• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrical Properties of an m×n Hammock Network?

    2018-06-11 12:21:28ZhenTan譚震ZhiZhongTan譚志中andLingZhou周玲
    Communications in Theoretical Physics 2018年5期

    Zhen Tan(譚震),Zhi-Zhong Tan(譚志中), and Ling Zhou(周玲)

    1School of Electronics and Information,Nantong University,Nantong 226019,China

    2Department of Physics,Nantong University,Nantong 226019,China

    Electric circuit theory has become the basic theory of modern electronic science and automation industry,which if rst studied by Kirchho ff[1]more than 170 years ago,is the calculation of effective resistances in the resistor networks.The development of natural science raises many complex new problems and requires people to fi nd the basic method to resolve them.It was found that many problems could be resolved by building a resistor network model.Nowadays,the resistor networks can not only be used in electrical field but also in non-electrical systems,and the numerical analysis and simulation research by modeling resistor network has become a good technique to work out a series of complicated problems.[2?3]

    The main problem studied in the resistor network model is the calculation of effective resistance and node potential. Researchers have made great progress in the field of resistor networks,and made a lot of applications. Such as,classical transport,[2]electromigration phenomena,[3]lattice Greens functions,[4]graph theory,[5]resistance distance,[6]infinite network,[7?8]finite network,[9]and impedance network,[10]corner-to-corner resistance,[11?12]and so on.As you know,the calculation of node potential is relevant to many important problems,such as the transmission line,electrostatic field,IC design,and Laplace equation.In real life,the two-dimensional difference equations are common problems,such as the second order discrete equationis called Poisson equation,when kx the equation reduces to the discrete Laplace equationThese

    1 Introduction

    questions may be resolved by modelling resistor networks.Thus,many practical problems of calculation of potential can be resolved by modelling resistor network.[13?14]In fact,the Laplace equation is important in many fields of science and physics,which involves multiple disciplines such as electromagnetism,astronomy,and fl uid dynamics,and heat conduction,and so on.

    Reviewing the history of resistor networks,we find that several good methods for calculating the effective resistance of resistor networks have been found.Such as Cserti[7]and Giordano[8]derived the resistance formulae of the infinite network by the Green function technique,Wu[9]formulated a different approach by Laplacian matrix,and derived the explicit expressions for the resistance in both finite and infinite lattices.Later the Laplacian method extended to the complex impedance network,[10]and to the network with zero resistor boundary[15?17]and to the other resistor networks.[18?19]In recent years,a new Recursion-Transform(RT)method was proposed by Tan,[20?22]which is different from the Laplacian method since the RT method just depends on one matrix along one directions(Wu’s method needs two matrices along two directions).With the applications of the RT method,many resistance formulae were discovered.[21?33]

    According to the above analysis the computation of effective resistance have made great progress.However,the calculation of the nodal potential has been a difficult problem and does not be resolved until the recent research of literature,[34]which gives the precise potential formulae of the fan and cobweb networks by the RT method with potential parameters for the first time.Due to the complex structure of the resistor networks,there are still many potential of the resistor networks needs to derive.As a summary,the RT method includes two types,namely RT-I method and RT-V method,where the RT-I method is shorthand for the recursion-transform method with current parameters,[20?22]and the RT-V method is shorthand for the recursion-transform method with potential parameters.[34]Reference[28]had ever calculated the effective resistance of the hammock network as shown in Fig.1,but the electric potential of the hammock network has not been resolved before.In this paper we are going to study the electrical properties(involves potential formula,branch currents,and equivalent resistance)of the arbitrary hammock network by the RT-I method,and made a new research progress.

    2 Potential Formula of Hammock Network

    We study an arbitrary m×n hammock network as shown in Fig.1,where r0and r are the resistors along vertical and horizontal directions,and m and n are,respectively,the numbers of resistors along vertical and horizontal directions.Assuming the pole O is the origin of coordinate system,and the Y axis is selected on the left edge.Using coordinate{x,y}to denote nodes of the network,and denote potential function of node d(x,y)by Um×n(x,y).

    Fig.1 A 7×8 hammock network in which 7 and 8 are the resistor numbers along the vertical and horizontal directions.Resistors in the vertical and horizontal directions are,respectively,r0and r.

    Theorem:Assuming the current J goes from d1(x1,y1)to d2(x2,y2),and selecting the reference potential Um×n(0,0)=0,the potential of node d(x,y)in the m×n hammock network is

    where we define

    with b=r/r0.

    In particular,when n→∞but m is finite,Fig.1 is called a semi-infinite network,the potential formula of node d(x,y)in the m×n hammock network can be written as

    Equations(1)and(6)are the potential formulae of any point in an arbitrary hammock network,which are discovered by this paper for the first time.

    3 A General Theory and Approach

    3.1 A General Idea

    Fig.2 Segment of resistor network with current directions and parameters.

    To compute the node potential of an arbitrary node in the m×n hammock network,we inject a current J into the network at d1(x1,y1)and exit the current at d2(x2,y2).Denoting the branch currents in all segments of the network as shown in Fig.2.Assuming the branch currents passing through all n+1 column resistors of r0,respectively,areand U(0,0)=0.By Ohm’s law the potential at node d(x,y)relative to the O(0,0)can be written as

    Obviously,to find the explicitis important.How to solve the branch currentis the key to the problem.We are going to resolve the question by the RT-I method.

    3.2 Modelling Recurrence Relations

    A segment of the hammock network is shown in Fig.2.Using Kirchho ff’s law to analyze the resistor sub-network,we can get the meshes voltage equations and the nodes current equations.Thus,we obtain the following equation of only containing current parameters along vertical direction by eliminating the current parameters along horizontal direction,

    where b=r/r0.When considering the input and output of current J,Eq.(8)can be rewritten as a matrix form,

    where Ikis an m×1 column matrix,

    where the delta function δi,ymeans: δi,y(y=i)=1,δi,y(yi)=0,and

    Next,according to the RT-I method that we need to build the equations of boundary conditions by the left and right edges.Similar to Eq.(9)to establish the constraint equation,we get

    where E is the m×m identity matrix,matrix Bmis given by Eq.(12).

    So far,we achieved all Eqs.(9)–(14)needed to calculate the branch current and the node potential of the m×n hammock network.However,according to the investigation,it is impossible for us to obtaindirectly by Eqs.(9)–(14).Thanks for the RT-I method was proposed,[20?22]which can solve this question indirectly.

    3.3 Matrix Transform Method

    By RT-I method we rebuild a new difference equation to solveindirectly.To realize the idea,we multiply Eq.(9)from the left side by an m×m undetermined square matrix Qm,yields

    For making QmBm=TmQm,we must work out the eigenvalues of matrix Bm.Taking

    Solving Eq.(16)we obtain the eigenvalues

    where θi=(i? 1)π/m.Thus,we can obtain the matrix of eigenvectors by following identity

    where Tm=diag{t1,t2,...,tm},solving Eq.(18),we therefore obtain the eigenvectors

    with the inverse matrix

    where[]Tdenotes matrix transpose.By RT-I method,we define

    where Ymis an m×1 column matrix,namely

    Thus,applying Eqs.(18)and(21)to(15)we therefore obtain a main equation

    where

    Next,we transform Eqs.(13)and(14)by multiplying Qmon the left-hand side,we get

    At this point,we have constructed the matrix transform.Obviously,we can already resolve Eq.(23)because it has become a simple linear equation.

    3.4 General Solutions of Matrix Equations

    In this section,we are going to derive the exact solution ofby Eq.(23)and Eqs.(25)–(26).Assuming the λiandare the roots of the characteristic equation for Yk,we therefore obtain Eq.(5).

    When i=1,there be θ1=0,from Eq.(17)we have the eigenvalue t1=2.So we need to consider the additional solution of Eq.(23).From Eq.(23)and Eqs.(25)–(26),we obtain

    Using Eqs.(19)and(21),we have

    According to Fig.1 and the current fluxes in all network,we have

    Putting Eqs.(27)and(29)into Eq.(28)yields

    When i≥2,we need to consider the piecewise solutions of Eq.(23)with the input and output of current J,we get

    whereis defined in Eq.(3).Solving Eqs.(31)–(35)together with Eqs.(25)–(26),we get(i≥2)

    whereare defined in Eqs.(3)and(4),and ζ1,i,ζ2,iare given by Eq.(24).

    Thus the key parameters have been completely expressed by Eqs.(30)and(36),and Eq.(36)together with Eq.(30)are all general solutions of matrix Eqs.(23),(25),and(26).

    3.5 Derivation of Potential Function

    According to the require of Eq.(7),we need to derive the solutions of branch currents by using the above results.From Eq.(21),we can obtainby making use of the inverse transform matrix.Using Eqs.(19),(20),and(21)we get

    Formula(37)is a key current function,in the following all the calculations will depend on this equation.Further,we obtain its summationsin Eq.(7),such as summing Eq.(37)over k from k=1 to y yields

    whereis given by Eqs.(30)and(36),and the following equation is used,

    Substituting Eqs.(30)and(36)into Eq.(38),we get

    whereis defined in Eq.(4).

    Next,we are going to derive the potential function based on the above results.Because formula(40)is a general solution which is suitable to any conditions,thus substituting Eq.(40)into Eq.(7),we obtain

    Putting Eq.(24)into Eq.(41),we therefore achieve formula(1).

    In addition,we consider the condition of n → ∞ with m finite.By Eqs.(3)–(5),we get

    Applying Eq.(42)to Eq.(1),we get

    By Eq.substitute to Eq.(43)we therefore achieve Eq.(6).

    So far,the main results proposed in Sec.2 have been verified.Equations(1)and(6)are discovered for the first time by this paper.

    4 Applications of Potential Formula

    Owing to Eq.(1)is a general potential formula of hammock network,that is to say,the parameters in formula(1)are arbitrary,we can get a series of special and interesting results when we take some special conditions in formula(1).In the following,we always assume U(0,0)=0.

    Application 1 Consider an arbitrary m×n hammock network as shown in Fig.1.Assume the outputted current J meets d2(x2,y2)=O(0,0),and the current J is inputted in the network at the node d1(x1,y1),from Eq.(1)with Sy2,i=S0,i=0,the potential of node d(x,y)is

    whereis defined in Eq.(4).

    Application 2 Consider an arbitrary m×n hammock network of Fig.1.When inject current J at node d1(x1,y1)and exit the current J at node d2(x1,y2)(x2=x1),the potential function of node is

    where Sk,iis defined in Eq.(2),and β(i)x1∨xis defined in Eq.(4).

    Application 3 Consider an arbitrary m×n hammock network of Fig.1.When the current J goes from node d1(0,0)to node d2(x2,m),we have y1=0,y2=m,from Eq.(1),we have

    When the current J goes from node d1(x1,m)to node d2(0,0),from Eq.(1),we get

    Eqs.(46)and(47)tell us that the input and output place of current J affects the expression of the potential.

    Application 4 Consider an arbitrary m×n hammock network of Fig.1.When the current J goes from node d1(x1,y1)to node d2(x2,y1),from Eq.(1)with y1=y2,the potential of node d(x,y)can be written as

    Application 5 In Fig.1,assuming the current injected at node di(xi,y1)(i=0,1,...,k)on the same horizontal axis is k/J,and the current exited from the pole O(0,0)is J.From Eq.(44),we have the potential function

    In particular,if the node di(xi,y1)is evenly distributed on the same horizontal axis of the n+1 nodes,then the potential at node d(x,y)is

    Proof of Eq.(50):

    Due to the potential is a scalar,each current source will produce a potential independently,when the n+1 currents input to the network,any node potential is the summations of n+1 potentials.By Eq.(49)we get the potential

    Next we calculate the sums of.From Eq.(4)we have)

    Because xk,x are the natural numbers,and 0≤|xk?x|≤n,thus

    Putting Eq.(53)into Eq.(51),we immediately obtain formula(50).

    5 Resistance of Hammock Network

    Consider an arbitrary m×n hammock network as shown in Fig.1.The effective resistance between d1(x1,y1)and d2(x2,y2)in an m×n hammock network can be written as

    where we simply callis defined in Eq.(2).

    Proof of Eq.(54):

    Assuming the potentials at d1(x1,y1)and d2(x2,y2)are U(x1,y1)and U(x2,y2),using Ohm’s law we get By Eq.(1),setting(x,y)=(x1,y1)and(x,y)=(x2,y2)respectively,we get

    Substituting Eqs.(56)and(57)into Eq.(55),we therefore obtain formula(54).

    Please note that Ref.[28]has studied the equivalent resistance of the m×n hammock network,and gave out the formula is as Eq.(54).But our approach is based on the potential function which is different from Ref.[28].Clearly using potential function to derive the equivalent resistance is more easy than the other method.

    6 Conclusion and Comment

    It is important for us to search for the explicit potential formula of an arbitrary resistor network because researchers are used to simulating many problems by means of resistor network model,but it has been a difficult thing to find the potential formula of the resistor network.In this paper,we obtained a series of exact potential formulae of an m×n hammock network by the RT-I method for the first time.In academic research,from ancient to present there are only two papers proposed the precise potential formula,the first article is Ref.[34]which first find the potential formulae of the fan and cobweb networks by the RT-V method,the second article is this paper which first find the potential formula of the hammock network by the RT-I method.Please note that RT-I method is different from RT-V method because the RT-I method relies on current parameters other than the RT-V method relies on potential parameters.Thus our research is a theoretical innovation since we first use the RT-I method to compute the potential of the network.

    As applications of the potential function in an arbitrary m×n hammock network,many interesting results are produced such as Eqs.(44)–(50),and naturally the equivalent resistance formula is deduced by the potential formula such as Eq.(54).A review of the Laplace method used in Ref.[28]that,when applied to the hammock network,gives the result in terms of a double summation.Compared to the actual method,the RT-I method offers a direct and somewhat simpler approach since the RT-I method applied to the hammock network gives the result in terms of a single summation,such as the results of Eqs.(1)and(54).In additional,the RT-I method can be extended to impedance networks if we replace resistors by impedances.

    [1]G.Kirchho ff,Ann.Phys.Chem.148(1847)497.

    [2]S.Kirkpatrick,Rev.Mod.Phys.45(1973)574.

    [3]C.Pennetta,E.Al finito,L.Reggiani,et al.,Phys.Rev.B 70(2004)174305.

    [4]S.Katsura and S.Inawashiro,J.Math.Phys.12(1971)1622.

    [5]Woong Kook,Adv.Appl.Math.46(2011)417.

    [6]D.J.Klein and M.Randi,J.Math.Chem.12(1993)8195.

    [7]J.Cserti,Am.J.Phys.68(2000)896.

    [8]S.Giordano,Int.J.Circ.Theor.Appl.33(2005)519.

    [9]F.Y.Wu,J.Phys.A:Math.Gen.37(2004)6653.

    [10]W.J.Tzeng and F.Y.Wu,J.Phys.A:Math.Gen.39(2006)8579.

    [11]J.W.Essam and F.Y.Wu,J.Phys.A:Math.Theor.42(2009)025205.

    [12]N.Sh.Izmailian and M.C.Huang,Phys.Rev.E 82(2010)011125.

    [13]M.C.Lai and W.C.Wang,Numer.Methods Partial Differ.Equ.18(2010)56.

    [14]L.Borges and P.Daripa,J.Comput.Phys.169(2001)151.

    [15]N.Sh.Izmailian,R.Kenna,and F.Y.Wu,J.Phys.A:Math.Theor.47(2014)035003.

    [16]N.Sh.Izmailian and R.Kenna,J.Stat.Mech.9(2014)1742.

    [17]N.Sh.Izmailian and R.Kenna,Chin.J.Phys.53(2015)040703.

    [18]J.H.Asad,J.Stat.Phys.150(2013)1177.

    [19]J.H.Asad,Mod.Phys.Lett.B 27(2013)151350112.

    [20]Z.Z.Tan,Chin.Phys.B 24(2015)020503.

    [21]Z.Z.Tan,Phys.Rev.E 91(2015)052122.

    [22]Z.Z.Tan,Sci.Rep.5(2015)11266.

    [23]Z.Z.Tan,L.Zhou,and J.H.Yang,J.Phys.A:Math.Theor.46(2013)195202.

    [24]Z.Z.Tan,J.W.Essam,and F.Y.Wu,Phys.Rev.E 90(2014)012130.

    [25]J.W.Essam,Z.Z.Tan,and F.Y.Wu,Phys.Rev.E 90(2014)032130.

    [26]Z.Z.Tan and J.H.Fang,Commun.Theor.Phys.63(2015)36.

    [27]Z.Z.Tan,Int.J.Circ.Theor.Appl.43(2015)1687.

    [28]J.W.Essam,N.S.Izmailian,R.Kenna,and Z.Z.Tan,R.Soc.Open Sci.2(2015)140420.

    [29]Z.Z.Tan,Commun.Theor.Phys.67(2017)280.

    [30]Z.Z.Tan and Q.H.Zhang,Acta Phys.Sin.66(2017)070501.

    [31]Z.Z.Tan,Chin.Phys.B 25(2016)050504.

    [32]L.Zhou,Z.Z.Tan,and Q.H.Zhang,Front.Inform.Technol.Electron.Eng.18(2017)1186.

    [33]Z.Z.Tan,J.H.Asad,and M.Q.Owaidat,Int.J.Circ.Theor.Appl.45(2017)1942.

    [34]Z.Z.Tan,Chin.Phys.B 26(2017)090503.

    满18在线观看网站| 五月开心婷婷网| 欧美+亚洲+日韩+国产| 国产高清视频在线播放一区 | 制服人妻中文乱码| 大码成人一级视频| 免费看av在线观看网站| 国产成人精品久久二区二区免费| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 五月天丁香电影| 丰满饥渴人妻一区二区三| 亚洲av成人不卡在线观看播放网 | 深夜精品福利| 亚洲熟女毛片儿| 国产一区有黄有色的免费视频| 激情视频va一区二区三区| 婷婷成人精品国产| 丰满饥渴人妻一区二区三| 在线观看www视频免费| 一二三四在线观看免费中文在| 国产精品99久久99久久久不卡| 欧美日韩黄片免| 乱人伦中国视频| 欧美97在线视频| 尾随美女入室| 亚洲人成77777在线视频| 日韩精品免费视频一区二区三区| 中国国产av一级| 中文欧美无线码| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品久久久久5区| 中国美女看黄片| 老司机午夜十八禁免费视频| 一边亲一边摸免费视频| av电影中文网址| 精品少妇一区二区三区视频日本电影| 老司机在亚洲福利影院| 一级黄片播放器| 狂野欧美激情性bbbbbb| 亚洲av综合色区一区| 丝瓜视频免费看黄片| 日本91视频免费播放| 国产av一区二区精品久久| 欧美激情高清一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 国产成人啪精品午夜网站| 久久久久精品国产欧美久久久 | 人妻 亚洲 视频| 亚洲国产精品999| 99国产精品免费福利视频| 亚洲精品美女久久久久99蜜臀 | 一区二区三区乱码不卡18| 在现免费观看毛片| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看 | 日韩制服丝袜自拍偷拍| 精品久久久久久久毛片微露脸 | 高清av免费在线| 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院| 亚洲激情五月婷婷啪啪| 脱女人内裤的视频| 男女午夜视频在线观看| 黑丝袜美女国产一区| 极品人妻少妇av视频| 99九九在线精品视频| 嫩草影视91久久| 国产精品久久久人人做人人爽| 午夜免费男女啪啪视频观看| 亚洲第一青青草原| 久久av网站| 考比视频在线观看| 国产免费现黄频在线看| 亚洲国产精品一区二区三区在线| 日本午夜av视频| 黄片播放在线免费| 一级黄片播放器| 国产精品香港三级国产av潘金莲 | 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 国产精品久久久久久精品古装| 乱人伦中国视频| h视频一区二区三区| 国产一区二区三区综合在线观看| 捣出白浆h1v1| 亚洲国产日韩一区二区| 成人亚洲欧美一区二区av| 麻豆国产av国片精品| 伦理电影免费视频| 一边摸一边抽搐一进一出视频| 97在线人人人人妻| 久久精品国产亚洲av涩爱| 日韩av不卡免费在线播放| 国产国语露脸激情在线看| 亚洲国产精品一区三区| 99九九在线精品视频| 少妇 在线观看| 极品少妇高潮喷水抽搐| 久久av网站| 高清黄色对白视频在线免费看| 操出白浆在线播放| 久久热在线av| 午夜视频精品福利| 国产又色又爽无遮挡免| 久久中文字幕一级| av有码第一页| 伦理电影免费视频| 一级,二级,三级黄色视频| 国产熟女欧美一区二区| 在线观看免费日韩欧美大片| av又黄又爽大尺度在线免费看| 91精品国产国语对白视频| 天堂俺去俺来也www色官网| 搡老岳熟女国产| 久久人妻福利社区极品人妻图片 | 晚上一个人看的免费电影| 五月开心婷婷网| 99久久精品国产亚洲精品| 咕卡用的链子| 亚洲人成网站在线观看播放| 欧美日韩一级在线毛片| 亚洲精品日本国产第一区| h视频一区二区三区| 欧美日韩成人在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 久久99精品国语久久久| 精品国产国语对白av| 欧美av亚洲av综合av国产av| 只有这里有精品99| 日韩免费高清中文字幕av| 一区福利在线观看| av福利片在线| 亚洲一区中文字幕在线| 日本黄色日本黄色录像| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 久久人妻福利社区极品人妻图片 | 老汉色av国产亚洲站长工具| 亚洲伊人久久精品综合| 一级a爱视频在线免费观看| 人妻一区二区av| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 亚洲精品一二三| av福利片在线| 国产精品熟女久久久久浪| 91麻豆精品激情在线观看国产 | 乱人伦中国视频| 国产有黄有色有爽视频| 中国国产av一级| 中文字幕亚洲精品专区| 男女下面插进去视频免费观看| 久久影院123| 国产高清视频在线播放一区 | 久久久久视频综合| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 男女国产视频网站| 涩涩av久久男人的天堂| 一级,二级,三级黄色视频| xxxhd国产人妻xxx| 91成人精品电影| 老鸭窝网址在线观看| 黄色a级毛片大全视频| 亚洲av成人不卡在线观看播放网 | 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 久久女婷五月综合色啪小说| av天堂久久9| 国产爽快片一区二区三区| 中文字幕人妻丝袜制服| 脱女人内裤的视频| 午夜免费观看性视频| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 90打野战视频偷拍视频| 国产一区二区 视频在线| www.自偷自拍.com| 黑丝袜美女国产一区| 人人妻人人澡人人看| 一区二区三区四区激情视频| 手机成人av网站| 久久精品国产a三级三级三级| 亚洲精品美女久久久久99蜜臀 | 97精品久久久久久久久久精品| 成年动漫av网址| 久久中文字幕一级| 成人18禁高潮啪啪吃奶动态图| 国产在线一区二区三区精| 欧美精品一区二区大全| 久久青草综合色| 欧美精品高潮呻吟av久久| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 巨乳人妻的诱惑在线观看| 中文欧美无线码| 亚洲精品国产av成人精品| 精品人妻在线不人妻| 免费看十八禁软件| 黄片小视频在线播放| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看 | 99国产精品99久久久久| 午夜视频精品福利| 欧美日韩综合久久久久久| 欧美黄色淫秽网站| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂| 大香蕉久久网| 91国产中文字幕| 久久青草综合色| 亚洲精品第二区| 男女午夜视频在线观看| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 久久人妻福利社区极品人妻图片 | 国产av一区二区精品久久| 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 国产日韩欧美亚洲二区| 你懂的网址亚洲精品在线观看| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 亚洲第一青青草原| 国产精品一国产av| 国产激情久久老熟女| 丝袜美足系列| 99久久人妻综合| 国产三级黄色录像| 久久精品久久久久久噜噜老黄| 91老司机精品| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 国产亚洲精品久久久久5区| 91麻豆av在线| 色婷婷久久久亚洲欧美| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠婷婷综合久久久久久88av| 一本色道久久久久久精品综合| 老司机亚洲免费影院| 青春草视频在线免费观看| 日韩一本色道免费dvd| 搡老乐熟女国产| 99久久人妻综合| 国产黄频视频在线观看| 一边摸一边抽搐一进一出视频| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 婷婷丁香在线五月| 韩国精品一区二区三区| 观看av在线不卡| 亚洲欧美精品综合一区二区三区| 51午夜福利影视在线观看| 亚洲色图综合在线观看| 考比视频在线观看| 国产精品免费大片| 涩涩av久久男人的天堂| 亚洲国产av新网站| 久久久久久人人人人人| 又大又爽又粗| 老司机在亚洲福利影院| 国产成人精品久久久久久| 99国产精品99久久久久| 成年人免费黄色播放视频| √禁漫天堂资源中文www| 精品人妻1区二区| 男人操女人黄网站| 国产精品国产三级国产专区5o| 肉色欧美久久久久久久蜜桃| netflix在线观看网站| 蜜桃在线观看..| 人人妻人人澡人人看| 国产精品久久久久成人av| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 亚洲欧洲日产国产| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 久久久久久久国产电影| 天堂中文最新版在线下载| 免费av中文字幕在线| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放| 精品一区二区三区四区五区乱码 | 性色av一级| 黄色一级大片看看| 国产成人免费观看mmmm| 欧美日韩精品网址| 国产在线视频一区二区| 欧美大码av| av欧美777| 色婷婷av一区二区三区视频| 国产在线一区二区三区精| 婷婷色综合大香蕉| 午夜两性在线视频| 免费看十八禁软件| 亚洲五月色婷婷综合| 亚洲七黄色美女视频| 亚洲欧美一区二区三区久久| 啦啦啦 在线观看视频| 精品第一国产精品| 18禁国产床啪视频网站| 欧美另类一区| 国产精品久久久人人做人人爽| 亚洲综合色网址| videos熟女内射| 国产成人av教育| 国产一级毛片在线| 成人黄色视频免费在线看| 97精品久久久久久久久久精品| 国产成人精品无人区| 国产精品久久久久成人av| 成在线人永久免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 国产一区二区三区综合在线观看| 我的亚洲天堂| 日本黄色日本黄色录像| 国产精品一区二区免费欧美 | 十八禁人妻一区二区| 精品福利观看| 麻豆av在线久日| 9热在线视频观看99| 国产三级黄色录像| 9色porny在线观看| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 一个人免费看片子| 亚洲av男天堂| 亚洲av成人不卡在线观看播放网 | 亚洲成国产人片在线观看| 亚洲精品中文字幕在线视频| 视频在线观看一区二区三区| av不卡在线播放| 黄色一级大片看看| 看免费av毛片| 亚洲国产精品999| 欧美中文综合在线视频| 久久精品熟女亚洲av麻豆精品| 日韩一卡2卡3卡4卡2021年| 热re99久久精品国产66热6| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡| 国产精品亚洲av一区麻豆| 亚洲精品国产av成人精品| 欧美黑人精品巨大| 久久久亚洲精品成人影院| 久久久久久久久免费视频了| 精品久久久久久电影网| 大型av网站在线播放| 亚洲综合色网址| 黄网站色视频无遮挡免费观看| 亚洲国产精品999| 国产成人影院久久av| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 五月开心婷婷网| 日韩中文字幕视频在线看片| 建设人人有责人人尽责人人享有的| 视频区欧美日本亚洲| 国产精品三级大全| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| 国产爽快片一区二区三区| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 男人操女人黄网站| 999精品在线视频| 国产精品国产三级专区第一集| 欧美精品亚洲一区二区| 伊人亚洲综合成人网| 我要看黄色一级片免费的| 人人妻人人澡人人爽人人夜夜| 高清不卡的av网站| 五月开心婷婷网| 91精品国产国语对白视频| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 夫妻性生交免费视频一级片| 亚洲自偷自拍图片 自拍| 51午夜福利影视在线观看| 久久久久网色| 色精品久久人妻99蜜桃| 久久精品久久久久久久性| 老鸭窝网址在线观看| 国产精品久久久久成人av| 成人午夜精彩视频在线观看| 亚洲熟女毛片儿| 午夜免费观看性视频| 亚洲av成人精品一二三区| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区免费欧美 | a级毛片黄视频| 精品久久久久久久毛片微露脸 | 一边亲一边摸免费视频| 国产一卡二卡三卡精品| 脱女人内裤的视频| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 久热爱精品视频在线9| 国产精品偷伦视频观看了| 老司机靠b影院| 亚洲欧洲国产日韩| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 久久久久精品人妻al黑| 99久久综合免费| 精品久久久久久久毛片微露脸 | 欧美成人午夜精品| 欧美日韩一级在线毛片| 丝袜喷水一区| www.熟女人妻精品国产| 久久久欧美国产精品| 一边亲一边摸免费视频| 丝袜喷水一区| 亚洲,欧美,日韩| 国产精品一国产av| 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| 精品一区在线观看国产| 午夜影院在线不卡| 日韩一卡2卡3卡4卡2021年| 少妇粗大呻吟视频| 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 你懂的网址亚洲精品在线观看| 在线观看免费高清a一片| 91精品三级在线观看| 中文字幕最新亚洲高清| h视频一区二区三区| 国产精品人妻久久久影院| 国产在线一区二区三区精| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 亚洲精品日韩在线中文字幕| 一区二区av电影网| 久久精品国产a三级三级三级| 久久这里只有精品19| 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 日韩免费高清中文字幕av| 九色亚洲精品在线播放| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 成人免费观看视频高清| 亚洲,一卡二卡三卡| av有码第一页| netflix在线观看网站| 成在线人永久免费视频| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看 | 亚洲情色 制服丝袜| 美女中出高潮动态图| 日韩一卡2卡3卡4卡2021年| 久久久久久人人人人人| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| 日韩av不卡免费在线播放| 美女午夜性视频免费| 国产成人一区二区在线| 777米奇影视久久| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 18禁观看日本| 最新的欧美精品一区二区| 国产精品久久久久久精品电影小说| 国产福利在线免费观看视频| 久久久久网色| 国产成人精品久久久久久| 久久精品亚洲熟妇少妇任你| 丝袜美腿诱惑在线| 国产1区2区3区精品| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 黄色a级毛片大全视频| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 两个人免费观看高清视频| 国产亚洲午夜精品一区二区久久| 成年动漫av网址| 欧美中文综合在线视频| 中文字幕制服av| 91国产中文字幕| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 成年av动漫网址| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看 | 十分钟在线观看高清视频www| 成年av动漫网址| 中文字幕色久视频| 亚洲久久久国产精品| 无限看片的www在线观看| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 久热爱精品视频在线9| 日韩av在线免费看完整版不卡| 久久精品国产综合久久久| 岛国毛片在线播放| 亚洲av电影在线观看一区二区三区| 国产主播在线观看一区二区 | 另类精品久久| 超色免费av| 久久久精品区二区三区| 国产黄频视频在线观看| 婷婷色av中文字幕| 69精品国产乱码久久久| 免费在线观看影片大全网站 | 美国免费a级毛片| 日本a在线网址| 国产片特级美女逼逼视频| 中国美女看黄片| 精品亚洲乱码少妇综合久久| 久久午夜综合久久蜜桃| 人体艺术视频欧美日本| 韩国高清视频一区二区三区| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 高清欧美精品videossex| 欧美成狂野欧美在线观看| 日本91视频免费播放| 黄片播放在线免费| 免费观看av网站的网址| 国产成人欧美| 日本猛色少妇xxxxx猛交久久| 在线天堂中文资源库| 五月天丁香电影| 精品国产乱码久久久久久小说| 久久精品aⅴ一区二区三区四区| 国产1区2区3区精品| 久久免费观看电影| 亚洲av成人不卡在线观看播放网 | 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 少妇被粗大的猛进出69影院| 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说| 成人国产一区最新在线观看 | 国产免费现黄频在线看| 秋霞在线观看毛片| 又大又黄又爽视频免费| 欧美变态另类bdsm刘玥| 9191精品国产免费久久| 久久精品亚洲av国产电影网| 亚洲精品一区蜜桃| 在线观看国产h片| 免费女性裸体啪啪无遮挡网站| 亚洲av综合色区一区| 一级片'在线观看视频| 九草在线视频观看| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 尾随美女入室| 老司机亚洲免费影院| 久久精品久久久久久噜噜老黄| 国产精品久久久人人做人人爽| 亚洲av片天天在线观看| 91国产中文字幕| 男人添女人高潮全过程视频| 99国产精品99久久久久| 十八禁人妻一区二区| 国产日韩欧美在线精品| 中文字幕av电影在线播放| 久久天躁狠狠躁夜夜2o2o | 久久久精品94久久精品| 国产男女超爽视频在线观看| 亚洲中文字幕日韩| 成人三级做爰电影| 国产精品二区激情视频| netflix在线观看网站| 大型av网站在线播放| 成年av动漫网址| 免费av中文字幕在线| 丝袜美腿诱惑在线| 欧美 日韩 精品 国产| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| www.自偷自拍.com| 欧美久久黑人一区二区| 天堂中文最新版在线下载| 麻豆乱淫一区二区| 午夜老司机福利片| 日韩视频在线欧美| 少妇猛男粗大的猛烈进出视频| 日韩av在线免费看完整版不卡| 一个人免费看片子| 国产成人免费无遮挡视频| 久久99精品国语久久久|