• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamics of de Sitter Black Holes in Massive Gravity?

    2018-06-11 12:21:12YuBoMa馬宇波SiXuanZhang張思軒YanWu鄔巖LiMa馬立andShuoCao曹碩
    Communications in Theoretical Physics 2018年5期
    關(guān)鍵詞:室早導(dǎo)聯(lián)起源

    Yu-Bo Ma(馬宇波),Si-Xuan Zhang(張思軒),Yan Wu(鄔巖),Li Ma(馬立),and Shuo Cao(曹碩),?

    1Department of Physics,Shanxi Datong University,Datong 037009,China

    2Department of Astronomy,Beijing Normal University,Beijing 100875,China

    3Beijing Aerospace Petrochemical Technology and Equipment Engineering Corporation,Beijing 100166,China

    1 Introduction

    The study of the thermodynamic characteristics of de Sitter space-time has arouse extensive attention in the recent years.[1?17]At the stage of cosmological inflation in the early time,our universe behaves like a quasi-de Sitter space-time,in which the cosmological constant takes the form of vacuum energy.Moreover,if the dark energy is simply a cosmological constant,i.e.,a component with constant equation of state,our universe will evolve into a new stage of de Sitter space-time in this simplest scenario.Therefore,a better knowledge of de Sitter space-time(especially its classical and quantum characteristics)is very important to construct the general framework of cosmic evolution.In the previous works,the black hole horizon and the cosmological horizon are always treated as two independent thermodynamic systems,[4?7,13]from which the thermodynamic volume of de Sitter space-time as well as the corresponding thermodynamic quantities satisfying the first thermodynamics law were obtained.[3]It is commonly recognized that the entropy of de Sitter space-time is the sum of that for the two types of horizons,[7,14]however,such statement concerning the nature of de Sitter space-time entropy still needs to be checked with adequate physical explanation.

    Considering the fact that all thermodynamic quantities related to the black hole horizon and the cosmological horizon in de Sitter space-time can be expressed as a function of mass M,electric charge Q,and cosmological constant Λ,it is natural to consider the dependency between the two types of thermodynamic quantities.More specifically,the discussion of the following two problems is very significant to study the stability and evolution of de Sitter space-time:Do the thermodynamic quantities follow the behavior of their counterparts in AdS black holes,especially when the black hole horizon is correlated with that of the cosmological horizon?What is the specific relation between the entropy of de Sitter space-time and that of the two horizons(the black hole horizon and the cosmological horizon)? The above two problems also provide the main motivation of this paper.

    On the other hand,to the present,massive gravity has already proven its potential to alleviate the naturalness problem of the cosmological constant[18?20]even in the limit as the graviton mass approaches zero,which can be clearly seen both in the framework of linear gravity theories[21?22]and nonlinear massive gravity theories.[23?24]The ghostlike instability in the latter,which is well known as the Boulware-Deser ghost,has also been extensively discussed in many previous works.[25?26]Moreover,different from the traditional way of simply adding a mass term to the GR action,the new idea of constructing massive gravity theories was fi rstly studied in the context of a charged BTZ black hole,[27]and further well developed in the presence of Maxwell and Born-Infeld electrodynamics in asymptotically AdS space-times.[28]Details of the derived thermodynamic quantities(the corrected entropy,etc.)as well as the corresponding phase transitions may be found in Refs.[29–33].In this paper we expect to provide complementary results on the thermodynamics of dS black hole in massive gravity.

    Following this direction,in our analysis we obtain the effective thermodynamic quantities of de Sitter black holes in massive gravity(DSBHMG),based on the correlation between the black hole horizon and the cosmological horizon. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordstrom de Sitter space-time,which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future.This paper is organized as follows.In Sec.2,we briefly introduce the thermodynamic quantities of the horizons of black holes and the Universe in DSBHMG,and furthermore obtain the electric charge Q when the two horizons show the same radioactive temperature.In Sec.3,taking the correlation between the two horizons into consideration,we will present the equivalent thermodynamic quantities of DSBHMG satisfying the first thermodynamic law,and perform a quantitative analysis of the corresponding effective temperature and pressure.Finally,the main conclusions are summarized in Sec.4.Throughout the paper we use the units G=~=kB=c=1.

    2 Thermodynamics of Black Holes in Massive Gravity

    In the framework of(3+1)-dimensional massive gravity with a Maxwell field(denoting Fμνas the Maxwell field-strength tensor),the corresponding action always expresses as[34?37]

    where Λ is the cosmological constant,g and R are respectively the determinant of the metric and the Ricci scalar.The last term in the right hand side denotes the massive potential associate with graviton mass m,whereμiare symmetric polynomials of the eigenvalues representing the contribution of the matrixwith fixed symmetric tensor fμν.Generated form the above action,the space-time metric of static black holes(denoting hijas Einstein space with constant curvature)can be written as

    with the metric function expressed as[38?39]

    Here k=+1,0,?1 respectively correspond to the sphere,Ricci flat,and hyperbolic symmetric cases.Note that the positions of black hole horizon r+and cosmic horizon rcare determined when f(r+,C)=0.

    In Fig.1 we display the behavior of the metric function f(r),where the parameters are chosen as Λ=1,m0=30,m=2.12,c1=2,c2=3.18,q=1.7,while k is fixed at 1,0,and?1.It is obvious that there are two intersection points between f(r)and the axis of r,which respectively correspond to the positions of black hole horizon r+and cosmological horizon rc.Thus,the mass m0can be expressed in terms of r+,cas

    where x=r+/rc.The temperature of the black hole horizons and cosmic horizon can be written as[40]

    Turning to the contribution of the electrical charge q,it will also generate a chemical potential as

    According to the Hamiltonian approach,we have the mass M and electric charge Q as

    and the entropy of the two horizons respectively express as

    where ν2is the area of a unit volume of constant(t,r)space(which equals to 4π for k=0).

    Fig.1 The metric function f(r)varying with r.

    It is apparent that the thermodynamic quantities corresponding to the two horizons satisfy the first law of thermodynamics

    where

    When the temperature of the black hole horizon is equal to that of the cosmological horizon,the electric charge Q and the cosmological constant Λ are related as

    As can be seen from Eqs.(5)and(12)the electric charge of the system satisfies the following expression

    When taking T+=Tc,the combination of Eqs.(5),(6),and(13)will lead to the temperature T as

    3 Effective Thermodynamic Quantities

    Considering the connection between the black hole horizon and the cosmological horizon,we can derive the effective thermodynamic quantities and corresponding first law of black hole thermodynamics as

    where the thermodynamic volume is defined by[3,5?6,41]

    It is obvious that there exit three real roots for the equation f(r)=0:the cosmological horizon(CEH)r=rc,the inner(Cauchy)horizon of black holes,and the outer horizon(BEH)r=r+of black holes.Moreover,the de Sitter space-time is characterized by Λ >0,while Λ <0 denotes the anti-de Sitter scenario.

    Here the undefined function f(x)represents the extra contribution from the correlations of the two horizons.We remark here that,when the black hole horizon and the cosmological horizon are treated as one thermodynamic system,the function f(x)could quantify the corresponding correction in the total entropy of the system.From Eq.(15),we can obtain the effective temperature Teffand pressure Peff

    Combining Eqs.(4),(16),and(17),one can obtain

    where

    When the temperature of the black hole horizon is equal to that of the cosmological horizon,the effective temperature of the space-time should be

    Then substituting Eq.(14)into Eq.(20),we get

    where

    Then Eq.(25)will transform into

    with the corresponding solution as

    主動(dòng)脈-二尖瓣結(jié)合部(aortomitral continuity,AMC),為左冠狀動(dòng)脈竇及二尖瓣前葉之間的三角纖維區(qū)域,屬于summit區(qū)域。AMC起源室早最具特征性的心電圖表現(xiàn)是V1導(dǎo)聯(lián)呈qR型,原因在于該位置的初始除極向量向左;其他心電圖特征還包括V6導(dǎo)聯(lián)呈R型,Ⅰ導(dǎo)聯(lián)呈R或Rs型。由于AMC起源室早的具體起源部位和范圍的差異,室早有時(shí)表現(xiàn)為胸前導(dǎo)聯(lián)QRS主波呈一致正向的右束支阻滯圖形;V6導(dǎo)聯(lián)無S波,而沒有前述典型的圖形表現(xiàn)。

    Considering the initial condition of f(0)=0,we can obtain

    and inserting Eq.(25)into Eqs.(20)and(22)will lead to

    Moreover,the effective chemical potential in the first law of black hole thermodynamics can be rewritten as

    One could note that the effective chemical potential,?eff,is not directly related to m2c1and m2c2,which was noted in the previous work discussing the entropy of RNdS black hole.[33]Based on the above equations,the Peff-x and Teffx diagrams could be derived by taking different value of k,q,m,c1,and c2(when taking rc=1).

    Fig.2 The Pe ff-x diagram when the parameter k is fixed at 1,0 and?1,respectively.The other parameters are fixed at m=2.12,c1=2,c2=3.18,q=1.7.

    Fig.3 The Pe ff-x diagram varying with the parameters of m,c1,c2,and q,while the other two parameters are fixed at k=?1,rc=1.

    Fig.4 The S(x)-x and f(x)-x diagrams with rc=1.

    In Figs.2 and 3,we illustrate an example of the Peff-x diagram with different value of relevant parameters,from which one could clearly see the effect of these parameters on the effective pressure of RN-dSQ space-time.Following the same procedure by inserting Eq.(28)into Eq.(17),we can also obtain the S(x)-x and f(x)-x diagrams with rc=1,which are explicitly shown in Fig.4.Similarly,in Figs.5 and 6,we show the evolution of the Teff-x diagram with different value of relevant parameters,from which one could perceive the effect of these parameters on the effective temperature of RN-dSQ space-time.As can be seen from Eq.(29),the special term m2c1and m2c2included in the expression of Teffand Peff,could have significant effects in the evolution of the globally effective temperature and pressure.More specifically,it is shown in Figs.3 and 6 that,the space-time considered in our analysis will recover to the well-known RNdS spacetime when m2c1and m2c2approach zero.Such conclusion is well consistent with that obtained in the previous literature.[33]

    Fig.6 The Te ff-x diagram varying with the parameters of m,c1,c2and q,while the other two parameters are fixed at k=?1,rc=1.

    Table 1 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.5.The value of x0when the effective temperature reaches zero is also listed.

    Table 1 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.5.The value of x0when the effective temperature reaches zero is also listed.

    Parametric xc T2e ff x 0 k=1 0.3374 1.7554 0.2173 k=0 0.3468 1.5799 0.2243 k=?1 0.3571 1.4121 0.2321

    Table 2 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.6.The value of x0when the effective temperature reaches zero is also listed.

    Table 2 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.6.The value of x0when the effective temperature reaches zero is also listed.

    Parametric xc T2e ff x0 q=1.0 0.222 69 2.922 26 0.134 98 k=?1 q=1.7 0.357 10 1.412 10 0.232 10 q=2.7 0.531 08 0.568 70 0.380 43 m=1.6 0.465 46 0.439 60 0.321 08 k=?1 m=2.12 0.357 10 1.412 10 0.223 10 m=3.12 0.249 46 5.611 53 0.153 24 c1=1.0 0.363 73 1.231 66 0.238 98 k=?1 c1=2.0 0.357 10 1.412 10 0.232 10 c1=3.0 0.351 14 1.595 04 0.225 99 c2=2.18 0.417 92 0.757 68 0.279 26 k=?1 c2=3.18 0.357 10 1.412 10 0.232 10 c2=4.18 0.316 77 2.224 55 0.202 18

    4 Conclusion and Discussion

    In this paper,by taking de Sitter space-time as a thermodynamic system,we study the effective thermodynamic quantities of de Sitter black holes in massive gravity,and furthermore obtain the effective thermodynamic quantities of the space-time.Here we summarize our main conclusions in more detail:

    (i)In the previous analysis without considering the correlation between the black hole horizon and the cosmological horizon,i.e.,the two horizons are always treated as independent thermodynamic systems with different temperature,the space-time does not satisfy the requirement of thermodynamic stability.In this paper,we find that the establishment of the correlation between the two horizons will generate the common effective temperature Teff,which may represent the most typical thermodynamic feature of RN-dSQ space-time.

    (ii)As can be clearly seen from the S(x)-x and Teff-x diagrams,RN-dSQ space-time in unstable under the condition of x>xcand x

    (iii)We find that the interaction term f(x)in the entropy of RN-dSQ space-time takes the same form of that in RN-dS space-time.Considering that the entropy in the two types of space-time is the function of the position of the horizon,which has no relation with other parameters including the electric charge(Q)and the constant(Λ),the entropy in the two types of space-time should take the same form.This finding may contribute to the deep understanding the universal thermodynamic characteristics of de Sitter space-time in the future.

    Acknowledgments

    The authors declare that there is no conflict of interest regarding the publication of this paper.

    [1]R.G.Cai,Nucl.Phys.B 628(2002)375

    [2]B.D.Koberlein and R.L.Mallett,Phys.Rev.D 49(1994)5111

    [3]B.P.Dolan,D.Kastor,D.Kubiznak,et al.,Phys.Rev.D 87(2013)104017.

    [4]Y.Sekiwa,Phys.Rev.D 73(2006)084009.

    [5]D.Kubiznak and F.Simovic,Class.Quant.Grav.33(2016)245001.

    [6]J.McInerney,G.Satishchandran,and J.Traschen,Class.Quant.Grav.33(2016)105007.

    [7]M.Urano,A.Tomimatsu,and H.Saida,Class.Quant.Grav.26(2009)105010.

    [8]X.Y.Guo,H.F.Li,L.C.Zhang,and R.Zhao,Phys.Rev.D 91(2015)084009.

    [9]X.Y.Guo,H.F.Li,L.C.Zhang,and R.Zhao,Class.Quant.Grav.33(2016)135004

    [10]H.H.Zhao,M.S.Ma,L.C.Zhang,and R.Zhao,Phys.Rev.D 90(2014)064018.

    [11]M.S.Ma,R.Zhao,and Y.Q.Ma,Gen.Relativ.Gravit.49(2017)79.

    [12]T.Katsuragawa and S.Nojiri,Phys.Rev.D 91(2015)084001.

    [13]F.Mellor and I.Moss,Class.Quant.Grav.6(1989)1379.

    [14]D.Kastor and J.Traschen,Phys.Rev.D 47(1993)5370.

    [15]H.F.Li,M.S.Ma,and Y.Q.Ma,Mod.Phys.Lett.A 32(2017)1750017.

    [16]M.Azreg-A¨?nou,Phys.Rev.D 91(2015)064049.

    [17]M.Azreg-A¨?nou,Eur.Phys.J.C 75(2015)34.

    [18]K.Hinterbichler,Rev.Mod.Phys.84(2012)671.

    [19]M.Fierz,Helv.Phys.Acta.12(1939)3.

    [20]M.Fierz and W.Pauli,Proc.R.Soc.A 173(1939)211.

    [21]H.V.Dam and M.J.G.Veltman,Nucl.Phys.B 22(1970)397.

    [22]V.I.Zakharov,JETP Lett.12(1970)312.

    [23]D.G.Boulware and S.Deser,Phys.Rev.D 6(1972)3368.

    [24]D.G.Boulware and S.Deser,Phys.Lett.B 40(1972)227.

    [25]C.de Rham and G.Gabadadze,Phys.Rev.D 82(2010)044020.

    [26]C.de Rham,G.Gabadadze,and A.J.Tolley,Phys.Rev.Lett.106(2011)231101.

    [27]S.H.Hendi,S.Panahiyan,S.Upadhyay,and B.E.Panah,J.High Energy Phys.11(2015)157.

    [28]S.H.Hendi,B.Eslam Panah,and S.Panahiyan,J.High Energy Phys.05(2016)029.

    [29]B.R.Majhi and S.Samanta,arXiv:gr-qc/1609.06224

    [30]R.G.Cai,Y.P.Hu,Q.Y.Pan,and Y.L.Zhang,Phys.Rev.D 91(2015)024032.

    [31]J.Xu,L.M.Cao,and Y.P.Hu,Phys.Rev.D 91(2015)124033.

    [32]M.Cvetic,G.W.Gibbons,D.Kubiznak,and C.N.Pope,Phys.Rev.D 84(2011)024037.

    [33]L.C.Zhang,R.Zhao,and M.S.Ma,Phys.Lett.B 761(2016)74.

    [34]M.S.Ma,R.Zhao,and Y.S.Liu,Class.Quan.Grav.34(2017)165009.

    [35]M.S.Ma and R.H.Wang,Phys.Rev.D 96(2017)024052.

    [36]S.Upadhyay,B.Pourhassan,and H.Farahani,Phys.Rev.D 95(2017)106014.

    [37]H.F.Li,M.S.Ma,L.C.Zhang,and R.Zhao,Nucl.Phys.B 920(2017)211.

    [38]S.F.Hassan and R.A.Rosen,J.High Energy Phys.07(2011)009.

    [39]A.Adams,D.A.Roberts,and O.Saremi,Phys.Rev.D 91(2015)046003.

    [40]A.Dehyadegari,M.Kord Zangeneh,and A.Sheykhi,arXiv:hep-th/1703.00975.

    [41]D.C.Zou,R.H.Yue,and M.Zhang,Eur.Phys.J.C 77(2017)256.

    [42]P.Boonserm,T.Ngampitipan,and P.Wongjun,arXiv:grqc/1705.03278.

    [43]S.H.Hendi,R.B.Mann,S.Panahiyan,and B.Eslam Panah,Phys.Rev.D 95(2017)021501.

    猜你喜歡
    室早導(dǎo)聯(lián)起源
    特發(fā)性室性早搏的心率相關(guān)性與臨床特征
    關(guān)于《心電圖動(dòng)態(tài)演變?yōu)锳slanger 樣心肌梗死1 例》的商榷
    這種室早或不需治療
    人人健康(2022年14期)2022-07-26 02:29:08
    圣誕節(jié)的起源
    特發(fā)性室性早搏與自主神經(jīng)張力的關(guān)系
    三維Lorenz-RR 散點(diǎn)圖分析插入性室性早搏揭示房室結(jié)雙徑路1 例
    奧運(yùn)會(huì)的起源
    清明節(jié)的起源
    萬物起源
    中國漫畫(2017年4期)2017-06-30 13:06:16
    aVR導(dǎo)聯(lián)ST段改變對(duì)不同冠脈血管病變的診斷及鑒別診斷意義
    久久午夜福利片| 一级爰片在线观看| 久久久精品免费免费高清| 欧美激情极品国产一区二区三区 | 精品人妻一区二区三区麻豆| 十八禁网站网址无遮挡 | 欧美 日韩 精品 国产| 久久精品熟女亚洲av麻豆精品| 九草在线视频观看| 成人毛片a级毛片在线播放| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久免费av| 亚洲无线观看免费| 欧美日本中文国产一区发布| 另类亚洲欧美激情| 午夜视频国产福利| 久热这里只有精品99| 日日摸夜夜添夜夜添av毛片| a级片在线免费高清观看视频| a级片在线免费高清观看视频| 国产精品国产av在线观看| 国产精品不卡视频一区二区| 国产白丝娇喘喷水9色精品| 久久久久国产网址| 亚洲欧洲国产日韩| 久久午夜福利片| 亚洲不卡免费看| 国产成人精品福利久久| 99久久精品热视频| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 伦理电影大哥的女人| 日本色播在线视频| 久久99热这里只频精品6学生| 青春草国产在线视频| 国产在线男女| 黄片无遮挡物在线观看| 少妇裸体淫交视频免费看高清| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区 | 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 国产成人a∨麻豆精品| 超碰97精品在线观看| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 51国产日韩欧美| 秋霞伦理黄片| av播播在线观看一区| 在线观看国产h片| 国产中年淑女户外野战色| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 青青草视频在线视频观看| 国产无遮挡羞羞视频在线观看| 欧美高清成人免费视频www| 亚洲精品乱码久久久久久按摩| 一边亲一边摸免费视频| 性色av一级| 人妻一区二区av| 亚洲欧美精品专区久久| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 99国产精品免费福利视频| 欧美日韩视频精品一区| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 午夜av观看不卡| av天堂久久9| 人妻系列 视频| 18+在线观看网站| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品古装| 国产成人freesex在线| 日本午夜av视频| 国产高清有码在线观看视频| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 国产在线男女| av女优亚洲男人天堂| 精品99又大又爽又粗少妇毛片| av有码第一页| 在线观看三级黄色| 国产精品国产三级国产专区5o| 国产av一区二区精品久久| 久久久亚洲精品成人影院| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 欧美日本中文国产一区发布| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| av专区在线播放| 亚洲精品久久久久久婷婷小说| 一级二级三级毛片免费看| 超碰97精品在线观看| 亚洲中文av在线| 亚洲av男天堂| 一本一本综合久久| 国产又色又爽无遮挡免| 视频区图区小说| 99久久综合免费| 91成人精品电影| 国产成人精品久久久久久| 亚洲内射少妇av| 秋霞在线观看毛片| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久精品夜色国产| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 免费黄色在线免费观看| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 色婷婷久久久亚洲欧美| 熟女av电影| 免费观看a级毛片全部| 91精品国产国语对白视频| videos熟女内射| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 免费看av在线观看网站| 熟女电影av网| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲av片在线观看秒播厂| 国产精品一区二区性色av| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| 嫩草影院新地址| 色视频在线一区二区三区| 久久99热这里只频精品6学生| 亚洲欧美清纯卡通| 超碰97精品在线观看| 久久久久久久久久成人| av天堂中文字幕网| 日产精品乱码卡一卡2卡三| 日韩不卡一区二区三区视频在线| 少妇的逼好多水| 精品卡一卡二卡四卡免费| 嫩草影院新地址| 亚洲精品第二区| 观看免费一级毛片| 国产精品一区二区性色av| 在线观看国产h片| 三上悠亚av全集在线观看 | 狂野欧美激情性bbbbbb| 亚洲中文av在线| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| 熟女人妻精品中文字幕| 亚洲,欧美,日韩| 日本wwww免费看| 男人爽女人下面视频在线观看| 久久av网站| 亚洲欧美成人综合另类久久久| 男人和女人高潮做爰伦理| 亚洲国产精品999| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| 五月玫瑰六月丁香| 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品| 大香蕉久久网| 亚洲精品乱码久久久久久按摩| 国产成人一区二区在线| 久久精品国产亚洲av天美| 国产精品99久久久久久久久| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡 | 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 男女无遮挡免费网站观看| 尾随美女入室| 人体艺术视频欧美日本| 国产熟女午夜一区二区三区 | av国产精品久久久久影院| 久久人人爽人人片av| h视频一区二区三区| 高清黄色对白视频在线免费看 | 极品少妇高潮喷水抽搐| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 免费不卡的大黄色大毛片视频在线观看| 伦理电影免费视频| 在线观看免费高清a一片| 久久97久久精品| 国产精品嫩草影院av在线观看| 最近的中文字幕免费完整| 免费黄频网站在线观看国产| 女性生殖器流出的白浆| 国产精品国产三级专区第一集| 久久久国产一区二区| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 国产毛片在线视频| 这个男人来自地球电影免费观看 | 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频| 国产亚洲一区二区精品| 欧美xxⅹ黑人| 91精品国产国语对白视频| av专区在线播放| 最黄视频免费看| 久久久久网色| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看| av天堂久久9| 成年美女黄网站色视频大全免费 | 日韩在线高清观看一区二区三区| 欧美高清成人免费视频www| 亚洲精品视频女| 一边亲一边摸免费视频| 成年人午夜在线观看视频| 日本欧美视频一区| 国产免费福利视频在线观看| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 高清黄色对白视频在线免费看 | 久久久久久久亚洲中文字幕| 在线天堂最新版资源| xxx大片免费视频| videossex国产| 精品视频人人做人人爽| 国产精品国产三级国产av玫瑰| 亚洲成人一二三区av| 久久99一区二区三区| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 国产成人91sexporn| 青春草国产在线视频| 欧美xxⅹ黑人| 插阴视频在线观看视频| 久久久国产精品麻豆| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| 下体分泌物呈黄色| 波野结衣二区三区在线| 天美传媒精品一区二区| 亚洲欧美成人精品一区二区| 有码 亚洲区| 老熟女久久久| 少妇人妻一区二区三区视频| 下体分泌物呈黄色| 看十八女毛片水多多多| 成人国产av品久久久| 老司机影院成人| 热re99久久精品国产66热6| 亚洲欧美日韩东京热| 日韩不卡一区二区三区视频在线| 午夜91福利影院| 国产一区有黄有色的免费视频| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 老司机影院毛片| 亚洲av福利一区| 99热全是精品| 国产精品.久久久| 久久人人爽人人爽人人片va| 免费看日本二区| 久久久久久久久久成人| 精品一区在线观看国产| 久久这里有精品视频免费| 日日撸夜夜添| 国产在线一区二区三区精| 国产一区二区三区av在线| 精品人妻熟女av久视频| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 亚洲欧美日韩东京热| 久久ye,这里只有精品| 日韩视频在线欧美| 精品午夜福利在线看| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 国产 精品1| 亚洲第一区二区三区不卡| 在线观看免费高清a一片| 麻豆成人av视频| 黑人猛操日本美女一级片| 观看免费一级毛片| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 最新中文字幕久久久久| 三上悠亚av全集在线观看 | 国产爽快片一区二区三区| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 日韩人妻高清精品专区| 欧美 亚洲 国产 日韩一| 三级经典国产精品| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| av一本久久久久| 亚洲三级黄色毛片| 大片电影免费在线观看免费| 日本欧美视频一区| 国产男人的电影天堂91| 精品一区二区三卡| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| freevideosex欧美| 黄色视频在线播放观看不卡| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 成人免费观看视频高清| av卡一久久| 欧美激情极品国产一区二区三区 | √禁漫天堂资源中文www| 老司机影院成人| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 久久久国产精品麻豆| 久久97久久精品| 亚洲,欧美,日韩| 久久午夜综合久久蜜桃| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 97超碰精品成人国产| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 一级片'在线观看视频| tube8黄色片| www.色视频.com| 高清毛片免费看| 欧美bdsm另类| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 99久久人妻综合| 久久精品国产自在天天线| 美女视频免费永久观看网站| 欧美bdsm另类| 国产成人aa在线观看| 一个人看视频在线观看www免费| av国产精品久久久久影院| 性色av一级| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| av.在线天堂| 久久99一区二区三区| 18禁在线播放成人免费| av在线老鸭窝| 精品人妻熟女毛片av久久网站| 亚洲精品亚洲一区二区| 国产av国产精品国产| 国产在线一区二区三区精| 成人亚洲欧美一区二区av| 永久免费av网站大全| 色婷婷av一区二区三区视频| 午夜91福利影院| 亚洲国产精品国产精品| 女人久久www免费人成看片| 久久99精品国语久久久| av天堂久久9| 国产深夜福利视频在线观看| 日韩一本色道免费dvd| 9色porny在线观看| 日韩一区二区三区影片| 国产精品国产av在线观看| av.在线天堂| 在线观看三级黄色| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 国产综合精华液| 黄色欧美视频在线观看| 69精品国产乱码久久久| 国内精品宾馆在线| 国产欧美亚洲国产| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 久久99热这里只频精品6学生| 99热这里只有是精品50| 一区在线观看完整版| 欧美 日韩 精品 国产| 少妇丰满av| 99久久人妻综合| 我的女老师完整版在线观看| 亚洲国产毛片av蜜桃av| 国产欧美日韩综合在线一区二区 | 久久久久国产精品人妻一区二区| 日韩在线高清观看一区二区三区| 少妇丰满av| 日本爱情动作片www.在线观看| 国产91av在线免费观看| 亚洲精品自拍成人| 国产精品久久久久成人av| 精品少妇黑人巨大在线播放| 国产亚洲91精品色在线| 高清毛片免费看| 日本av免费视频播放| 欧美精品亚洲一区二区| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 男女无遮挡免费网站观看| 精品国产一区二区久久| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 欧美+日韩+精品| 精品久久久久久电影网| 日韩亚洲欧美综合| 看免费成人av毛片| 精品久久久久久电影网| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 亚洲精品国产av成人精品| 黄色配什么色好看| 亚洲欧洲精品一区二区精品久久久 | 日韩亚洲欧美综合| 久久久国产精品麻豆| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 七月丁香在线播放| 欧美 日韩 精品 国产| 国产亚洲5aaaaa淫片| 久久久久网色| 色网站视频免费| 美女福利国产在线| 国产有黄有色有爽视频| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 99热全是精品| 视频区图区小说| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频| 制服丝袜香蕉在线| 建设人人有责人人尽责人人享有的| 哪个播放器可以免费观看大片| 乱人伦中国视频| 日韩三级伦理在线观看| 亚洲精品一二三| av国产精品久久久久影院| freevideosex欧美| 国产片特级美女逼逼视频| 久久免费观看电影| 亚洲精品456在线播放app| 亚洲av成人精品一二三区| 国产高清三级在线| 十分钟在线观看高清视频www | 99热网站在线观看| 青春草视频在线免费观看| 免费久久久久久久精品成人欧美视频 | 欧美日韩视频高清一区二区三区二| 久久久国产精品麻豆| 2021少妇久久久久久久久久久| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放 | 国产在线男女| 日日摸夜夜添夜夜爱| 免费观看在线日韩| a级毛色黄片| 少妇被粗大猛烈的视频| 国产色婷婷99| 人人澡人人妻人| 国产高清不卡午夜福利| 黄色视频在线播放观看不卡| 婷婷色综合大香蕉| 国产色爽女视频免费观看| 91久久精品国产一区二区三区| 免费看光身美女| 插阴视频在线观看视频| 久久久午夜欧美精品| 特大巨黑吊av在线直播| 日韩中文字幕视频在线看片| 午夜福利,免费看| 91精品伊人久久大香线蕉| 男女免费视频国产| 男人狂女人下面高潮的视频| 一级毛片 在线播放| a级一级毛片免费在线观看| 精品少妇久久久久久888优播| 国产av码专区亚洲av| 少妇人妻精品综合一区二区| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 国产乱来视频区| 日韩制服骚丝袜av| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va| 成年人免费黄色播放视频 | 久久久国产精品麻豆| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久热这里只有精品99| 一级二级三级毛片免费看| 99精国产麻豆久久婷婷| 国产乱来视频区| 亚洲综合色惰| a级片在线免费高清观看视频| 王馨瑶露胸无遮挡在线观看| 久久免费观看电影| 黑人巨大精品欧美一区二区蜜桃 | 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 王馨瑶露胸无遮挡在线观看| 这个男人来自地球电影免费观看 | 高清午夜精品一区二区三区| 丰满饥渴人妻一区二区三| 精品久久久久久电影网| 亚洲精华国产精华液的使用体验| 六月丁香七月| freevideosex欧美| 乱码一卡2卡4卡精品| 久久午夜综合久久蜜桃| 国产av码专区亚洲av| 久久99热6这里只有精品| 亚洲国产精品专区欧美| 亚洲精品一二三| 一级毛片我不卡| 国产精品偷伦视频观看了| 观看免费一级毛片| 视频中文字幕在线观看| 免费观看在线日韩| 久热久热在线精品观看| 五月玫瑰六月丁香| 人妻制服诱惑在线中文字幕| 国产 精品1| 亚洲国产av新网站| 免费看不卡的av| 热re99久久国产66热| 午夜日本视频在线| 日本91视频免费播放| 少妇裸体淫交视频免费看高清| 肉色欧美久久久久久久蜜桃| 另类精品久久| 五月玫瑰六月丁香| 黄色一级大片看看| 欧美精品亚洲一区二区| 国产一区二区在线观看av| 精品久久久噜噜| 久久人人爽人人爽人人片va| 国产又色又爽无遮挡免| 国产av国产精品国产| 精品国产露脸久久av麻豆| av国产精品久久久久影院| 插逼视频在线观看| 国产免费视频播放在线视频| 午夜福利在线观看免费完整高清在| 欧美 亚洲 国产 日韩一| 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 久久久久久伊人网av| 午夜免费观看性视频| 一级毛片久久久久久久久女| 欧美最新免费一区二区三区| a 毛片基地| 欧美亚洲 丝袜 人妻 在线| 国产精品蜜桃在线观看| 一级毛片 在线播放| 国产伦精品一区二区三区四那| 久久久久久久精品精品| 久久久久国产网址| 亚洲国产最新在线播放| 我的老师免费观看完整版| 色视频www国产| 亚洲伊人久久精品综合| 国产高清三级在线| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡 | 女人久久www免费人成看片| 美女cb高潮喷水在线观看| 最新的欧美精品一区二区| 成人二区视频| 女人精品久久久久毛片| 另类亚洲欧美激情| 黄色怎么调成土黄色| 人体艺术视频欧美日本| av女优亚洲男人天堂| 国产精品成人在线| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 国产成人免费无遮挡视频| 午夜日本视频在线| 在线观看一区二区三区激情| 久久6这里有精品| 日日啪夜夜撸| 国产免费又黄又爽又色| 六月丁香七月| 国产精品无大码| h视频一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品无大码| 午夜视频国产福利|