劉希強(qiáng),張涵,龔攀,宮文龍,王贊
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
【研究意義】紫花苜蓿(Medicago sativaL.)是重要的多年生豆科牧草,具有生產(chǎn)潛力大,營(yíng)養(yǎng)價(jià)值高、適應(yīng)性廣等特點(diǎn)[1-2],不論用來青飼、青貯、干草,還是放牧,都是最經(jīng)濟(jì)可靠的優(yōu)質(zhì)蛋白飼料來源[3],在畜牧業(yè)發(fā)展、農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整和生態(tài)文明建設(shè)中具有重要的地位與作用。次生壁(secondary cell wall,SCW)是植物細(xì)胞停止生長(zhǎng)后,由纖維素、半纖維素和木質(zhì)素等物質(zhì)在初生壁內(nèi)側(cè)沉積形成有規(guī)則的疏水性網(wǎng)絡(luò)結(jié)構(gòu)[4]。LI[5]和 KOKUBO[6]等研究表明細(xì)胞壁會(huì)顯著影響水稻、大麥等作物的莖稈強(qiáng)度,與作物的產(chǎn)量,抗逆性和抗脅迫性直接相關(guān)。因此,探究紫花苜蓿次生壁的合成調(diào)控對(duì)提高其產(chǎn)量和品質(zhì)具有重要意義?!厩叭搜芯窟M(jìn)展】近十幾年來,關(guān)于次生壁合成調(diào)控的研究取得了顯著進(jìn)展,NAC(NAM、ATAF1/2、CUC2)結(jié)構(gòu)域轉(zhuǎn)錄因子和MYB(MYELOBLASTOSIS)結(jié)構(gòu)域轉(zhuǎn)錄因子是調(diào)控維管組織導(dǎo)管細(xì)胞和纖維細(xì)胞次生壁合成的轉(zhuǎn)錄開關(guān)因子[7-8]。NAC結(jié)構(gòu)域轉(zhuǎn)錄因子有 VASCULARRELATED NAC DOMAIN1-7(VND1-7)[9]、NAC SECONDARY WALL THICKENING PROMOTING(NST1)、NST2和SECONDARY WALL-ASSOCIATED NAC DOMAIN 1(SND1)[10-12]。MYB家族轉(zhuǎn)錄因子中有很多成員是次生壁合成網(wǎng)絡(luò)的次級(jí)調(diào)控因子,大部分處于NAC轉(zhuǎn)錄因子的下游,其中MYB46[13]和MYB83[14]被NAC轉(zhuǎn)錄因子直接調(diào)控。NAC轉(zhuǎn)錄因子和 MYB轉(zhuǎn)錄因子形成分層級(jí)的調(diào)控網(wǎng)絡(luò)作用于纖維素、半纖維素和木質(zhì)素合成基因,調(diào)控細(xì)胞壁的次生加厚過程[15]。【本研究切入點(diǎn)】目前,次生壁合成調(diào)控網(wǎng)絡(luò)在百日草(Zinnia elegans)、擬南芥(Arabidopsis thaliana)等模式植物中闡釋比較清晰[9,16],但在非模式植物中研究很少。紫花苜蓿是一種高度雜合的同源四倍體植物,自交不親和,遺傳背景十分復(fù)雜,且全基因組測(cè)序尚未完成,通過傳統(tǒng)分子生物學(xué)方法逐一地對(duì)次生壁合成調(diào)控網(wǎng)絡(luò)中涉及的大量基因進(jìn)行研究,效率低,難度大。利用高通量轉(zhuǎn)錄組測(cè)序(RNA-Seq)能夠全面快速地獲取紫花苜蓿莖在不同生長(zhǎng)發(fā)育時(shí)期的幾乎所有轉(zhuǎn)錄本信息并且不需要其基因組信息[17],可系統(tǒng)分析次生壁發(fā)育相關(guān)的基因網(wǎng)絡(luò)變化?!緮M解決的關(guān)鍵問題】本研究通過對(duì)紫花苜蓿不同發(fā)育時(shí)期的莖樣本進(jìn)行RNA-Seq,深入研究與次生壁加厚密切相關(guān)的纖維素、木質(zhì)素合成基因和轉(zhuǎn)錄因子在紫花苜蓿分枝期、現(xiàn)蕾期、初花期和盛花期的表達(dá)情況,以期比較全面地了解紫花苜蓿次生壁合成的基因網(wǎng)絡(luò)變化和表達(dá)模式,為紫花苜蓿次生壁合成調(diào)控網(wǎng)絡(luò)的分子機(jī)制研究奠定基礎(chǔ),同時(shí)為紫花苜蓿品質(zhì)和產(chǎn)量性狀的分子遺傳改良提供參考基因資源。
材料為‘中苜1號(hào)’紫花苜蓿(Medicago sativaL.cv. ‘Zhongmu No.1’),由中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所提供。2015年7月于中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所昌平基地取單株‘中苜1號(hào)’莖枝若干,在人工氣候室扦插培養(yǎng)(光照強(qiáng)度>450 μmol·m-2;溫度25℃;16 h光照/8 h黑暗;空氣濕度60%—80%),將扦插成活的植株移栽至昌平基地。2016年4月開始觀測(cè)記錄‘中苜1號(hào)’扦插材料的生長(zhǎng)發(fā)育時(shí)期,在中國(guó)苜蓿生育期劃分的基礎(chǔ)上結(jié)合美國(guó)單株苜蓿生育階段劃分標(biāo)準(zhǔn)[18]確認(rèn)試驗(yàn)材料的生長(zhǎng)時(shí)期。分別采集紫花苜蓿分枝期(S1,株高 16—25 cm,無花蕾)、現(xiàn)蕾期(S2,1個(gè)或2個(gè)花芽有花蕾,無花和莢果)、初花期(S3,僅有一個(gè)花芽開花,無莢果)和盛花期(S4,不少于 2個(gè)花芽完全開花)的主莖,頂部和基部各去除3節(jié),保留莖中部。每個(gè)時(shí)期的莖樣設(shè)3次生物學(xué)重復(fù),取樣后立即置于液氮中速凍,保存于-80℃冰箱。用于物質(zhì)含量測(cè)定的莖樣65℃烘箱烘干,粉碎,過70目篩,收集待用。
采用FOSS5000近紅外光譜快速品質(zhì)分析儀(丹麥FOSS公司),儀器光源為鹵鎢燈,硫化鉛探測(cè)器,譜區(qū)范圍:1 100—2 500 nm。光譜間隔2 nm,掃描次數(shù)32次。每個(gè)樣品設(shè)置3次重復(fù),放入分析儀檢測(cè)盒中進(jìn)行光譜掃描,利用建立的紫花苜蓿近紅外檢測(cè)模型,獲取樣品NDF(中性洗滌纖維)、ADF(酸性洗滌纖維)、Lignin(木質(zhì)素)、ASH(灰分、無機(jī)物)和DM(干物質(zhì))成分含量。纖維素含量=ADF-ASHLignin[19]。
采用Trizol試劑(購于Invitrogen公司)提取‘中苜1號(hào)’莖的總RNA。通過1%的瓊脂糖凝膠電泳檢測(cè)總RNA的完整性,使用Agilent Bioanalyzer 2100 system對(duì)RNA精確質(zhì)檢。將檢測(cè)合格的總RNA送至北京諾禾致源科技股份有限公司測(cè)序,構(gòu)建cDNA文庫,在Illumina HiSeqTM2500測(cè)序儀上進(jìn)行測(cè)序,輸出數(shù)據(jù)為pair-end序列(2×150 bp)。
測(cè)序輸出數(shù)據(jù)為原始序列(raw reads),對(duì)原始序列進(jìn)行質(zhì)控(QC),經(jīng)過濾去除接頭序列和低質(zhì)量序列得到干凈序列(clean reads),以FASTQ文件格式存儲(chǔ)。以紫花苜蓿的近緣物種蒺藜苜?;蚪M(http://www.medicagogenome.org/ downloads)作為參考基因組,利用軟件HISAT2(v2.2.0.4)將clean reads比對(duì)到參考基因組序列,使用 Cufflinks[20](v2.1.1)軟件將比對(duì)結(jié)果組裝構(gòu)建轉(zhuǎn)錄本,選擇最完整的轉(zhuǎn)錄本作為Unigene。使用Blast(v2.2.28)將Unigene序列與Nr(NCBI non-redundant protein sequences)、Nt(NCBI nucleotide sequences)、MTGD(Medicago truncatulaGenome Database)、KOG(euKaryotic Ortholog Groups)等公共數(shù)據(jù)庫比對(duì),匹配率≥80%且E-value≤1E-5,獲取Unigene注釋信息。本研究所有基因注釋ID都以蒺藜苜?;蚪M基因ID表示。
通過FPKM法計(jì)算基因表達(dá)量,得到的FPKM值可直接用來表示基因的表達(dá)水平[21]。參照 AUDIC等[22]方法,以Fold change(差異表達(dá)倍數(shù))≥2或≤0.5(表達(dá)上調(diào)或下調(diào)),F(xiàn)DR(False discover rate)≤0.05為篩選條件,在3個(gè)相鄰時(shí)期轉(zhuǎn)錄組比較組合中(S2 VS S1,S3 VS S2,S4 VS S3)選取差異表達(dá)基因。FDR值越小,表達(dá)差異越顯著。利用 TopGO(v2.10.0)軟件在GO(Gene Ontology)數(shù)據(jù)庫中對(duì)差異表達(dá)基因進(jìn)行富集和功能注釋;同時(shí)利用KOBAS(v2.0.12)軟件在 KEGG(Kyoto Encyclopedia of Genes and Genomes)數(shù)據(jù)庫中搜索差異表達(dá)基因的 KEGG注釋信息[23],確定差異表達(dá)基因參與的代謝途徑。
隨機(jī)選擇 8個(gè)與次生壁加厚相關(guān)的差異表達(dá)基因,利用 Primer-NCBI在線設(shè)計(jì)引物(表1),進(jìn)行實(shí)時(shí)熒光定量 PCR驗(yàn)證分析。將 RNA采用第 1鏈cDNA合成試劑盒(Invitrogen)反轉(zhuǎn)錄為cDNA,以cDNA為模板,MsActin為內(nèi)參,采用TaKaRa(日本)公司的 SYBR?Premix Ex Taq?II(Tli RNaseH Plus)試劑盒,在ABI 7500FAST熒光定量PCR儀(ABI公司,美國(guó))進(jìn)行熒光定量檢測(cè)。每個(gè)樣品設(shè)3次技術(shù)重復(fù),依照2-ΔΔCT法計(jì)算相對(duì)表達(dá)量[24]。
近紅外光譜法測(cè)定結(jié)果顯示(圖1),紫花苜蓿莖的纖維素和木質(zhì)素含量在不同發(fā)育時(shí)期變化較大,特別是纖維素含量在初花期和盛花期顯著提高,初花期含量相較于分枝期提高2.7倍??傮w上隨著紫花苜蓿莖的成熟,次生壁中纖維素和木質(zhì)素含量逐漸升高。
表1 實(shí)時(shí)熒光定量PCR所用的引物Table 1 Primers used for real-time quantitative PCR
圖1 不同發(fā)育時(shí)期次生壁主要物質(zhì)含量Fig. 1 The main substance contents of secondary cell wall at different developmental stages
4個(gè)發(fā)育時(shí)期的12個(gè)樣本測(cè)序共得到5 872.8萬—7 037.2萬條原始序列,質(zhì)控得到5 446.4萬—6 726.9萬條有效序列,占原始序列94.8%—96.9%。與蒺藜苜?;蚪M進(jìn)行基因序列比對(duì),成功比對(duì)4 071.2萬—4 979.9萬條序列,比對(duì)率為70.3%—74.5%(表2)。對(duì) 12個(gè)轉(zhuǎn)錄組文庫進(jìn)行比對(duì)和重新組裝,共獲得69 059個(gè)轉(zhuǎn)錄本,選擇41 734(60%)個(gè)轉(zhuǎn)錄本作為Unigene。
經(jīng)篩選得到相鄰時(shí)期間(S2 VS S1,S3 VS S2,S4 VS S3)的差異表達(dá)基因(圖2),其中97.87%的基因在4個(gè)時(shí)期均有表達(dá)。現(xiàn)蕾期與分枝期的差異表達(dá)基因?yàn)? 648個(gè),上、下調(diào)基因分別為2 111個(gè)和 537個(gè);初花期與現(xiàn)蕾期的差異表達(dá)基因?yàn)? 283個(gè),上、下調(diào)基因分別為1 521個(gè)和762個(gè);盛花期與初花期的差異表達(dá)基因?yàn)? 354個(gè),上、下調(diào)基因分別為875個(gè)和479個(gè)。
圖2 相鄰發(fā)育時(shí)期的差異表達(dá)基因Fig. 2 Differentially expressed genes at adjacent developmental stages
根據(jù)基因功能注釋,在相鄰時(shí)期間的差異表達(dá)基因中篩選獲得 10個(gè)纖維素合成酶基因(cellulose synthase gene)。結(jié)果顯示(圖3),紫花苜蓿莖細(xì)胞壁次生加厚過程中,多個(gè)纖維素合成酶基因表達(dá)水平上調(diào),特別是在初花期和盛花期,基因表達(dá)量較分枝期發(fā)生顯著增加,而現(xiàn)蕾期與分枝期相比,表達(dá)量顯著上調(diào)或下調(diào)的差異基因較少。基因MTR_2g087960、MTR_3g005560和MTR_4g055520的表達(dá)水平在初花期顯著下調(diào)。
將差異表達(dá)基因在KEGG Pathway數(shù)據(jù)庫中注釋分析,獲得苯丙氨酸次生代謝中木質(zhì)素單體合成途徑中的差異表達(dá)基因[25],KEGG Pathway map ID:mtr00940(http://www.genome.jp/kegg-bin/show_pathway/mtr00940)。17個(gè)差異表達(dá)基因分別注釋為苯丙氨酸氨基裂解酶(phenylalanine ammonia-lyase,PAL)、肉桂酸-4-羥基化酶(Cinnamate 4-hydroxylase,C4H)、4-羥基肉桂酰輔酶 A 連接酶(4-(hydroxy)cinnamoyl-CoA ligase,4CL)、肉桂酰輔酶 A還原酶(Cinnamoyl-CoA reductase,CCR)、肉桂醇脫氫酶(Cinnamyl-alcohol dehydrogenase,CAD)、咖啡酸/5-羥基阿魏酸-O-甲基轉(zhuǎn)移酶(Caffeic acid/5-hydroxyferulic acid O-methyltransferase,COMT)、阿魏酸-5-羥化酶(Ferulate 5-hydroxylase,F(xiàn)5H)等木質(zhì)素單體合成途徑中的關(guān)鍵合成酶基因(圖4)。
表2 紫花苜蓿不同發(fā)育時(shí)期轉(zhuǎn)錄組數(shù)據(jù)統(tǒng)計(jì)Table 2 Statistics of transcriptome data of alfalfa at different developmental stages
圖3 紫花苜蓿纖維素合成酶差異表達(dá)基因變化趨勢(shì)Fig. 3 Tendency of differentially expressed genes of cellulose synthase in alfalfa
利用GraphPad Prism 7(v7.03)軟件對(duì)差異表達(dá)基因在4個(gè)時(shí)期的表達(dá)水平做進(jìn)一步分析(圖5)。結(jié)果發(fā)現(xiàn),木質(zhì)素單體合成途徑中上游基因PAL、C4H、4CL和CCR的表達(dá)水平變化趨勢(shì)與多數(shù)纖維素合成酶基因一致,在初花期和盛花期表達(dá)量顯著上調(diào),其中 MTR_1g064090(PAL1)、MTR_1g111240(C4H)和 MTR_2g104960(CCR)的基因表達(dá)量相比分枝期上調(diào) 10倍以上。而下游調(diào)控基因CAD和COMT的表達(dá)變化趨勢(shì)與上游調(diào)控基因相反,在分枝期和現(xiàn)蕾期表達(dá)水平較高,在初花期和盛花期表達(dá)水平顯著下調(diào)。
圖4 苯丙氨酸生物合成途徑(KEGG Pathway map ID:mtr00940)Fig. 4 Phenylpropanoid biosynthetic pathways in KEGG
基于轉(zhuǎn)錄組測(cè)序數(shù)據(jù)中不同發(fā)育時(shí)期差異表達(dá)的轉(zhuǎn)錄因子,參考北京大學(xué)植物轉(zhuǎn)錄因子數(shù)據(jù)庫PlantTFDB(http//planttfdb.cbi.pku.edu.cn/)公布的蒺藜苜蓿轉(zhuǎn)錄因子家族序列信息,共獲得27個(gè)可能與次生壁合成調(diào)控相關(guān)的差異轉(zhuǎn)錄因子(表3)。
差異表達(dá)的轉(zhuǎn)錄因子主要有NAC家族和MYB家族轉(zhuǎn)錄因子共18個(gè),也有少量WRKY、BHLH、ERF、C3H等轉(zhuǎn)錄因子。8個(gè)轉(zhuǎn)錄因子在現(xiàn)蕾期到初花期上調(diào)表達(dá),初花期到盛花期表達(dá)水平變化差異較小,19個(gè)轉(zhuǎn)錄因子在現(xiàn)蕾期到初花期或初花期到盛花期顯著下調(diào)。這些轉(zhuǎn)錄因子涉及植物的生長(zhǎng)發(fā)育調(diào)控、形態(tài)建成、抗逆脅迫等各種生物代謝途徑。
通過對(duì)qRT-PCR和RNA-seq數(shù)據(jù)進(jìn)行相關(guān)性分析(圖6),結(jié)果較為一致,相關(guān)系數(shù)在0.571—0.994,證明轉(zhuǎn)錄組測(cè)序數(shù)據(jù)具有較高的可重復(fù)性和準(zhǔn)確性。
在紫花苜蓿莖生長(zhǎng)發(fā)育過程中,3個(gè)相鄰時(shí)期比較組合中(S2 VS S1,S3 VS S2,S4 VS S3)表達(dá)上調(diào)基因的數(shù)量皆大于表達(dá)下調(diào)基因的數(shù)量,但差異表達(dá)基因的數(shù)量在不斷減少,其中上調(diào)表達(dá)基因顯著減少,在盛花期,上調(diào)表達(dá)基因和下調(diào)表達(dá)基因數(shù)量接近,總體上反應(yīng)了紫花苜蓿莖從分枝期到盛花期在生物過程、細(xì)胞代謝、分子功能等方面增強(qiáng)趨勢(shì)較為明顯,但在生長(zhǎng)后期趨勢(shì)變緩。
圖5 紫花苜蓿木質(zhì)素單體合成途徑中的差異表達(dá)基因在不同時(shí)期的表達(dá)模式Fig. 5 The expression pattern of differentially expressed genes in the biosynthesis pathway of monolignol at four developmental stages in alfalfa
圖6 實(shí)時(shí)熒光定量PCR與RNA-seq相關(guān)性分析Fig. 6 Correlation between qRT-PCR and RNA-seq
JUNG等[26]研究表明紫花苜蓿莖的細(xì)胞壁物質(zhì)組分與生長(zhǎng)發(fā)育時(shí)期密切相關(guān)。營(yíng)養(yǎng)生長(zhǎng)時(shí)期僅初生木質(zhì)部維管組織細(xì)胞壁有少量木質(zhì)素沉積,進(jìn)入生殖生長(zhǎng)時(shí)期,節(jié)間伸長(zhǎng)逐漸停止,次生木質(zhì)部和韌皮部細(xì)胞大量生成且迅速沉積木質(zhì)素,髓薄壁細(xì)胞也開始木質(zhì)化。隨著苜蓿莖的成熟,果膠質(zhì)含量逐漸降低,纖維素含量逐漸升高。纖維素是植物細(xì)胞壁組分中含量最多的化合物,它的排列模式?jīng)Q定了細(xì)胞壁的結(jié)構(gòu)[27]。ZHANG 等[28]發(fā)現(xiàn)OsCESA4、OsCESA7和OsCESA93個(gè)基因發(fā)生突變后,水稻植株均出現(xiàn)明顯的脆性,同時(shí)纖維素含量降低,次生壁變薄,植株表型異常。本研究中27個(gè)功能注釋與紫花苜蓿纖維素、木質(zhì)素合成密切相關(guān)的基因差異表達(dá),其變化趨勢(shì)與次生壁中纖維素和木質(zhì)素含量測(cè)定結(jié)果基本一致,即隨著生長(zhǎng)發(fā)育時(shí)期的變化,表達(dá)水平逐漸提高。研究表明,初花期是紫花苜蓿次生壁合成調(diào)控的轉(zhuǎn)折期,纖維素和木質(zhì)素含量與其合成基因表達(dá)量在初花期均顯著增加。MTR_2g016630(Ces)和MTR_7g103590(Ces A1)等纖維素合成酶基因表達(dá)水平在初花期顯著上升,木質(zhì)素合成途徑中,MTR_1g064090(PAL1)、MTR_1g111240(C4H)和MTR_2g104960(CCR)基因表達(dá)量在初花期或盛花期相比分枝期增加10倍以上。上述差異表達(dá)基因很可能參與調(diào)控紫花苜蓿纖維素和木質(zhì)素的含量/組分變化,為篩選影響次生壁加厚進(jìn)程的主效基因提供了理論依據(jù)。
表3 差異表達(dá)轉(zhuǎn)錄因子的表達(dá)水平Table 3 Expression level of differentially expressed transcription factors
次生壁的合成加厚過程涉及大量轉(zhuǎn)錄因子(TFs)的調(diào)控,對(duì)差異表達(dá)的MYB和NAC轉(zhuǎn)錄因子與擬南芥中參與次生壁合成調(diào)控的轉(zhuǎn)錄因子進(jìn)行同源進(jìn)化分析。圖7-A中MTR_8g102240與AtSND2、AtSND3組成一類,相似性為 90%。ZHONG等[29]研究表明AtSND2和AtSND3是由AtSND1直接調(diào)控的次級(jí)轉(zhuǎn)錄因子,參與調(diào)控次生壁的加厚。MTR_8g102240可能具有AtSND2和AtSND3類似的功能。圖7-B中MTR_2g067420與AtMYB58和AtMYB63有94%的相似性。AtMYB58和AtMYB63在次生壁物質(zhì)沉積加厚的細(xì)胞內(nèi)特異性表達(dá),受轉(zhuǎn)錄開關(guān)因子AtSND1及其下游轉(zhuǎn)錄因子AtMYB46調(diào)控,通過結(jié)合木質(zhì)素單體合成途徑中的關(guān)鍵酶如4CL、F5H等啟動(dòng)子上的 AC元件激活基因表達(dá),是木質(zhì)素生物合成中重要的調(diào)控因子[30-31],MTR_2g067420也可能具有類似功能。MTR_8g102240和MTR_2g067420可作為候選基因,利用突變體確定其表型,通過過表達(dá)或抑制該基因表達(dá)進(jìn)行后續(xù)功能驗(yàn)證分析。近期研究結(jié)果表明WRKY[32]、BHLH[33]、KNAT7[34]、C3H[35]等轉(zhuǎn)錄因子在擬南芥、苜蓿、楊樹中參與次生壁的合成調(diào)控,WANG等[32]在苜蓿和擬南芥中發(fā)現(xiàn)WRKY12可與NST2的啟動(dòng)子區(qū)結(jié)合抑制髓細(xì)胞中木質(zhì)素、木聚糖和纖維素的沉積;AtC3H14是MYB46的靶蛋白,能激活大多數(shù)次生壁生物合成基因的表達(dá)[36]。
圖7 差異表達(dá)轉(zhuǎn)錄因子系統(tǒng)進(jìn)化分析Fig. 7 Phylogenetic analysis of differentially expressed transcription factors
獲得紫花苜?!熊?號(hào)’在4個(gè)生長(zhǎng)發(fā)育時(shí)期莖的基因表達(dá)譜數(shù)據(jù),共獲得 54個(gè)差異表達(dá)基因,其中穩(wěn)定上調(diào)基因24個(gè),穩(wěn)定下調(diào)基因30個(gè)。這些基因可能參與紫花苜蓿次生壁的合成調(diào)控。
[1]戚志強(qiáng), 玉永雄, 胡躍高, 曾昭海. 當(dāng)前我國(guó)苜蓿產(chǎn)業(yè)發(fā)展的形勢(shì)與任務(wù). 草業(yè)學(xué)報(bào), 2008(1): 107-113.QI Z Q, YU Y X, HU Y G, ZENG Z H. Current status and future tasks of theMedicago sativaindustry in China.Acta Prataculturae Sinica,2008(1): 107-113. (in Chinese)
[2]曹宏, 章會(huì)玲, 蓋瓊輝, 陳紅, 趙滿來. 22個(gè)紫花苜蓿品種的引種試驗(yàn)和生產(chǎn)性能綜合評(píng)價(jià). 草業(yè)學(xué)報(bào), 2011, 20(6): 219-229.CAO H, ZHANG H L, GAI Q H, CHEN H, ZHAO M L. Test and comprehensive assessment on the performance of 22 alfalfa varieties.Acta Prataculturae Sinica, 2011, 20(6): 219-229. (in Chinese)
[3]云錦鳳. 苜蓿飼草的收獲與利用//首屆中國(guó)苜蓿發(fā)展大會(huì)論文集.首屆中國(guó)苜蓿發(fā)展大會(huì)論文集: 2001年.YUN J F. Harvesting and utilization of alfalfa forage//The Paper Collection of the First Chinese Alfalfa Development Conference:2001.(in Chinese)
[4]HARRIS D M, CORBIN K, WANG T, GUTIERREZ R, BERTOLO A L, PETTI C, SMILGKS D M, DEBOLT S. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residuesCESA1A903VandCESA3T942Iof cellulose synthase.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4098-4013.
[5]LI Y H, QIAN Q, ZHOU Y H, YAN M, SUN L, ZHANG M, FU Z,WANG Y, HAN B, PANG X, CHEN M, LI J.Brittle Culm1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants.The Plant Cell, 2003, 15: 2020-2031.
[6]KOKUBO A, SAKURAI N, KURAISHI S. Culm brittleness of barley (Hordeum vulgareL.) mutants is caused by smaller number of cellulose molecules in cell wall.Plant Physiology, 1991, 97:509-514.
[7]WANG H Z, DIXON R A. On-off switches for secondary cell wall biosynthesis.Molecular Plant, 2011, 5(2): 297-303.
[8]ZHONG R, YE Z H.MYB46andMYB83bind to the SMRE sites and directly activate a suit of transcription factors and secondary wall biosynthetic genes.Plant Cell Physiology, 2012, 53: 368-380.
[9]KUBO M, UDAGAWA M, NISHIKUBO N, HORIGUCHI G,YAMAGUCHI M, ITO J. Transcription switches for protoxylem and metaxylem vessel formation.Genes & Development, 2005, 19(16):1855-1860.
[10]MITSUDA N, SEKI M, SHINOZAKI K, OHME-TAKAGI M. The NAC transcription factorsNST1andNST2ofArabidopsisregulate secondary wall thickening and are required for anther dehiscence.The Plant Cell, 2005, 17(11): 2993-3006.
[11]ZHONG R, DEMURA T, YE Z H.SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers ofArabidopsis.The Plant Cell, 2006, 18: 3158-3170.
[12]MITSUDA N, IWASE A, YAMAMOTO H, YOSHIDA M, SEKI M,SHINOZAKI K. NAC transcription factors,NST1andNST3, are key regulators of the formation of secondary walls in woody tissues ofArabidopsis.The Plant Cell, 2007, 19(1): 270-280.
[13]ZHONG R, RICHARDSON E A, YE Z H. TheMYB46transcription factor is a direct target ofSND1and regulates secondary wall biosynthesis inArabidopsis.ThePlant Cell, 2007, 19(9): 2776-2792.
[14]MCCARTHY R L, ZHONG R, YE Z H.MYB83is a direct target ofSND1and acts redundantly withMYB46in the regulation of secondary cell wall biosynthesis inArabidopsis.Plant Cell Physiology,2009, 50(11): 1950-1964.
[15]黃成, 李來庚. 植物次生細(xì)胞壁加厚調(diào)控研究進(jìn)展. 植物生理學(xué)報(bào), 2016, 52(1): 8-18.HUANG C, LI L G. Research progress on regulation of plant secondary cell wall thickening.Plant Physiology Journal, 2016, 52(1):8-18. (in Chinese)
[16]ZHONG R, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.Plant Cell Physiology, 2015,56(2): 195-214.
[17]VERA J C, WHEAT C W, FESCEMYER H W, FRILANDER M J.Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing.Molecular Ecology, 2008, 17(7): 1636-1647.
[18]SHANNON C M, LARRY R T. Irrigated alfalfa management for Mediterranean and desert zones. Oakland: University of California,2007: 28-37.
[19]VAN SOEST P J. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition.Journal of Dairy Science, 1991, 74: 3583-3597.
[20]ROBERTS A, PIMENTEL H, TRAPNELL C, PACHTER L.Identification of novel transcripts in annotated genomes using RNA-Seq.Bioinformatics, 2011, 27: 2325-2329.
[21]MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L,WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nature Methods, 2008, 5: 621-628.
[22]AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles.Genome Research, 1997, 7: 986-995.
[23]KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M,ITOH M, KATAYAMA T. KEGG for linking genomes to life and the environment.Nucleic Acids Research, 2008, 36: 480-484.
[24]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT-method.Methods,2001, 25(4): 402-408.
[25]HUMPHREYS J M, CHAPPLE C. Rewriting the lignin roadmap.Current Opinion in Plant Biology, 2002, 5(3): 224-229.
[26]JUNG H G, ENGELS F M. Alfalfa stem tissues: cell wall deposition,composition, and degradability.Crop Science, 2002, 42(2): 524-534.
[27]SMERTENKO A, SALEH N, IGARASHI H. A new class of microtubule-associated proteins in plants.Nature Cell Biology, 2000,2(10):750-753.
[28]ZHANG B, ZHOU Y. Rice brittleness mutants: A way to open the‘black box’ of mocot cell wall biosynthesis.Journal of Integrative Plant Biology, 2011, 53:136-142.
[29]ZHONG R, LEE C, ZHOU J. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis inArabidopsis.The Plant Cell, 2008, 20(10): 2763-2782.
[30]ZHOU J, LEE C, ZHONG R.MYB58andMYB63are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation inArabidopsis.The Plant Cell, 2009, 21(1): 248-266.
[31]HARTMANN U, SAGASSER M, MEHRTENS F. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes.Plant Molecular Biology, 2005, 57: 155-171.
[32]WANG H Z, AVCI U, NAKASHIMA J, HAHN M G, CHEN F,DIXON R A. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants.Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22338-22343.
[33]YAN L, XU C, KANG Y, GU T, WANG D, ZHAO S, XIA G. The heterologous expression inArabidopsis thalianaof sorghum transcription factorSbbHLH1downregulates lignin synthesis.Journal of Experimental Botany, 2013, 64(10): 3021-3032.
[34]LI E, WANG S, LIU Y, CHEN J G, DOUGLAS C J. OVATE FAMILY PROTEIN4 (OFP4) interaction withKNAT7regulates secondary cell wall formation inArabidopsis thaliana.The Plant Journal, 2011,67(2): 328-341.
[35]CHAI G, QI G, CAO Y, WANG Z, YU L, TANG X, YU Y, WANG D,KONG Y, ZHOU G. PoplarPdC3H17andPdC3H18are direct targets ofPdMYB3andPdMYB21, and positively regulate secondary wall formation inArabidopsisandpoplar.New Phytologist, 2010,203: 520-534.
[36]KIM W C, KIM J Y, KO J H, KANG H, KIM J, HAN K H.AtC3H14,a plant-specific tandem CCCH zinc-finger protein, binds to its target mRNAs in a sequence-specific manner and affects cell elongation inArabidopsis thaliana.The Plant Journal, 2014, 80: 772-784.
中國(guó)農(nóng)業(yè)科學(xué)2018年11期