• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Rapid, Non-invasive Method for Anatomical Observations of Tadpole Vertebrae in Vivo

    2018-06-28 03:17:40GuochengSHUShanXIONGWenyanZHANGJianpingJIANGChengLIandFengXIE
    Asian Herpetological Research 2018年2期

    Guocheng SHU, Shan XIONG, Wenyan ZHANG, Jianping JIANG, Cheng LI* and Feng XIE*

    1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    2 University of Chinese Academy of Sciences, Beijing 100049, China

    1. Introduction

    The larval period is an important part of amphibian life history and plays a significant role during the transition from the aquatic to the terrestrial stage. However, at the end of the last century, the tadpoles of approximately two-thirds of the nearly 3 300 known anuran species with a larval phase had not been described (McDiarmid and Altig, 1999), and this knowledge gap is critical to our understanding of the diversity and complexity of the life history traits of amphibians, especially their developmental biology. Thus, tadpole biology is a discipline within amphibian research that needs to be strengthened. Some aspects of this lack of tadpole research are due to limited methodological approaches.

    To obtain an accurate visualization of internal threedimensional (3D) structures, researchers mainly utilize conventional or modified methods, such as serial histological sectioning (Ro?ková and Ro?ek, 2005) and gross dissection (Zhanget al., 2016). For example, the bone-cartilage double-staining technique has been widely used in comparative skeletal anatomy studies of small vertebrates since the last century (Hanken and Wassersug,1981; Simons and Van Horn, 1971; Wassersug, 1976;Williams, 1941), but these methods are typically timeconsuming and destructive to the specimens under examination. Recently, non-invasive visualization methods have come to the forefront including X-ray microcomputed tomography (micro-CT), which can overcome these weaknesses and visualize the internal anatomy and structural complexity of organisms in the micrometer (μm) or nanometer (nm) ranges by relying on differences in the photon attenuation levels of these tissue types (Broeckhovenet al., 2017; Chaoet al.,2005; du Plessiset al., 2017; Ritman, 2004, 2011). This approach has been applied in biomedical studies, such as investigations of the skeleton, organs and vascular tree of live mammals, to obtain information on the status or progression of disease (Campbell and Sophocleous,2014; Ritman, 2004). Micro-CT also provides detailed anatomical interpretations to inform developmental,systematic, and functional morphological research in invertebrates and vertebrates (Gignacet al., 2016; Porro and Richards, 2017; Scherreret al., 2017). Applications include species identification (Boistelet al., 2011;Faulwetteret al., 2013; Paraparet al., 2017; Scherzet al.,2014) and exploring ecological or evolutionary questions in certain taxa (Broeckhoven and du Plessis, 2017). In herpetology, this tool has been widely used to conduct research in adult amphibians and reptiles (Chenet al.,2012; Fortunyet al., 2015; Kimet al., 2017; Lauridsenet al., 2011; Scherzet al., 2015; Vasquezet al., 2008),but non-invasive micro-CT has not yet been integrated into studies of the developmental biology and osteology of tadpoles. Therefore, we report the use of micro-CT for examining the structure of tadpole vertebrae with the hope of making this modern tool more accessible to the broadest range of morphological researchers across the widest range of fields.

    The aims of this study are to 1) investigate the feasibility of micro-CT to examine the structure of tadpole vertebraein vivo, 2) compare the merits and defects of micro-CT with those of conventional methods(bone-cartilage double-staining) in the study of tadpole vertebrae, 3) determine the effects of scanning parameters on image quality, and 4) recommend guidelines for the use of micro-CT in the anatomical study of tadpole vertebrae.

    2. Materials and Methods

    2.1. Sample preparationWe used 53 tadpole specimens representing three anuran amphibian species from three genera of Megophryidae (Table S1) that were preserved at the Herpetological Museum of the Chengdu Institute of Biology (CIB), CAS. Specimens were first fixed in 10%formalin and then transferred to neutral buffered 10%formalin (20 individuals) or 70% ethanol (33 individuals)prior to scanning (Table S1). We staged the tadpoles based on the approach of Gosner (1960).

    2.2. Micro-CT scanningA Quantum GX micro-CT Imaging System (PerkinElmer Health Sciences, USA)was used to acquire high-resolution 3D images of tadpole vertebral structure, located at the Chengdu Institute of Biology (Chengdu, China); this imaging system uses a cone beam X-ray source and a flat-panel X-ray detector to produce high-resolution 3D images of bone structures and the surrounding soft tissues (www.PerkinElmer.com). To prevent the specimens from drying during scanning, all samples were transferred into 2-ml polypropylene pipette tips (tube’s choosing was based on the tadpole size) with 10% formalin or 70% ethanol and then fastened to the sample bed for scanning. In the high-resolution mode,we chose a 72-mm acquisition field of view (FOV) and a 45-mm reconstruction FOV, which allowed for a 9-μm voxel size resolution under a small region (subvolume)reconstruction (www.PerkinElmer.com). When we compared the results of the two methods (micro-CT scan and double-staining), scanning was conducted for 4 min at a voltage of 70 kV and a current of 80 μA, which produced 458 projection images for every specimen.To detect the effects of scanning parameters (including voltage, current and scan time), we set different levels for each parameter according to the instrument design.Voltage levels were set at 30 kV, 50 kV, 70 kV or 90 kV;current levels were set at 20 μA, 40 μA, 60 μA or 80 μA;and scan times were set at 8 s, 18 s, 2 min, 4 min, 14 min and 57 min. Skeletal images were reconstructed using these projection images under the Quantum GX micro-CT Imaging System, and surface meshes of the skeleton were produced by regulating the threshold in the volume rendering control panel, which controlled voxel intensity in the 3D reconstruction. The images were exported in BMP (1024 × 1024 pixels) and AVI formats.

    2.3. Bone-cartilage double-stainingPost-scanning, 32 of the 53 scanned specimens (Table S1) were eviscerated and then cleared and stained with alcian blue and alizarin red following the protocol of Hanken and Wassersug(1981).

    2.4. Statistical analysisThe data set was tested for normality prior to analysis, and the Wilcoxon Signed-Rank test was applied to test for inter-method variations(micro-CT and bone-cartilage double-staining) in the determination of the number of tadpole vertebrae.Statistical tests were performed using R software 3.4.2 (R Development Core Team, 2017).

    3. Results

    3.1. Comparison between micro-CT and bone-cartilage double-stainingThe results showed that the two methods(micro-CT and bone-cartilage double-staining) could both clearly display the tadpole vertebrae in the sampled species and that there were no significant differences in the detected number of vertebrae of the tadpoles of the three species (Table 1, Figure 1). The bones were stained purplish red and the cartilage was stained dark blue (Figure 1A, 1C, 1E, 1G, 1I, 1K, 1M, 1O, 1Q and 1S), and after staining, more than half of the tadpoles were bent. Additionally, the bone staining was darker with advancement in developmental stage, especially in the bones (Figure 1 from K to S). The micro-CT could both visualize the bone and discriminate the incompletely ossified cartilage from other tissues (Figure 1 from B to J and from L to T), and the specimens remained in their original positions after scanning. However, the micro-CT seemed unable to distinguish the cartilage located in the head or arthrosis (Figure 1I, 1J, 1S and 1T).

    The quality of the CT image differed with the developmental stages of the tadpoles, with the rendering quality of the vertebrae improving with development stage. For example, the images of the vertebrae of the tadpoles at stage 40 were more complete and clearer than those at stage 27 (Figure 1B and 1J). Nevertheless, the results of the double-staining technique showed little association with developmental stage (Figure 1A, 1C and 1I).

    We also found that the degree of ossification of vertebrae varied with development stages within species and differed in species at the same stage. Normally, the later development stage is always with the higher degree of ossification within the species. That is, the bony staining color is redder in the higher degree of ossification of vertebrae in this study (Figure 1 from K to S).However, this trend seemed to be not true among species.For example, the degree of ossification of vertebrae inX.sangzhiensiswas higher than that inB. carinensisat the same developmental stage (Figure 1C and 1M), and even the degree of ossification of vertebrae inX. sangzhiensisat an early development stage was higher than that ofB.carinensisat a later development stage (Figure 1C and 1K). Similarly, the number of vertebrae changed with developmental stages. In general, the number of vertebrae increased first and then decreased within species (Figure 1 from L to K). However, there was a large variation among species, for instance, the number of vertebrae ofX. sangzhiensiswas more than that ofB. carinensisat the same developmental stage (Figure 1D and 1N).

    In addition, it was easy to obtain clear 3D images of a tadpole skeleton using micro-CT, such as the three directional views of the vertebrae of theX. sangzhiensistadpole and to acquire detailed information about the vertebrae without destroying the specimens (Figure 2).

    3.2. Factors affecting image qualityWe found that the voltage, current and scan time affected image quality.Generally, the image quality increased with increasing voltage (Figure 3A). For instance, at 30 kV, the micro-CT could not distinguish the vertebrae from polypropylene pipette tips (Figure 3, AI and A1), but at 70 kV, the vertebrae of the tadpole were clearly displayed. At 90 kV,the details of the vertebrae could be observed, but it was not possible to differentiate the vertebrae from ethanol(the CT values of the two objects were similar) (Figure 3,AIV and A4). Similar results were observed at different currents, but the impact of the current was less than that of the voltage setting. The image quality was similar under different currents when voltage and scan time were consistent (Figure 3B). Additionally, the image quality increased with scan time (from 8 s to 4 min), although the trend seemingly declined at 14 min (Figure 4IV).As shown in the results, the red arrows indicate that the boundaries of the vertebrae were more clearly displayed with increasing scan time (Figure 4 from 1 to 4), but the image quality did not be obviously improved after scanning for 14 min or longer (Figure 4V, 4VI, 4-5, 4-6).

    But beyond that, a stark difference in image quality was revealed between the two preservation methods(70% ethanol or 10% formalin); the image was sharper when the specimens were preserved in 70% ethanol(Figure 5). Furthermore, micro-CT could hardly discern the skulls of tadpoles preserved in formalin, suggesting that preservation has an important effect on scan image quality.

    4. Discussion

    The tadpole skeleton consists of cartilage and bone,but the cartilage accounts for a larger portion during metamorphosis (McDiarmid and Altig, 1999). During this stage, the vertebrae are primarily composed of cartilage with little or no calcium, most of which cannot be stained by alizarin red, so alcian blue or other dyes (such as methylene blue and toluidine blue) have been applied in the double-staining procedure to reveal cartilage in the last several decades (Depew, 2014; Dingerkus and Uhler, 1977; Dinggerkus, 1981; Hanken and Wassersug,1981; Kelly and Bryden, 1983; Redfernet al., 2007;Wassersug, 1976; Yamada, 1991). However, this most popular and traditional method is destructive and can distort specimens. Our results show that micro-CT can discern the bone and cartilage from other soft tissues and can produce a 3D image of the vertebrae, although it cannot directly distinguish bone from cartilage without the help of contrast agents. Moreover, it is non-invasive and can allow researchers to reuse specimens for different research purposes, which is especially important for rare species. Obviously, the method provides an alternative approach to study tadpole vertebrae.

    Figure 1 Comparison of the two methods for displaying tadpole vertebrae. The white backgrounds are the results of bone-cartilage doublestaining (upper), and the black backgrounds are the corresponding micro-CT results (lower) for the same specimens. Specimen cartilage was stained dark blue, and bone stained purplish red. All images present ventral views of the tadpoles. N represents the number of vertebrae. A, B,C, D, I and J: the tadpoles of B. carinensis; E , F, G and H: the tadpoles of A. shapingensis; and from K to T: the tadpoles of X. sangzhiensis.Scale bar: 5 mm.

    Table 1 Comparison of the two methods for examining the number of vertebrae in larval megophryids (Wilcoxon Signed-Rank test).

    Figure 2 Micro-CT representations of the skeletal anatomy of the X. sangzhiensis tadpole (stage 35). A and B: dorsal view of tadpole vertebrae. C and D: ventral view of tadpole vertebrae. E and F: lateral view of tadpole vertebrae. Left-side scale bar: 5 mm. Right-side scale bar: 2 mm.

    Figure 3 Renderings of the X. sangzhiensis tadpole (stage 34) vertebrae under different scanning voltages or currents. Left histograms(from I to IV) for each parameter show the distributions of voxel values on a relative linear scale. The X-axis represents the CT value (or voxel color table and opacity), and the Y-axis represents the voxel intensity. The ethanol and soft tissues background peak is marked by a solid vertical red line, and the mean of the object voxel distribution is marked by a solid vertical green line. The other peaks represent the voxel distributions of other objects, such as the peak to the left, which represents pore space and air. Images on the right (from 1 to 4) are the scanning results for each parameter. A) The effects of voltage on the scan image. From top to bottom, the respective parameters are 30 kV-88 μA-4 min, 50 kV-88 μA-4 min, 70 kV-88 μA-4 min and 90 kV-88 μA-4 min. B) The effects of current on scan image. From 1-4, the respective parameters are 90 kV-20 μA-4 min, 90 kV-40 μA-4 min, 90 kV-60 μA-4 min and 90 kV-80 μA-4 min. Scale bar: 5 mm.

    Figure 4 Renderings of the X. sangzhiensis tadpole (stage 34) vertebrae with different scan times. Left histogram (from I to VI) for each parameter shows the distribution of pixel grayscale values on a relative linear scale. The X-axis represents the CT value (or voxel color table and opacity), and the Y-axis represents the voxel intensity. The ethanol and soft tissues background peak is marked by a solid vertical red line, and the mean of the object voxel distribution is marked by a solid vertical green line. The other peaks represent the voxel distributions of other objects, such as the peak on the left, which represents pore space and air. The images on the right are the scanning results for each parameter. The red arrows indicate the boundary between the two vertebrae. From top to bottom, the respective parameters were 90 kV-88 μA-8 s, 90 kV-88 μA-18 s, 90 kV-88 μA-2 min, 90 kV-88 μA-4 min, 90 kV-88 μA-14 min and 90 kV-88 μA-57 min. Scale bar: 5 mm.

    In this study, micro-CT seemingly could not render cartilage located in the head and appendages, and we speculate that the densities of these cartilages are much less than those of vertebrae due to the lack of calcium.In particular, articular cartilage is mainly composed of proteoglycans, collagens and chondrocytes (Karhulaet al., 2017), whose densities are similar to those of other soft tissues, so micro-CT cannot distinguish them. In addition, the main skeleton of the head in a tadpole is chondrocranium which is a cartilaginous case that protects the brain and supports the sense and jaw apparatus (Cannatella, 1999). Based on the results of both double-staining and micro-CT, the skeleton of the head showed a later ossification time than the vertebrae.In fact, the head has not completely ossified at the end of metamorphosis climax. And, the first sign of appendicular skeletal development usually appears after stage 37 in megophryids (Handriganet al., 2007). Thus, it is more effective to study the vertebrae than other parts of the skeleton by micro-CT in megophryid tadpole.Furthermore, the scan image quality increases with developmental stage, mainly due to the different degrees of vertebral calcification. Scherzet al. (2015) reported that micro-CT scanning can nicely render highly calcified structures, especially bone, because tadpoles have relatively higher ossification levels at later developmental stages. So, micro-CT scanning is more suitable for tadpoles at later stages.

    Figure 5 Scanned images of A. shapingensis tadpoles (stage 37) stored in 70% ethanol (A) and in 10% formalin (B). Scale bar: 2 mm.

    Indeed, the non-mineralized structures (such as soft tissues) in small vertebrates or invertebrates can also be visualized by micro-CT with the help of contrast agents(Descampset al., 2014; Gignacet al., 2016; Metscher,2009a), such as PTA (1% (w/v) phosphotungstic acid in water) and IKI (1% iodine metal (I2) + 2% potassium iodide (KI) in water); Some soft tissues ofXenopus laevistadpoles have been successfully studied using micro-CT in combination with a contrast agent (PTA) (Descampset al., 2014; Metscher, 2009b). Thus, we can also combine with the contrast agent to explore the anatomy and osteology of tadpole when conducting CT scan.

    The degree of ossification of vertebrae has drastic variation among species at the same developmental stage. As shown in this study, the degree of ossification ofX. sangzhiensisat the same or an earlier stage was higher than that inB. carinensis. Meanwhile, the number of vertebrae in the former is much more than that in the latter. This difference may be mainly related to the heterochronous arrest of bony development. Trueb(1973) reported that heterochrony is operational in the maintenance of osteological differences between the sexes in hylids. E. M. T. Stephenson (1960) and N. G.Stephenson (1965) also argued that the heterochronous changes would result in some types of osteological differences among closely related species. Thus, we speculate that the degree of ossification of vertebrae varied with species also resulted from the heterochrony of bony development. Furthermore, axial and appendicular skeletal development usually starts in quick succession and then proceeds together in anurans (Maglia 2003).However, Handriganet al. (2007) found that much of vertebral column development occurred before the onset of ossification in the limbs in megophryids. We also revealed a similar phenomenon that the degree of ossification of vertebrae is different between species at the same developmental stage (or the same development level of the external limb). So, the Gosner staging table that is based primarily on limb development is not always an appropriate standard for all species as megophryid tadpole (Handriganet al., 2007).

    For tadpole scanning, the voltage played a key role among the scanning parameters, but it is inadvisable to choose an overly high or low voltage since these scanning parameters can increase the overlapping intensities between the void and solid phases, which will reduce the degree of differentiation. Similar results were observed when comparing different currents or scan time, so we recommend moderate scanning parameters(such as 70 kV-80 μA-4 min) when scanning tadpoles.In addition, micro-CT performed poorly when using specimens stored in formalin preservative because formalin can decalcify the skeleton, especially bone(Heyeret al., 1994), diminishing the contrast between the skeleton and soft tissues. Therefore, we suggest that specimens to scan should be preserved in 70% ethanol,or formalin preservative should be kept neutral to reduce decalcification.

    Bone-cartilage double-staining is a critical tool for evolutionary and developmental biologists to evaluate the ontogeny of the skeleton (Depew, 2009) because it can clearly distinguish differences between bone and cartilage. However, this process is time-consuming and complex, requires specialized chemicals, and is ultimately destructive to the specimens, preventing future uses(Hanken and Wassersug, 1981; Simons and Van Horn,1971; Wassersug, 1976; Williams, 1941). These issues are especially impactful for rare specimens that must be utilized for a variety of studies, but micro-CT can avoid these drawbacks due to its non-invasive nature. First, we can dissect tadpole vertebraein vivowithout damaging the samples, which is very important for preserving rare specimens. Second, it is convenient and efficient to scan a large number of samples. Furthermore, we can reconstruct a particular structure or slice(s) at a higher resolution(du Plessiset al., 2017). It is also possible to repeatedly change the scanning parameters until a satisfactory image is obtained, and the multiple output files (including video format) from micro-CT can be viewed using different software.

    5. Conclusion

    This study demonstrated that micro-CT is a rapid, noninvasive, reliable and efficient method for studying the vertebrae of tadpoles and can increase specimen utilization. Correspondingly, it also provides an alternative approach to study vertebrae in tadpole biology.Ethanol preservative and moderate scanning parameters are recommended in tadpole scan. Furthermore, we suggest that micro-CT, alone or in combination with bone-cartilage double-staining, be more widely applied in herpetological research to promote the development of the field.

    Acknowledgements The project is supported by the National Key Program of Research and Development,Ministry of Science and Technology (No. 2017YFC05 05202 granted to Jianping JIANG) and the National Natural Science Foundation of China (No. 31172055 granted to Cheng LI and No. 31172174 granted to Feng XIE). We are grateful to the Herpetological Museum of the Chengdu Institute of Biology for facilitating our examination of the specimens and to Nicholas C. WU for proof reading the manuscript.

    Boistel R., Swoger J., Kr?i? U., Fernandez V., Gillet B., Reynaud E. G. 2011. The future of three-dimensional microscopic imaging in marine biology. Mar Biol,32(4): 438–452

    Broeckhoven C., Plessis A., Roux S. G., Mouton P. L. F. N., Hui C. 2017. Beauty is more than skin deep: A non-invasive protocol for in vivo anatomical study using micro-CT. Methods Ecol Evol, 8(3): 358–369

    Campbell G. M., Sophocleous A. 2014. Quantitative analysis of bone and soft tissue by micro-computed tomography:Applications toex vivoandin vivostudies. Bonekey Rep, 3: 564

    Cannatella D. 1999. Architecture: Cranial and axial musculoskeleton. In McDiarmid R. W., Altig R. (Eds.), Tadpoles:the biology of anuran larvae. Chicago, USA: University of Chicago Press, 52–81

    Chao W., Harteneck B. D., Liddle J. A., Anderson E. H.,Attwood D. T. 2005. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046): 1210–1213

    Chen Y., Lin G., Chen Y., Fok A., Slack J. M. 2012. Microcomputed tomography for visualizing limb skeletal regeneration in youngXenopusfrogs. Anat Rec, 295(10): 1562–1565

    Depew M. J. 2009. Analysis of skeletal ontogenesis through differential staining of bone and cartilage. In Westendorf (Eds.),Molecular Embryology:Methods and Protocols. Totowa, USA:Humana Press. 37–4

    Descamps E., Buytaert J., De Kegel B., Dirckx J., Adriaens D.2012. A qualitative comparison of 3D visualization inXenopus laevisusing a traditional method and a non-destructive method.Belg J Zool, 142(2): 99–111

    Dingerkus G., Uhler L. D. 1977. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage.Stain Technol, 52: 229–232

    Dingerkus G. 1981. The use of various alcohols for Alcian blue in toto staining of cartilage. Stain Technol, 56: 128–129

    Dodd M. H. I., Dodd J. M. 1976. The biology of metamorphosis.Physiol Amphibia, 3: 467–599

    Du Plessis A., Broeckhoven C., Guelpa A., Le Roux S. G. 2017.Laboratory X-ray micro-computed tomography: A user guideline for biological samples. GigaScience, 6(6): 1–11

    Faulwetter S., Vasileiadou A., Kouratoras M., Dailianis T.,Arvanitidis C. 2013. Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys, 263: 1

    Fortuny J., Marcé-Nogué J., Heiss E., Sanchez M., Gil L.,Galobart à. 2015. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamanderAndrias davidianus(Amphibia: Urodela). PLoS One, 10(4):e0121885

    Gignac P. M., Kley N. J., Clarke J. A., Colbert M. W., Morhardt A. C., Cerio D., Cost I. N., Cox P. G., Daza J. D., Early C.M., Echols M. S., Henkelman R. M., Herdina A. N., Holliday C. M., Li Z., Mahlow K., Merchant S., Müller J., Orsbon C.P., Paluh D. J., Thies M. L., Tsai H. P., Echols M. S. 2016.Diffusible iodine based contrast enhanced computed tomography(diceCT): An emerging tool for rapid, high resolution, 3D imaging of metazoan soft tissues. J Anat, 228(6): 889–909

    Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3):183–190

    Handrigan G. R., Haas A., Wassersug R. J. 2007. Bony-tailed tadpoles: The development of supernumerary caudal vertebrae in larval megophryids (Anura). Evol Dev, 9(2): 190–202

    Hanken J., Wassersug R. 1981. The visible skeleton. Funct Photo,16(4): 22–26

    Heyer R., Donnelly M. A., Foster M., Mcdiarmid R. 1994.Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, USA: Smithsonian Institution Press. 289–297

    Karhula S. S., Finnil? M. A., Lammi M. J., Yl?rinne J. H.,Kauppinen S., Rieppo L., Pritzker K. P. H., Nieminen H. J.,Saarakkala S. 2017. Effects of articular cartilage constituents on phosphotungstic acid enhanced micro-computed tomography.PLoS One, 12(1): e0171075

    Kelly W. L., Bryden M. M. 1983. A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technol, 58:131–134

    Kim E., Sung H., Lee D., Kim G., Nam D., Kim E. 2017.Nondestructive skeletal imaging ofHyla suweonensisusing Micro-computed tomography. Asian Herpetol Res, 88(4): 235–243

    Lauridsen H., Hansen K., Wang T., Agger P., Andersen J. L.,Knudsen P. S., Maglia, A. M. 2003. Skeletal development ofPelobates cultripesand comparisons of the osteology of pelobatoid frogs. Sci Pap Univ Kansas Nat Hist Mus, 30: 1–13

    McDiarmid R. W., Altig R. 1999. Tadpoles: the biology of anuran larvae. Chicago, USA: University of Chicago Press. 52–90

    Metscher B. D. 2009a. MicroCT for developmental biology:A versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn, 238(3): 632–640

    Metscher B. D. 2009b. MicroCT for comparative morphology:simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physio, 9(1): 11

    Mizutani R., Suzuki Y. 2012. X-ray microtomography in biology.Micron, 43(2): 104–115

    Parapar J., Candás M., Cunha-Veira X., Moreira J. 2017.Exploring annelid anatomy using micro-computed tomography:A taxonomic approach. Zool Anz, 270: 19–42

    Porro L. B., Richards C. T. 2017, Digital dissection of the model organismXenopus laevisusing contrast-enhanced computed tomography. J Anat, 231: 169–191

    Rasmussen A. S., Uhrenholt L., Pedersen M. 2011. Inside out:modern imaging techniques to reveal animal anatomy. PLoS One, 6(3): e17879

    Redfern B. G., David W. L., Spence S. 2007. An alternative Alcian blue dye variant for the evaluation of fetal cartilage. Birth Defects Res B,80(3): 171–176

    Ritman E. L. 2004. Micro-computed tomography–current status and developments. Annu Rev Biomed Eng, 6: 185–208

    Ritman E. L. 2011. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng, 13: 531–552

    Ro?ková H., Ro?ek Z. 2005. Development of the pelvis and posterior part of the vertebral column in the Anura. J Anat,206(1): 17–35

    R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org (accessed 28 September 2017).

    Scherrer R., Hurtado A., Machado E. G., Debiais-Thibaud M. 2017. MicroCT survey of larval skeletal mineralization in the Cuban garAtractosteus tristoechus(Actinopterygii;Lepisosteiformes). MorphoMuseuM, 3(3):e3

    Scherz M. D., Ruthensteiner B., Vences M., Glaw F. 2014. A new microhylid frog, genusRhombophryne, from northeastern Madagascar, and a re-description ofR. serratopalpebrosausing micro-computed tomography. Zootaxa, 3860(6): 547–560

    Scherz M. D., Ruthensteiner B., Vieites D. R., Vences M., Glaw F. 2015. Two new microhylid frogs of the genusRhombophrynewith superciliary spines from the Tsaratanana Massif in northern Madagascar. Herpetologica, 71(4): 310–321

    Sephenson M. T. 1960. The skeletal characters of Leiopelma harniltoni McCulloch, with particular reference to the effects of heterochrony on the genus. Trans Roy Soc, 88 (3): 473–488

    Sephenson N. G. 1965. Heterochronous changes among Australian leptodactylid frogs. Proc Zod Soc, 144 (3): 339–350

    Simons E. V., Van Horn J. R. 1971. A new procedure for wholemount Alcian blue staining of the cartilaginous skeleton of chicken embryos, adapted to the clearing procedure in potassium hydroxide. Acta Morphol Neerl-Scand, 8: 281–292

    Trueb L. 1973. Bones, frogs, and evolution. In Vial J. L. (Eds.)Evolutionary biology of anurans. Columbia: University of Missouri Press, 65–132

    Vasquez S. X., Hansen M. S., Bahadur A. N., Hockin M. F.,Kindlmann G. L., Nevell L., Isabel Q. Wu., David J. G.,David M. W., Greg M. J., Christopher R. J., Johnl L. V.,Mario R. C., Johnson C. R. 2008. Optimization of volumetric computed tomography for skeletal analysis of model genetic organisms. Anat Rec. 291(5): 475–487

    Wassersug R. J. 1976. A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technol, 51(2): 131–134

    Williams T. W. 1941. Alizarin red S and toluidine blue for differentiating adult or embryonic bone and cartilage. Stain Technol, 16: 23–25

    Yamada T. 1991. Selective staining methods for cartilage of rat fetal specimens previously treated with alizarin red S.Teratology, 43(6): 615–619

    Zhang M., Chen X., Chen X. 2016. Osteology ofQuasipaa robertingeri(Anura: Dicroglossidae). Asian Herpetol Res, 7(4):242–250

    亚洲av免费高清在线观看| 免费观看在线日韩| 亚洲欧美成人综合另类久久久| 色综合站精品国产| 亚洲精品国产av成人精品| 亚洲成人一二三区av| 国产色婷婷99| 国产成人精品久久久久久| 亚洲欧美成人综合另类久久久| 免费大片18禁| 日韩 亚洲 欧美在线| 免费黄网站久久成人精品| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 亚洲最大成人av| 精品一区二区三区视频在线| 国产成人精品一,二区| 免费无遮挡裸体视频| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 又爽又黄无遮挡网站| 精品久久久久久久人妻蜜臀av| 精品熟女少妇av免费看| 亚洲av福利一区| 国模一区二区三区四区视频| 午夜精品国产一区二区电影 | 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 全区人妻精品视频| 一级毛片 在线播放| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品片| 国产欧美日韩精品一区二区| 日韩一本色道免费dvd| 国产精品一区二区三区四区久久| 好男人在线观看高清免费视频| 午夜久久久久精精品| 色综合色国产| 亚洲国产av新网站| 插阴视频在线观看视频| 成人美女网站在线观看视频| 亚洲欧美精品自产自拍| 一边亲一边摸免费视频| 乱系列少妇在线播放| 99热这里只有是精品50| 美女脱内裤让男人舔精品视频| 欧美bdsm另类| 一区二区三区免费毛片| 久久草成人影院| 亚洲不卡免费看| 99久久九九国产精品国产免费| 日本午夜av视频| 超碰av人人做人人爽久久| 国产亚洲一区二区精品| 99久久精品一区二区三区| 边亲边吃奶的免费视频| 激情 狠狠 欧美| 亚洲精品第二区| 青春草视频在线免费观看| 国产免费福利视频在线观看| 日韩强制内射视频| 国产精品伦人一区二区| 人人妻人人澡人人爽人人夜夜 | 99热这里只有是精品在线观看| 免费观看精品视频网站| 日韩国内少妇激情av| 麻豆成人av视频| 久久精品久久久久久久性| a级毛色黄片| 午夜精品国产一区二区电影 | 一二三四中文在线观看免费高清| 亚洲精品影视一区二区三区av| 国产精品久久视频播放| 国产淫片久久久久久久久| 色视频www国产| 中文字幕人妻熟人妻熟丝袜美| 日韩电影二区| 国产午夜精品论理片| 免费看不卡的av| 亚洲高清免费不卡视频| 欧美成人a在线观看| 国语对白做爰xxxⅹ性视频网站| 男人爽女人下面视频在线观看| 成人性生交大片免费视频hd| 国产69精品久久久久777片| 国产在线一区二区三区精| 久久精品熟女亚洲av麻豆精品 | 日本黄大片高清| 神马国产精品三级电影在线观看| 国产精品av视频在线免费观看| 久久人人爽人人爽人人片va| 日本av手机在线免费观看| 日韩欧美精品免费久久| 老女人水多毛片| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 亚洲综合精品二区| 国产成人精品一,二区| 日韩欧美 国产精品| 亚洲欧洲日产国产| 最近的中文字幕免费完整| 人人妻人人看人人澡| 国产亚洲5aaaaa淫片| 偷拍熟女少妇极品色| 婷婷色av中文字幕| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| 久久久久国产网址| 亚洲真实伦在线观看| 综合色丁香网| 女的被弄到高潮叫床怎么办| 日本熟妇午夜| 成人国产麻豆网| 欧美日韩国产mv在线观看视频 | 中文乱码字字幕精品一区二区三区 | 色网站视频免费| 国产精品一及| 国内精品宾馆在线| 精品国内亚洲2022精品成人| 日韩av在线免费看完整版不卡| 搡老乐熟女国产| 国产69精品久久久久777片| 黄色一级大片看看| 久久久久久伊人网av| 日韩亚洲欧美综合| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 少妇裸体淫交视频免费看高清| 中文字幕免费在线视频6| .国产精品久久| 七月丁香在线播放| 亚洲最大成人手机在线| 精品久久久久久久人妻蜜臀av| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 九九爱精品视频在线观看| 亚洲成人av在线免费| 亚洲自偷自拍三级| 国产成人aa在线观看| 国产精品99久久久久久久久| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 色尼玛亚洲综合影院| 国产免费一级a男人的天堂| 91久久精品国产一区二区三区| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 深夜a级毛片| 嫩草影院入口| 国产在线一区二区三区精| 亚洲国产日韩欧美精品在线观看| 精华霜和精华液先用哪个| av一本久久久久| 人妻少妇偷人精品九色| 国产午夜精品论理片| 亚洲怡红院男人天堂| 大香蕉97超碰在线| 亚洲人成网站在线观看播放| 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 成人一区二区视频在线观看| 免费看a级黄色片| av卡一久久| 亚洲av成人精品一区久久| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频 | 人妻夜夜爽99麻豆av| 免费看美女性在线毛片视频| 日本三级黄在线观看| 91久久精品电影网| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 久久精品人妻少妇| 国产高清有码在线观看视频| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 69av精品久久久久久| 天堂网av新在线| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 国产精品久久久久久久久免| 五月天丁香电影| 一级a做视频免费观看| 一级毛片久久久久久久久女| 春色校园在线视频观看| 成人二区视频| 国产又色又爽无遮挡免| 免费观看av网站的网址| 一级毛片 在线播放| 久久韩国三级中文字幕| 色视频www国产| 久久久久久久亚洲中文字幕| 老司机影院毛片| av国产免费在线观看| 深爱激情五月婷婷| 99热这里只有是精品在线观看| 中文资源天堂在线| 国产精品久久久久久精品电影| 少妇人妻精品综合一区二区| 成年版毛片免费区| 丰满乱子伦码专区| 精品久久久久久成人av| ponron亚洲| 免费观看无遮挡的男女| 成人欧美大片| 亚洲欧洲国产日韩| 日韩 亚洲 欧美在线| 一个人看的www免费观看视频| 国产精品日韩av在线免费观看| 中文字幕免费在线视频6| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩电影二区| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 免费黄网站久久成人精品| 91午夜精品亚洲一区二区三区| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 色网站视频免费| 乱人视频在线观看| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区| 一区二区三区乱码不卡18| 色5月婷婷丁香| 国产成年人精品一区二区| 欧美日韩亚洲高清精品| 永久免费av网站大全| 观看美女的网站| 久久精品熟女亚洲av麻豆精品 | 男插女下体视频免费在线播放| 国产伦一二天堂av在线观看| 国产一区二区亚洲精品在线观看| 色视频www国产| 身体一侧抽搐| 久久6这里有精品| 国产在线男女| 国产成人免费观看mmmm| 婷婷色av中文字幕| 国产爱豆传媒在线观看| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 97热精品久久久久久| 欧美人与善性xxx| 亚洲内射少妇av| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 禁无遮挡网站| 国产精品.久久久| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 中文欧美无线码| 精品人妻熟女av久视频| 欧美日韩综合久久久久久| 国产精品女同一区二区软件| 欧美一级a爱片免费观看看| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 日本-黄色视频高清免费观看| 亚洲国产精品成人综合色| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 如何舔出高潮| 日韩精品青青久久久久久| 2021少妇久久久久久久久久久| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 亚洲国产av新网站| 国产v大片淫在线免费观看| 亚洲av国产av综合av卡| 国内精品宾馆在线| av福利片在线观看| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 97超视频在线观看视频| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 日本午夜av视频| 久久精品国产亚洲网站| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 九草在线视频观看| 免费大片18禁| 免费av观看视频| 九色成人免费人妻av| 最近最新中文字幕大全电影3| 亚洲欧洲国产日韩| 如何舔出高潮| av播播在线观看一区| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 我要看日韩黄色一级片| 午夜视频国产福利| 亚洲av成人av| 老女人水多毛片| 亚洲国产av新网站| 亚洲人成网站在线播| 深夜a级毛片| 成人性生交大片免费视频hd| 你懂的网址亚洲精品在线观看| 丰满人妻一区二区三区视频av| a级毛色黄片| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 狠狠精品人妻久久久久久综合| 美女大奶头视频| 美女高潮的动态| 亚洲激情五月婷婷啪啪| 熟女人妻精品中文字幕| 国产高潮美女av| 好男人在线观看高清免费视频| 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 深爱激情五月婷婷| 久久亚洲国产成人精品v| 国产精品日韩av在线免费观看| 国产淫语在线视频| 久久久国产一区二区| 精品久久久噜噜| 国产精品久久久久久精品电影| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 国产 一区精品| 成人二区视频| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 欧美潮喷喷水| 91av网一区二区| 一本久久精品| 中国美白少妇内射xxxbb| 亚洲欧美成人综合另类久久久| 久久精品夜色国产| 欧美最新免费一区二区三区| 97在线视频观看| 又爽又黄a免费视频| 久久久午夜欧美精品| 大片免费播放器 马上看| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 亚洲人与动物交配视频| 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 乱码一卡2卡4卡精品| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 国产午夜精品论理片| 舔av片在线| 人人妻人人看人人澡| 国产高清国产精品国产三级 | 免费少妇av软件| 国产精品一区二区三区四区久久| 日韩视频在线欧美| 精品久久久久久久久av| 日韩欧美一区视频在线观看 | 亚洲在久久综合| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 午夜亚洲福利在线播放| 看免费成人av毛片| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频 | 久久久久久久久久久免费av| 精品久久久久久久末码| 久久久久久久久久人人人人人人| 国模一区二区三区四区视频| 国产有黄有色有爽视频| 99久久精品国产国产毛片| 精品一区二区三区人妻视频| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 韩国高清视频一区二区三区| 街头女战士在线观看网站| 成人鲁丝片一二三区免费| 日本午夜av视频| 免费黄网站久久成人精品| www.色视频.com| 乱码一卡2卡4卡精品| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 亚洲精品国产成人久久av| 亚洲无线观看免费| 啦啦啦中文免费视频观看日本| 成年版毛片免费区| 插阴视频在线观看视频| 成人毛片60女人毛片免费| 国产麻豆成人av免费视频| av在线观看视频网站免费| 国产一级毛片在线| 国产伦精品一区二区三区视频9| av线在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 97热精品久久久久久| 熟女电影av网| 国产精品久久久久久精品电影小说 | 天堂av国产一区二区熟女人妻| or卡值多少钱| 欧美激情国产日韩精品一区| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃 | 亚洲人成网站高清观看| 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 只有这里有精品99| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 久久久国产一区二区| 国产精品人妻久久久久久| 亚洲精品久久午夜乱码| 精品国产一区二区三区久久久樱花 | freevideosex欧美| 欧美日韩亚洲高清精品| 97超视频在线观看视频| 人人妻人人看人人澡| 一夜夜www| 成人亚洲精品一区在线观看 | 国产av不卡久久| 久久久精品免费免费高清| 一级毛片久久久久久久久女| 波野结衣二区三区在线| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 国产不卡一卡二| 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| 夫妻午夜视频| 99热这里只有是精品50| 搡女人真爽免费视频火全软件| 国产v大片淫在线免费观看| 日韩欧美精品v在线| 综合色丁香网| 天天一区二区日本电影三级| 卡戴珊不雅视频在线播放| 搞女人的毛片| 国产高清国产精品国产三级 | 久久久精品94久久精品| 日韩电影二区| 麻豆国产97在线/欧美| 99久久精品一区二区三区| 久久久久久国产a免费观看| 亚洲在线观看片| 国产欧美另类精品又又久久亚洲欧美| 亚洲在线观看片| 九色成人免费人妻av| 久久精品熟女亚洲av麻豆精品 | 久久久久性生活片| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| 免费高清在线观看视频在线观看| a级毛色黄片| 日韩欧美精品v在线| 国产一级毛片在线| 国产真实伦视频高清在线观看| 99热全是精品| 亚洲乱码一区二区免费版| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 国产成人aa在线观看| 22中文网久久字幕| 丝袜美腿在线中文| 青春草视频在线免费观看| 男人舔女人下体高潮全视频| 成人性生交大片免费视频hd| 亚洲成色77777| 舔av片在线| 日本一本二区三区精品| 欧美精品一区二区大全| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 欧美日韩亚洲高清精品| 国产精品久久久久久久电影| 精品午夜福利在线看| 国产中年淑女户外野战色| 亚洲av二区三区四区| 国产视频首页在线观看| 亚洲图色成人| 免费观看在线日韩| 亚洲av一区综合| 久久精品国产亚洲av天美| 国产高潮美女av| 美女xxoo啪啪120秒动态图| 伊人久久国产一区二区| 亚洲电影在线观看av| 日韩强制内射视频| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 久久久久久久午夜电影| 国产91av在线免费观看| av天堂中文字幕网| 国产高清国产精品国产三级 | 高清欧美精品videossex| 精品国产一区二区三区久久久樱花 | 老师上课跳d突然被开到最大视频| 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 人妻夜夜爽99麻豆av| 在线 av 中文字幕| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 老师上课跳d突然被开到最大视频| 九九久久精品国产亚洲av麻豆| 欧美极品一区二区三区四区| 亚洲欧洲国产日韩| 国产在线一区二区三区精| 国产成人91sexporn| 亚洲av在线观看美女高潮| 亚洲美女视频黄频| 精品久久久久久久久久久久久| 日韩大片免费观看网站| 一级爰片在线观看| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 久99久视频精品免费| 汤姆久久久久久久影院中文字幕 | 日韩一区二区视频免费看| av一本久久久久| 久久久久久久久久成人| 少妇猛男粗大的猛烈进出视频 | 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说| 精品人妻偷拍中文字幕| 久久久久性生活片| 日韩欧美精品v在线| 国产精品综合久久久久久久免费| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 在现免费观看毛片| 国产免费一级a男人的天堂| 国产麻豆成人av免费视频| 岛国毛片在线播放| 午夜福利在线观看吧| 免费观看在线日韩| 国产片特级美女逼逼视频| 永久免费av网站大全| 欧美xxxx性猛交bbbb| 日本与韩国留学比较| 欧美3d第一页| 91av网一区二区| 如何舔出高潮| 精品国产三级普通话版| 日韩欧美国产在线观看| xxx大片免费视频| 国产欧美日韩精品一区二区| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 国产在视频线在精品| 搡老乐熟女国产| 亚洲欧美精品自产自拍| 中文字幕亚洲精品专区| 精品久久久久久久久av| 一个人看的www免费观看视频| a级毛色黄片| 五月玫瑰六月丁香| 久久久久久久久久久免费av| 久久99热6这里只有精品| 国产av不卡久久| 人人妻人人澡人人爽人人夜夜 | .国产精品久久| 干丝袜人妻中文字幕| 天堂√8在线中文| 波野结衣二区三区在线| 免费看av在线观看网站| 亚洲欧洲日产国产| 在线天堂最新版资源| 亚洲av不卡在线观看|