视频高清一区二区三区二| 久久久久视频综合| 亚洲天堂av无毛| 高清黄色对白视频在线免费看| 亚洲精品美女久久av网站| 2018国产大陆天天弄谢| 国产精品无大码| 天堂中文最新版在线下载| 性高湖久久久久久久久免费观看| 亚洲第一青青草原| 搡老岳熟女国产| 久久久久久人妻| 一区二区三区激情视频| 我要看黄色一级片免费的| 卡戴珊不雅视频在线播放| 日本av免费视频播放| 亚洲av电影在线进入| 纯流量卡能插随身wifi吗| 建设人人有责人人尽责人人享有的| 不卡av一区二区三区| 2021少妇久久久久久久久久久| 99久久综合免费| 久久久久久久精品精品| 在线观看国产h片| 日韩av免费高清视频| 国产精品秋霞免费鲁丝片| 国产精品一国产av| 街头女战士在线观看网站| 1024视频免费在线观看| 日韩av不卡免费在线播放| 国产女主播在线喷水免费视频网站| 欧美日韩综合久久久久久| 国产成人精品福利久久| 亚洲视频免费观看视频| 天天影视国产精品| 国产在线一区二区三区精| 97精品久久久久久久久久精品| 亚洲综合精品二区| 男男h啪啪无遮挡| 久久综合国产亚洲精品| 欧美中文综合在线视频| 狂野欧美激情性xxxx| bbb黄色大片| 欧美精品一区二区免费开放| 老鸭窝网址在线观看| 国产免费现黄频在线看| 18禁国产床啪视频网站| 国产色婷婷99| 国产乱人偷精品视频| 18禁动态无遮挡网站| 天堂俺去俺来也www色官网| 水蜜桃什么品种好| 日本欧美国产在线视频| 天天躁日日躁夜夜躁夜夜| 人人澡人人妻人| 亚洲国产精品一区三区| 国产亚洲午夜精品一区二区久久| 大码成人一级视频| 如日韩欧美国产精品一区二区三区| 久久久亚洲精品成人影院| 51午夜福利影视在线观看| 岛国毛片在线播放| 久久久久精品人妻al黑| 99re6热这里在线精品视频| 久久久精品免费免费高清| 欧美在线黄色| 亚洲国产精品国产精品| 伊人久久大香线蕉亚洲五| 国产黄色视频一区二区在线观看| 亚洲成人手机| 美女福利国产在线| 高清不卡的av网站| 久久青草综合色| 亚洲精品久久午夜乱码| 国产高清国产精品国产三级| 黑人猛操日本美女一级片| 成人三级做爰电影| 18禁裸乳无遮挡动漫免费视频| 一区二区av电影网| 国产极品粉嫩免费观看在线| 99精品久久久久人妻精品| 国产熟女午夜一区二区三区| 丝袜人妻中文字幕| 欧美精品一区二区免费开放| 国产精品国产三级专区第一集| 亚洲激情五月婷婷啪啪| 亚洲激情五月婷婷啪啪| 日韩av在线免费看完整版不卡| 伊人亚洲综合成人网| 大话2 男鬼变身卡| 大话2 男鬼变身卡| 中文天堂在线官网| 国产一区二区三区av在线| 黄频高清免费视频| 你懂的网址亚洲精品在线观看| 免费高清在线观看日韩| 波野结衣二区三区在线| 日韩熟女老妇一区二区性免费视频| 亚洲久久久国产精品| 黄片小视频在线播放| 欧美黑人欧美精品刺激| 热99久久久久精品小说推荐| 国产野战对白在线观看| 亚洲伊人色综图| 十八禁高潮呻吟视频| 午夜影院在线不卡| 国产色婷婷99| 日韩精品免费视频一区二区三区| 久久婷婷青草| 欧美变态另类bdsm刘玥| 亚洲第一青青草原| 国产成人一区二区在线| 精品人妻熟女毛片av久久网站| 欧美日本中文国产一区发布| 岛国毛片在线播放| 久久女婷五月综合色啪小说| 波野结衣二区三区在线| 视频在线观看一区二区三区| 日韩伦理黄色片| 91aial.com中文字幕在线观看| 男女边摸边吃奶| 国产精品 国内视频| 十八禁人妻一区二区| 亚洲人成电影观看| 免费观看a级毛片全部| 99久久精品国产亚洲精品| 亚洲免费av在线视频| 中国三级夫妇交换| 高清av免费在线| 免费av中文字幕在线| 制服人妻中文乱码| 国产成人av激情在线播放| 亚洲精品久久午夜乱码| 国产免费视频播放在线视频| 午夜福利影视在线免费观看| 超碰成人久久| 最近2019中文字幕mv第一页| 久热爱精品视频在线9| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 一区二区三区激情视频| 久久久久网色| 在现免费观看毛片| 精品少妇一区二区三区视频日本电影 | 欧美日韩成人在线一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲美女黄色视频免费看| 最黄视频免费看| 日本vs欧美在线观看视频| 啦啦啦在线观看免费高清www| svipshipincom国产片| 欧美久久黑人一区二区| 久久韩国三级中文字幕| 国产精品久久久久成人av| 下体分泌物呈黄色| 侵犯人妻中文字幕一二三四区| 另类精品久久| 十八禁高潮呻吟视频| 亚洲国产看品久久| a级片在线免费高清观看视频| 亚洲在久久综合| 99精国产麻豆久久婷婷| 男的添女的下面高潮视频| 成人手机av| 精品久久久久久电影网| 啦啦啦在线观看免费高清www| 搡老乐熟女国产| 少妇猛男粗大的猛烈进出视频| 男男h啪啪无遮挡| 狂野欧美激情性bbbbbb| 国产欧美日韩一区二区三区在线| 在线亚洲精品国产二区图片欧美| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人爽人人夜夜| 51午夜福利影视在线观看| 婷婷色麻豆天堂久久| 日韩精品有码人妻一区| 成人三级做爰电影| 亚洲av电影在线观看一区二区三区| 国产1区2区3区精品| 午夜福利视频精品| 美国免费a级毛片| 一区二区三区激情视频| 国产日韩欧美亚洲二区| 1024香蕉在线观看| 精品国产一区二区三区久久久樱花| 精品福利永久在线观看| 操出白浆在线播放| 国产亚洲欧美精品永久| 国产成人免费无遮挡视频| 久久久久网色| 亚洲精品国产av蜜桃| 亚洲精品久久成人aⅴ小说| 中文字幕人妻丝袜一区二区 | 国产精品一区二区在线不卡| 最近手机中文字幕大全| 久久久久精品性色| 亚洲精品在线美女| 亚洲国产精品国产精品| 久久毛片免费看一区二区三区| 国产成人精品在线电影| 午夜日本视频在线| 日本vs欧美在线观看视频| 在线观看国产h片| 国产精品二区激情视频| 男女之事视频高清在线观看 | 在线观看人妻少妇| 男女床上黄色一级片免费看| 久久人妻熟女aⅴ| 美女主播在线视频| av一本久久久久| 午夜福利影视在线免费观看| 久久久精品区二区三区| 久久狼人影院| 免费高清在线观看日韩| 只有这里有精品99| 亚洲一级一片aⅴ在线观看| 国产成人av激情在线播放| av不卡在线播放| 亚洲精品中文字幕在线视频| 亚洲国产毛片av蜜桃av| 美女中出高潮动态图| av有码第一页| 亚洲欧美精品自产自拍| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品精品| 久久精品亚洲熟妇少妇任你| 久久久久精品性色| 99久久人妻综合| 亚洲精品一二三| 狠狠婷婷综合久久久久久88av| 男人操女人黄网站| 99热网站在线观看| 少妇人妻 视频| 色婷婷av一区二区三区视频| 国产精品偷伦视频观看了| 亚洲av福利一区| 久久青草综合色| 一级a爱视频在线免费观看| 韩国精品一区二区三区| 欧美精品高潮呻吟av久久| 亚洲久久久国产精品| 亚洲av欧美aⅴ国产| 精品一区二区免费观看| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 亚洲精品国产区一区二| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 99九九在线精品视频| 妹子高潮喷水视频| av在线老鸭窝| 岛国毛片在线播放| 男女免费视频国产| 永久免费av网站大全| 操出白浆在线播放| 国产一区二区 视频在线| 亚洲精品日本国产第一区| av线在线观看网站| 99re6热这里在线精品视频| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 少妇 在线观看| 久久国产精品男人的天堂亚洲| 国产在线视频一区二区| 亚洲精品久久久久久婷婷小说| 国产一区亚洲一区在线观看| 丝袜美足系列| 亚洲国产欧美日韩在线播放| 亚洲视频免费观看视频| 满18在线观看网站| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 99热全是精品| 日韩一区二区视频免费看| 精品免费久久久久久久清纯 | 欧美成人精品欧美一级黄| 国产一卡二卡三卡精品 | 欧美中文综合在线视频| 91精品国产国语对白视频| 亚洲精品在线美女| a级片在线免费高清观看视频| 中文字幕人妻丝袜制服| 99热网站在线观看| 丝袜美足系列| 狠狠精品人妻久久久久久综合| 亚洲精华国产精华液的使用体验| 精品免费久久久久久久清纯 | www日本在线高清视频| 999精品在线视频| 欧美黄色片欧美黄色片| 午夜日本视频在线| svipshipincom国产片| av女优亚洲男人天堂| 日韩视频在线欧美| 中文字幕另类日韩欧美亚洲嫩草| 日韩制服骚丝袜av| 午夜福利视频精品| 免费黄网站久久成人精品| www.av在线官网国产| 国产熟女午夜一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲精品成人av观看孕妇| 成人午夜精彩视频在线观看| 亚洲精品aⅴ在线观看| 啦啦啦在线观看免费高清www| 老司机深夜福利视频在线观看 | 成人手机av| 国产精品 欧美亚洲| 五月天丁香电影| 欧美在线黄色| 久久99一区二区三区| 亚洲av福利一区| 女性被躁到高潮视频| 欧美97在线视频| 精品免费久久久久久久清纯 | 久久狼人影院| 母亲3免费完整高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 最近2019中文字幕mv第一页| 久久毛片免费看一区二区三区| 一级,二级,三级黄色视频| av天堂久久9| 一区二区三区激情视频| 尾随美女入室| 91aial.com中文字幕在线观看| 天美传媒精品一区二区| 飞空精品影院首页| 久久久国产精品麻豆| 亚洲av男天堂| 夜夜骑夜夜射夜夜干| 国产一区有黄有色的免费视频| 欧美xxⅹ黑人| 亚洲精品国产一区二区精华液| 九色亚洲精品在线播放| 久久亚洲国产成人精品v| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 亚洲熟女毛片儿| 久久鲁丝午夜福利片| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 亚洲美女搞黄在线观看| 99国产综合亚洲精品| 欧美日韩亚洲国产一区二区在线观看 | 天美传媒精品一区二区| 韩国精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 亚洲欧美一区二区三区国产| 18禁国产床啪视频网站| 人人妻人人澡人人看| 精品久久久精品久久久| 欧美97在线视频| 超色免费av| 91精品伊人久久大香线蕉| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久男人| 又粗又硬又长又爽又黄的视频| 少妇人妻精品综合一区二区| 日本黄色日本黄色录像| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| netflix在线观看网站| 欧美av亚洲av综合av国产av | av卡一久久| tube8黄色片| 男女边摸边吃奶| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 亚洲国产欧美一区二区综合| 人人妻人人添人人爽欧美一区卜| 搡老岳熟女国产| 超色免费av| 在线观看免费高清a一片| 日日啪夜夜爽| 日韩一本色道免费dvd| 国产成人av激情在线播放| 久久精品国产a三级三级三级| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 久久久久国产精品人妻一区二区| 亚洲第一青青草原| 一区二区av电影网| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 1024香蕉在线观看| 成人国产麻豆网| 亚洲一区中文字幕在线| 国产成人一区二区在线| 精品久久久久久电影网| 9热在线视频观看99| 成年人免费黄色播放视频| 成人国语在线视频| 在线免费观看不下载黄p国产| 亚洲中文av在线| www.精华液| 女人被躁到高潮嗷嗷叫费观| 在线天堂最新版资源| 黑人猛操日本美女一级片| www.自偷自拍.com| 永久免费av网站大全| 日本av手机在线免费观看| 国产精品久久久av美女十八| 久久国产精品大桥未久av| 99热国产这里只有精品6| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 中文字幕色久视频| 丰满饥渴人妻一区二区三| 天天添夜夜摸| 久久午夜综合久久蜜桃| 老熟女久久久| 午夜日本视频在线| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| 中文字幕人妻熟女乱码| 男人爽女人下面视频在线观看| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| 韩国精品一区二区三区| 黑人猛操日本美女一级片| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播 | 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 日本欧美国产在线视频| 亚洲国产日韩一区二区| 成人三级做爰电影| 国产欧美日韩一区二区三区在线| 在线看a的网站| 色视频在线一区二区三区| 精品视频人人做人人爽| 操出白浆在线播放| 久热爱精品视频在线9| 夫妻性生交免费视频一级片| 看免费av毛片| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 自线自在国产av| 街头女战士在线观看网站| 人妻人人澡人人爽人人| 免费看不卡的av| 国产成人欧美在线观看 | 超色免费av| av不卡在线播放| 看免费成人av毛片| 激情五月婷婷亚洲| 久久久国产欧美日韩av| 国产 一区精品| 老司机在亚洲福利影院| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看 | 老司机影院成人| 国产欧美亚洲国产| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 国精品久久久久久国模美| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 999精品在线视频| 亚洲av中文av极速乱| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| www.熟女人妻精品国产| 国产精品麻豆人妻色哟哟久久| 看非洲黑人一级黄片| 日韩中文字幕欧美一区二区 | 99国产综合亚洲精品| 看免费av毛片| 久久久欧美国产精品| 国产精品人妻久久久影院| 自线自在国产av| 国产一区二区三区av在线| 亚洲精品第二区| 1024视频免费在线观看| 无限看片的www在线观看| 国产欧美亚洲国产| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 国产极品天堂在线| 久久久久网色| 欧美激情高清一区二区三区 | 亚洲,欧美,日韩| 欧美中文综合在线视频| av在线老鸭窝| 日韩一卡2卡3卡4卡2021年| 黄色 视频免费看| 十八禁人妻一区二区| 老司机在亚洲福利影院| 免费观看人在逋| 咕卡用的链子| 女性生殖器流出的白浆| 黄色怎么调成土黄色| 亚洲精品一二三| 夫妻午夜视频| 亚洲国产看品久久| 日韩大片免费观看网站| 亚洲图色成人| 别揉我奶头~嗯~啊~动态视频 | 黄频高清免费视频| 午夜日韩欧美国产| 五月开心婷婷网| 色视频在线一区二区三区| 久久亚洲国产成人精品v| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 久久久久久久国产电影| 成人黄色视频免费在线看| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 国产 精品1| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 中文字幕精品免费在线观看视频| 免费高清在线观看日韩| av卡一久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合精品二区| 黑丝袜美女国产一区| 亚洲国产欧美网| 国产成人精品在线电影| 国产免费视频播放在线视频| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 亚洲情色 制服丝袜| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 国产精品三级大全| 久久久精品免费免费高清| 夫妻午夜视频| 午夜免费男女啪啪视频观看| 久久ye,这里只有精品| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 久久毛片免费看一区二区三区| svipshipincom国产片| 考比视频在线观看| 欧美精品av麻豆av| 国产不卡av网站在线观看| 国产精品一区二区在线不卡| 国产一卡二卡三卡精品 | 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| 一本大道久久a久久精品| av.在线天堂| 国产精品嫩草影院av在线观看| 制服丝袜香蕉在线| 美女国产高潮福利片在线看| 欧美精品人与动牲交sv欧美| 777久久人妻少妇嫩草av网站| 色精品久久人妻99蜜桃|