程振峰,李寶毅,張永康
(天津師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,天津300387)
分段光滑線性系統(tǒng)廣泛應(yīng)用于機(jī)械學(xué)、電子工程學(xué)和自動(dòng)化理論等領(lǐng)域.為了估計(jì)2個(gè)區(qū)域的分段光滑線性Hamilton系統(tǒng)在擾動(dòng)下的極限環(huán)個(gè)數(shù),文獻(xiàn)[1]證明了焦點(diǎn)-焦點(diǎn)型、焦點(diǎn)-拋物型和拋物-拋物型的分段線性系統(tǒng)至少存在2個(gè)極限環(huán).文獻(xiàn)[2]研究了分段多項(xiàng)式系統(tǒng)
其中:b±>0;和為任意n次多項(xiàng)式.證明了該系統(tǒng)最多存在n個(gè)極限環(huán).文獻(xiàn)[3]研究了分段光滑線性系統(tǒng)
其中和為任意n次多項(xiàng)式.證明了該系統(tǒng)至少存在n+[(n+1)/2]個(gè)極限環(huán).文獻(xiàn)[4-5]分別構(gòu)造了2種分段光滑二次系統(tǒng),并證明了系統(tǒng)至少Hopf分支出5個(gè)和9個(gè)極限環(huán).
本文研究分段光滑近Hamilton系統(tǒng)
其中:a、b、c∈R+;x0∈R;0 < ε?1;n∈N+;
當(dāng)ε=0時(shí),(1)0的分段Hamilton函數(shù)為
其中:;h-∈R-.此時(shí)分段光滑Hamilton系統(tǒng)(1)0存在逆時(shí)針走向的周期閉軌族,
由于H+(x,y)關(guān)于x軸對(duì)稱,故可設(shè)與負(fù)y軸的交點(diǎn)為A(0,-u),與正y軸的交點(diǎn)為A1(0,u),其中u=.對(duì)應(yīng)的,故與正y軸的交點(diǎn)為A1(0,u),與負(fù)y軸的交點(diǎn)為 A(0,-u).本文得到如下定理.
定理當(dāng)x0=0時(shí),系統(tǒng)(1)ε極限環(huán)個(gè)數(shù)的上界為n+[(n+1)/2];當(dāng)x0≠0時(shí),系統(tǒng)(1)ε極限環(huán)個(gè)數(shù)的上界為n-1+2[(n+1)/2].
設(shè)H+(x,y)=-v2,其中.設(shè) α =arccos(-x0/av),則的參數(shù)方程可設(shè)為
設(shè)的參數(shù)方程為
引理1[6]系統(tǒng)(1)ε的一階Melnikov函數(shù)為
證明顯然K0=2α,K1=2sin α=2u/v,則
整理可得Km+2=(m+1)Km/(m+2)+2u(-x0)m+1/((m+2)am+1·vm+2).證畢.
命題1設(shè)ξ=[n/2],η=[(n-1)/2],當(dāng)x≥0時(shí),系統(tǒng)(1)ε的 Melnikov函數(shù)為
其中和分別表示關(guān)于v2的系數(shù)獨(dú)立的ξ和η次多項(xiàng)式.
所以
使用數(shù)學(xué)歸納法.當(dāng)n=1時(shí),
易知兩項(xiàng)系數(shù)獨(dú)立,滿足命題1的結(jié)論.當(dāng)n=2時(shí),考慮增加項(xiàng),有
其中兩項(xiàng)系數(shù)獨(dú)立,滿足命題1的結(jié)論.
假設(shè)當(dāng)n=2k(k∈N*)時(shí)結(jié)論成立,則當(dāng)n=2k+1時(shí),有
所以增加項(xiàng)為Av2k+2α,即當(dāng)n=2k+1時(shí)命題1成立.
假設(shè)當(dāng)n=2k+1(k∈N*)時(shí)結(jié)論成立,則當(dāng)n=2k+2時(shí),有
命題2當(dāng)x<0時(shí),系統(tǒng)(1)ε的Melnikov函數(shù)為,其中為系數(shù)獨(dú)立的u2的n次多項(xiàng)式,n∈N*.
設(shè),則有
因?yàn)?3≤2i+(j+1)+1≤2i+2j+1=2n+1,所以
其中fn(u2)是關(guān)于u2的n次多項(xiàng)式,且n≥1.
命題2得證.
由引理1、命題1和命題2可得系統(tǒng)(1)ε的一階Melnikov函數(shù)為
令,則
當(dāng)x0=0時(shí),α=π/2,因此M1(h)=u(Fn(u2)+uGη(u2)·π/2).因?yàn)閡>0,所以M1(h)=0等價(jià)于Fn(u2)+uGη(u2)·π/2=0,設(shè)
當(dāng)x0≠0時(shí),M1(h)=0等價(jià)于
式(2)對(duì)u求導(dǎo),整理后可得
其中:.上面方程至多有n+η+1=n+[(n+1)/2]個(gè)零點(diǎn).注意到式(2)右端分母至多有η個(gè)正零點(diǎn),由文獻(xiàn)[8]可得M1(h)至多存在n+2[(n+1)/2]個(gè)正零點(diǎn).由于u>0,且當(dāng)u=0時(shí)M1(h)=0,所以M1(h)正零點(diǎn)個(gè)數(shù)的上界是n+2[(n+1)/2]-1.故當(dāng)x0≠0時(shí)系統(tǒng)(1)ε極限環(huán)個(gè)數(shù)的上界是n+2[(n+1)/2]-1.
[1]HAN M A,ZHANG W N.On Hopf bifurcation in nonsmooth planar systems[J].JournalofDifferentialEquations,2010,248(9):2399-2416.
[2]LIU X,HAN M A.Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems[J].International Journal of Bifurcation and Chaos,2010,20(5):1379-1390.
[3]LIANG F,HAN M A,ROMANOVSKI V G.Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian systems with a homoclinic loop[J].Nonlinear Analysis,2012,75(11):4355-4374.
[4]GASULL A,TORREGROSA J.Center-focus problem for discontinuous planar differential equations[J].International Journal of Bifurcation and Chaos,2003,13(7):1755-1765.
[5]CHEN X W,DU Z D.Limit cycles bifurcate from centers of discontinuous quadratic systems[J].Computer Mathematics with Applications,2010,59(12):3836-3848.
[6]LIANG F,HAN M A.Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth system[J].Chaos Solitons and Fractals,2006,28(4):454-464.
[7]張蓉蓉,李寶毅,張永康.一類平面分段光滑二次系統(tǒng)的極限環(huán)個(gè)數(shù)[J].天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,37(5):7-10.ZHANG R R,LI B Y,ZHANG Y K.Number of limit cycles for a class of planar piecewise smooth quadratic systems[J].Journal of Tianjin Normal University(Natural Science Edition),2017,37(5):7-10(in Chinese).
[8]趙凌燕,李寶毅.羅爾定理的推廣及其應(yīng)用[J].天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,36(4):6-9.ZHAO L Y,LI B Y.Promotion of Rolle theorem and it′s application[J].Journal of Tianjin Normal University(Natural Science Edition),2016,36(4):6-9(in Chinese).