• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle Size Influence on the effective Permeability of Composite Materials?

    2018-06-11 12:21:26TaiXiang向泰RuNengZhong鐘汝能BinYao姚斌ShaoJingQin覃紹京andQinHongZheng鄭勤紅
    Communications in Theoretical Physics 2018年5期

    Tai Xiang(向泰),Ru-Neng Zhong(鐘汝能),Bin Yao(姚斌),Shao-Jing Qin(覃紹京),and Qin-Hong Zheng(鄭勤紅),?

    1Key Laboratory of Photoelectric Information Technology,Yunnan Province&Solar Energy Research Institute,Yunnan Normal University,Kunming 650500,China

    2Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    It is highly advantageous to obtain theoretical predictions for the electromagnetic parameters of materials,to establish the general dependence and relation between various microstructure and macroscopic quantities of composite materials.A theoretical estimation provides much more information than a numerical simulation data or an experimental data,and it guides material design.This work is concerned with the theoretical model of the technology and application of composite materials,especially for the effective permeability of particle dispersed system in Fig.1.

    The effective electromagnetic parameters of composite materials can be obtained through assumptions and simplifications,such as Clausius-Mossotti equation,[1]Lorentz-Lorentz equation[2]and Maxwell-Garnett formula.[3?5]Many such kind of self-consistent effective medium theories have been developed.[6?10]Markel summarized two tutorials which are devoted to the Maxwell-Garnett approximation and related theories.[11?12]The effective permeability of composites has been theoretically estimated.[13?17]The effective permeability of Ce2Fe17N3?δparticles/epoxy resin composites with various volume concentrations were measured in the frequency range of(0.1–15)GHz.[18]Materials were analyzed in a finite element software(COMSOL Multiphysicsc),[19]and other numerical methods.[20]The variation approach is another kind of method to calculate the effective magnetic permeability of composite material,[21?24]and it has been implemented numerically.[25]Series expansion and several derivations have been done for materials with special structures.[26?31]Numerical method in these schemes has also been developed.[32?33]

    In the meantime,the study of macroscopic electromagnetic properties of the soft magnetic composite has made much progress.[34?39]Peng et al.studied the effective electromagnetic parameters in random mixture media of magnetic iron fiber.[40]Choi et al.designed the microstructure with the prescribed magnetic permeability and proposed a design method to control the magnetic flux flow by layered microstructures.[41]Thabet et al.studied the effective permeability of new nanocomposites magnetic materials based on theoretical approaches at terahertz frequencies to exhibit weak electric and magnetic responses.[42]Barski et al. first considered the possibility of theoretical predictions of effective properties for smart materials.[43]

    According to the de fi nition of the magnetic permeability,one estimation of the effective magnetic permeability is calculated from the average of the fields /.This average method is used in Maxwell-Garnett formula.Another estimation of the effective magnetic permeability is calculated from the average of the energy /·.We call this the average energy field method.Energy method has a deep root in energy storage concept in magnetization process.In this work,we will compare the magnitude difference of these two estimations.There is a third estimation given by averaging ·/.Its magnitude can be given directly by the first two estimations.We will not discuss it for lack of physical meaning.In this work,for the composited material in Fig.1(a),we model the interfaces between the small particles and the medium as a finite thickness layer of substance in Fig.1(b).The particles are embedded in the medium homogeneously.Filler particles are surrounded by a matrix of media.There will be several stacks of atoms at the interface,which have properties different from the particle and different from the medium either.This interface layer has a thickness of nanoscale and we will model them into the interface layer with physical quantities for itself.

    Fig.1 Model for composite material with mixed particles.(a)There is not an interface layer on the surface of a particle.(b)There is an interface layer on the surface of a particle.

    Particles can be so tiny on nanometer scale,and the size of the interface to the size of the particle is big.We will study particles in nanoscale.The distance between particles is larger than the particle size.The interaction between particles is negligible.The particle radius is much smaller than the electromagnetic wavelength.With these approximations,we study in the following sections how the particle size affects the effective permeability through classical models for superconductor and normal particles,we discuss the difference between the energy method and direct field average method.

    2 Mawell-Garnett Method

    We derive the magnetic intensity and induction of every domain of the composite material from Maxwell equation,then calculate the effective magnetic permeability of the composite material.

    Let the composite material be in a uniform static magnetic field.The static magnetic intensity is H0eZ,the volume of the composite material is V,the total volume of all particles isV1,the medium volume which excludes particles is V3.Letfbe the volume ratio of the particles.The radius of a particle is R,the number of the particles in the composite material isN.Thus,V1=f V=4Nπ R3/3 and V3=(1?f)V.The magnetic intensity in the particles and medium are H1and H3,and the magnetic induction of the particles and medium are B1and B3,respectively.The magnetic permeability of the particles and medium is μcand μm.The effective magnetic permeability of the composite material is μeff?MG.

    Equation(1)is the Laplace equation of magnetic scalar potential of the static magnetic field,and its general solution is Eq.(2).an,bn,cn,dn(n=1,2,3,...)are coefficients of the general solution,which must satisfy the boundaryvalue relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation as Eq.(3),the coefficients of the functions in all domains can be exactly determined for this system.

    The unique solution with all nonzero coefficients can be calculated.

    Local magnetic intensity is

    Then,we can get the magnetic intensity in the particle and medium,respectively.

    The effective magnetic permeability obtained from the volume average of the fields is

    with

    Thus,

    It is the Maxwell-Garnett equation.

    Fig.2 The effect of particle filling in Eq.(11).It is a three-dimensional scattering point map with μe ff?MG/μm vs.fand μc/μm.

    The effect of the particle filling can be discussed through μeff?MG/μmplotted in Fig.2,which indicates the tendency with μeff?MG/μmvs.fand μc/μm.

    In Fig.2,the effective permeability of the composite can be increased or decreased through the change of the magnetic particle permeability and particle volume ratio.When μcis bigger than μm,the effective permeability of the composite material increases with the increase of particle volume ratio. Ifμc/μm→ ∞,andf→ 0.5,μeff?MG/μm→ 4.When μcis smaller than μm,the effective permeability of the composite material decreases with the increase of particle volume ratio.Ifμc/μm→ 0,and f→ 0.5,μeff?MG/μm→0.4.Therefore,for the reasonable filling range f<0.5,no matter how we change the properties of the particle,we always have a permeability for the composite in a finite range,0.4μm≤ μeff?MG≤4μm.

    3 Energy Method

    Magnetic field is a form of energy,so the process of magnetization can be analyzed through energy.The energy of the magnetic field is related to the integral of the magnetic intensity,magnetic induction and space volume of magnetic field.Let

    with

    By Eqs.(4),(6),(9),and(13),we can obtain

    So,the effective permeability of the composite material is

    Forboth Maxwell-Garnett method and energy method,the effective permeability of the composite material depends on μc,μm,andf.It does not depend on particle size R.We will reveal in next section the size dependence of the effective permeability,after we consider the thickness of the interface layer between the particle and the medium.

    Obviously,(1/R6)fμmin Eq.(15)is the energy,which comes from the magnetic dipole of the particle in numerator of the energy method equation.When we integrate the energy density,the integration contains the contribution of the magnetic dipole.The field contribution of the magnetic dipole is zero in the denominator in Eq.(12)of energy method,where the magnetic intensity field is averaged.When the magnetic intensity and induction are integrated in the Maxwell-Garnett formula,the average fields generated by the dipole are also zero because of the symmetry.So comes the difference between Eqs.(10)and(16),with the dipole energy effect missed in the Maxwell-Garnett formula.

    The effect of the magnetic particle dipole can be demonstrated by the ratio of effective permeability by energy method and the Maxwell-Garnett method,and it is plotted in Fig.3:

    Fig.3 The effect of the magnetic dipole of the particle in Eq.(17). μe ff?W(f,μc/μm)/μe ff?MG(f,μc/μm)vs.volume ratio fis plotted for parameters μc/μm =1000,100,2,1,0.5,0.01,0.001,0. μeff?MG(f,μc/μm)is much different from μe ff?W(f,μc/μm)when μc/μmis far from unity.

    When μc? μmand f→0.5,the effect of the magnetic dipole of the particle is the biggest,

    Fig.4 The filling dependence of the effective quasistatic permeability for Ce2Fe17N3?δ composite. The squares are experimental data;[18]the line and inverted triangle is the calculate data based on Eq.(16);The line and dot is the calculate data based on Eq.(10);The line and triangle is the calculate data base on Bruggeman equation.

    In Fig.3,we see for both μc> μmand μc< μmthe effective permeability of composite material obtained by energy method is bigger than the one by Maxwell-Garnett method.

    increases withf.When μc? μmandf→0.5,the effect of the magnetic dipole of the particle is the biggest,

    When μc? μmorμc? μm,the effect of the magnetic dipole of the particle should not be ignored.For these situation,the energy method is more feasible to calculate the effective permeability of the composite material.It can also be seen in Fig.3 that the difference of the two methods is not significant whenμc≈μmorfis small.For this kind of situation,Maxwell-Garnett method is really simple and feasible.

    Figure4is the comparison of Maxwell-Garnett method,Bruggeman method,energy method,and experiment result.It can be found that the energy method’s result is in agreement with the experiment.[18]

    For the composite material filled by superconductor particles,no matter how to change the volume ratio of particles,we will have μeff≤μmfor the Maxwell Garnett method and the energy method,because of the Meissner effect,[44]μc=0.Thus,superconductor particles cannot be used to increase the permeability of the composite material,but they can help to decrease the permeability of the composite material.

    4 Interaface Layer for Particle

    We have discussed the Maxwell-Garnett and the energy method for calculating the effective permeability of ideal two phase composite material ideally as above.But actually,in the composite material there will have an interface layer between particle and medium of one nanometer thickness.The interface layer is neither particle nor medium.When the size of the particle is big,the effect of interface layer in electromagnetic properties of composite material can be ignored.But the effect of interface layer on electromagnetic properties of composite material cannot be ignored when the size of the particle is small,especially when the size of the particle is nano-sized.When the particles are of nano-size,it is valuable to observe the effect of the physical properties of the interface layer to the effective electromagnetic properties of the composite material.[45]

    As the model of the composite material in Fig.1(b),letR1be the radius of the particle with the interface layer enclosed,anddbe the thickness of the interface layer.Then the core sphere has a radiusR=R1?d with the interface layer excluded.The volume of the interface of the particles isV2.The permeability of the interface layer isμs.The magnetic intensity of the interface isH2,and the magnetic induction of the interface isB2.The definition of other parameters are the same as Sec.2.

    We will calculate the magnetic scalar potential in the semi-analytical multi-pole method.Following the multipole technique,[46?47]we set all the poles at the center of the particle for the magnetic scalar potentialφ(r).The static magnetic field in the core,in the interface layer and in the media satisfy the Laplace equation as Eq.(18).The general solution is Eq.(19),1,2,3,...)are the coefficients of the general solution,which must satisfy the boundary-value relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation atr=Randr=R1,coefficients in Eq.(19)in all domains can be exactly determined for this system.And the unique solution with all nonzero coefficients can be calculated:

    Then,we get the magnetic intensity of the core,interface and media,respectively.

    It can be seen from Eq.(22)that the magnetic dipole moment M and magnetization intensitym of the magnetic dipole.

    The effective permeability can be obtained in the same way from the energy method in Sec.3,

    If the particle is made of superconductor material,because of the Meissner effect,we takeμc=0in above equations and obtain the effective permeability for the composite material.

    5 Discussion and Conclusion

    The effective permeability of composite materialμeff?Win Eq.(25)depends on the permeability of the particlesμc,μs,μm,the volume fractionf,the particle sizeR,and also the thickness of the interface layerd.While in Secs.2 and 3,the interface layer were not considered,and the estimations there missed the particle size dependence.

    By taking the limitR→0,the complex equation(25)recovers the result given in Eq.(16).The interesting point here is in the limitR→R1,in the behavior for thin layers.InR→R1limit,we can also recover Eq.(16)for bare magnetic balls in the medium.For μeff?Wequation,ifd is small but nonzero,the approximated magnetic scalar potential coefficients in Eq.(21)for the interface layer is:

    Therefore,for smalld,the uniform component of the local magnetic field in interface layer is

    μm/(μc+2μm)is the property of the medium and the particle.The interface layer gives proportional factorsμc/μs+2and μc/μs?1,which enhances the local magnetic field.For smallμs,this factor can be big.

    The thicknessd interacts with particle property through the volume average for the layer fi rst.The effective permeability up to the leading orders of the relative thickness of the interface layer can be easily derived from the following equation,

    Fig.5 The e ff ect of the interface layer of magnetic balls given by equation(28). μe ff?W(f,d/R1)/μe ff?W(f,0)vs. volume ratiofis plotted for parametersd/R1=0.05,0.1,0.2,μs/μm=0.25,4.We choose μc/μm=2for all curves.Whend/R1is big,μe ff?W(f,d/R1)increases much from μe ff?W(f,0)ifμs>μc,and decreases much ifμs<μc.

    We display the e ff ect of the interface layer in Fig.5,which plots Eq.(28). In Fig.5,it can be seen thatμeff?W(f,d/R1)increases or decreases along with the increase of filling factor,and this can be controlled by the sign of μs? μc.The change of μeff?W(f,d/R1)is big for small particles.For nano-sized particles,letR1be about 5 nm anddof the order 1 nm,thed/R1=0.2curves in e Fig.5 show much improvement ofμeff?Westimation after we consider carefully the interface layer.

    We plot Fig.6 for special cases with μc? μmorμc? μmthrough Eq.(28). It can be seen thatμeff?W(f,d/R1)/μeff?W(f,0)curves all tend to 1 when μc?μmorμc?μm.For these cases,the influence of the interface layer to the effective permeability can be ignored.

    In this study we show the essential features of the mechanism of the interface layer.A fine tuning ofdandμscan be guided by the effective permeability expression in Eq.(25),then one can produce material with a targeted permeability.In this study,the energy method is proposed for calculating the effective static permeability of composites.The effect of interface layer has been fully demonstrated and discussed with the help of magnetic particles and superconductor particles.The predicted effective permeability of composite material based on the energy method agrees with experimental.These results encourage applications of energy average method and interface layer model in design,fabricating,and analysis of particle dispersed composite materials.

    Fig.6 The influence of the interface layer when μc?μmor μc?μm.Allμeff?W(f,d/R1)/μeff?W(f,0)curves tend to 1.Thus,the influence of the interface layer to the effective permeability can be ignored.

    [1]J.H.Hannay,Eur.I.Phls.4(1983)141.

    [2]H.A.Lorentz,Annalen Der Physik 245(2010)641.

    [3]J.C.M.Garnett,Trans.Roy.Soc.53(1904)385.

    [4]J.C.M.Garnett,Phil.Trans.R.Soc.London 205(1906)237.

    [5]A.Sihvola,IEEE Electromagn.Waves Series 47(1999)63.

    [6]Giordano Stefano,J.Electrostat.58(2003)59.

    [7]D.A.G.Bruggeman,Annalen der Physik 5(1935)636.

    [8]L.Tsang and J.A.Kong,Theory of Microwave Remote Sensing,John Wiley&Sons,New York 6(1985)pp.575–602.

    [9]R.E.Meredith and C.W.Tobias,J.Appl.Phys.32(1961)132.

    [10]T.Liu,P.H.Zhou,L.J.Deng,and W.Tang,J.Appl.Phys.106(2009)3401.

    [11]V.A.Markel,J.Opt.Soc.America A 33(2016)1244.

    [12]V.A.Markel,J.Opt.Soc.America A 33(2016)2237.

    [13]C.Brosseau,J.Appl.Phys.91(2002)3197.

    [14]V.B.Bregar,Phys.Rev.B 50(2005)174418.

    [15]V.Boucher,L.P.Carignan,T.Kodera,et al.,Phys.Rev.B 80(2009)308.

    [16]J.Jin,S.Liu,Z.Lin,and S.T.Chui,Phys.Rev.B:Condensed Matter 80(2009)115101.

    [17]A.V.Goncharenko,Phys.Rev.E 68(2003)041108.

    [18]W.L.Zuo,L.Qiao,X.Chi,et al.,J.Alloy.Compd.509(2011)6359.

    [19]A.Bordianu,L.Petrescu,and V.Ionita,J.Phys.:Conference Series 585(2015)012003.

    [20]B.Drnovsek,V.B.Bregar,and M.Pavlin,J.Appl.Phys.103(2008)335.

    [21]Z.Hashin and S.Shtrikman,J.Appl.Phys.33(1962)3125.

    [22]Z.Qu,S.Liu,Q.Wang,et al.,Comput.Mater.Sci.88(2014)145.

    [23]L.Wu and S.Pan,Compos.Sci.Technol.72(2012)1443.

    [24]H.Waki,H.Igarashi,and T.Honma,IEEE Trans.Magn.41(2005)1520.

    [25]J.J.Wang,Y.Song,X.Q.Ma,et al.,J.Appl.Phys.117(2015)4184.

    [26]J.Lam,J.Appl.Phys.60(1986)4230.

    [27]T.M.Simon,F.Reitich,M.R.Jolly,et al.,J.Intel.Mat.Syst.Str.10(1998)872.

    [28]J.E.Martin,E.Venturini,J.Odinek,and R.A.Anderson,Phys.Rev.E 61(2000)2818.

    [29]H.M.Yin and L.Z.Sun,Acta Mater.54(2006)2317.

    [30]H.Zhang and X.Wang,Smart Mater.Struc.23(2014)045009.

    [31]Y.L.Jiang,Int.J.Engineering Sci.38(2000)1993.

    [32]K.S.Yee,IEEE Trans.Antennas Propag.14(1966)302.

    [33]B.Patel and T.I.Zohdi,Mater.Des.94(2016)546.

    [34]Y.Pittini-Yamada,E.A.Périgo,Y.Hazan,et al.,Acta Mater.59(2011)4291.

    [35]X.Huang,Y.M.Xie,B.Jia,et al.,Struc.Multidiscip.Opt.46(2012)385.

    [36]Y.Ito and H.Igarashi,IEEE Trans.Magn.49(2013)1953.

    [37]J.H.Paterson,R.Devine,and A.D.R.Phelps,J.Magn.Magn.Mater.196–197(1999)394.

    [38]M.Anhalt and B.Weidenfeller,J.Appl.Phys.105(2009)023907.

    [39]Ge Fuding and Zhu Jing,Aerosp.Mater.Technol.5(1996)42(in Chinese).

    [40]Peng Weicai and Chen Kanghua,Rare Metal Mat.Eng.34(2005)1407(in Chinese).

    [41]J.S.Choi and J.Yoo,Int.J.Numer.Meth.Eng.82(2010)1.

    [42]A.Thabet,M.A.Abdel-Moamen,and S.Abdelhady,PSC.IEEE(2016)52.

    [43]M.Barski and A.Muc,Mech.Compos.Mater.47(2011)387.

    [44]W.Meissner and R.Ochsenfeld,Die Naturwissenschaften.21(1933)787.

    [45]T.Xiang,Q.Zheng,and S.Qin,IEEE Trans.Dielectr.Electr.Insul.24(2017)1197.

    [46]Q.Zheng,F.Xie,Y.Yang,and W.Lin,J.Electromagn.Wave.13(1999)1153.

    [47]J.N.Sheng,Q.S.Ma,B.Yuan,et al.,Theory and Application of Semi-analytical Method in Electromagnetic Fields and Waves,Chinese Academic Press,Beijing(2006)pp.45–49.

    熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 亚洲精华国产精华精| 国产69精品久久久久777片 | 宅男免费午夜| 桃红色精品国产亚洲av| 精品午夜福利视频在线观看一区| 欧美绝顶高潮抽搐喷水| 啦啦啦免费观看视频1| 成在线人永久免费视频| 女人被狂操c到高潮| 人妻丰满熟妇av一区二区三区| 又黄又爽又免费观看的视频| 巨乳人妻的诱惑在线观看| 极品教师在线免费播放| 久久久久性生活片| 99国产精品99久久久久| 久久久久亚洲av毛片大全| 国产成人福利小说| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 十八禁网站免费在线| 一本久久中文字幕| 日韩欧美国产在线观看| 老司机在亚洲福利影院| 香蕉av资源在线| 久久亚洲真实| 制服人妻中文乱码| 12—13女人毛片做爰片一| 美女黄网站色视频| 亚洲欧美日韩高清专用| xxx96com| 成人av一区二区三区在线看| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 国产亚洲精品一区二区www| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 久久欧美精品欧美久久欧美| 香蕉丝袜av| av片东京热男人的天堂| 人人妻人人看人人澡| 精品电影一区二区在线| 99国产综合亚洲精品| x7x7x7水蜜桃| 亚洲午夜理论影院| 欧美日本亚洲视频在线播放| 精品国产乱码久久久久久男人| av片东京热男人的天堂| 白带黄色成豆腐渣| 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 床上黄色一级片| 99精品久久久久人妻精品| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 91av网一区二区| 久久久久久国产a免费观看| 日韩有码中文字幕| 麻豆一二三区av精品| 亚洲一区二区三区色噜噜| 岛国视频午夜一区免费看| 岛国在线免费视频观看| 最近最新中文字幕大全电影3| 午夜两性在线视频| 久久精品影院6| 99在线视频只有这里精品首页| 两个人看的免费小视频| 欧美日韩黄片免| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 全区人妻精品视频| 国产精品九九99| 国产真实乱freesex| 美女被艹到高潮喷水动态| ponron亚洲| 九九热线精品视视频播放| aaaaa片日本免费| 国产亚洲精品一区二区www| 午夜福利18| 一夜夜www| 老司机福利观看| 欧美日韩精品网址| 国产私拍福利视频在线观看| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片| 首页视频小说图片口味搜索| 精品熟女少妇八av免费久了| 我的老师免费观看完整版| 精品国产超薄肉色丝袜足j| 亚洲 欧美 日韩 在线 免费| 悠悠久久av| 人人妻人人澡欧美一区二区| 亚洲激情在线av| 欧美一区二区国产精品久久精品| 亚洲av日韩精品久久久久久密| 色综合站精品国产| 亚洲无线在线观看| 在线观看美女被高潮喷水网站 | 欧美一区二区国产精品久久精品| 18禁美女被吸乳视频| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产 | 国内精品一区二区在线观看| 12—13女人毛片做爰片一| 色综合亚洲欧美另类图片| 一夜夜www| 黄色片一级片一级黄色片| 久久久久精品国产欧美久久久| netflix在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 好男人电影高清在线观看| 听说在线观看完整版免费高清| 亚洲精品456在线播放app | 国产淫片久久久久久久久 | 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 久久欧美精品欧美久久欧美| 久久亚洲真实| 国内精品久久久久精免费| 97碰自拍视频| 日本免费a在线| 成人亚洲精品av一区二区| 曰老女人黄片| 天堂√8在线中文| 国产日本99.免费观看| 国产毛片a区久久久久| 午夜a级毛片| 99国产精品一区二区蜜桃av| 2021天堂中文幕一二区在线观| 国产伦一二天堂av在线观看| 麻豆成人av在线观看| 欧美av亚洲av综合av国产av| 久久久久久大精品| 毛片女人毛片| 欧美中文综合在线视频| 一个人看视频在线观看www免费 | 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 又紧又爽又黄一区二区| 人人妻人人澡欧美一区二区| 中文字幕熟女人妻在线| 一本久久中文字幕| 99久久成人亚洲精品观看| 99精品在免费线老司机午夜| 亚洲最大成人中文| 国产毛片a区久久久久| 国内精品美女久久久久久| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| 欧美激情在线99| 免费看十八禁软件| 免费观看的影片在线观看| 久久久国产成人精品二区| 窝窝影院91人妻| 免费无遮挡裸体视频| 亚洲精品在线观看二区| 国产欧美日韩精品亚洲av| 午夜福利在线观看吧| 国产单亲对白刺激| 精品久久久久久久人妻蜜臀av| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 国产单亲对白刺激| 成人鲁丝片一二三区免费| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| 曰老女人黄片| 久久香蕉精品热| 五月伊人婷婷丁香| 久久精品影院6| 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 久久久久久久久免费视频了| 激情在线观看视频在线高清| 精品久久久久久,| 久久久久久国产a免费观看| 欧美成狂野欧美在线观看| 亚洲avbb在线观看| 熟妇人妻久久中文字幕3abv| 亚洲 国产 在线| 久久精品综合一区二区三区| 亚洲欧美日韩高清专用| 怎么达到女性高潮| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 91久久精品国产一区二区成人 | 免费搜索国产男女视频| 国产成人av激情在线播放| 波多野结衣高清无吗| 啪啪无遮挡十八禁网站| 亚洲国产日韩欧美精品在线观看 | 51午夜福利影视在线观看| 亚洲人成网站高清观看| 亚洲美女视频黄频| 女人被狂操c到高潮| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 国产 一区 欧美 日韩| 午夜福利在线在线| 国产欧美日韩一区二区精品| 免费无遮挡裸体视频| 欧美黄色片欧美黄色片| 三级毛片av免费| 国产毛片a区久久久久| 变态另类丝袜制服| 国产 一区 欧美 日韩| 最好的美女福利视频网| 最近最新免费中文字幕在线| 成人欧美大片| 国产一区二区在线观看日韩 | 国产97色在线日韩免费| 一进一出抽搐gif免费好疼| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 1000部很黄的大片| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 热99在线观看视频| 99国产精品一区二区蜜桃av| 又大又爽又粗| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 色在线成人网| www.999成人在线观看| 丝袜人妻中文字幕| 国产aⅴ精品一区二区三区波| netflix在线观看网站| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9 | 欧美日韩国产亚洲二区| 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 国产高清有码在线观看视频| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 国产免费男女视频| 90打野战视频偷拍视频| 日日夜夜操网爽| 99久久精品热视频| 熟女少妇亚洲综合色aaa.| 男人舔奶头视频| 午夜免费激情av| 一个人看视频在线观看www免费 | 欧美性猛交╳xxx乱大交人| e午夜精品久久久久久久| 国产成人啪精品午夜网站| 精品国内亚洲2022精品成人| 亚洲自偷自拍图片 自拍| 色在线成人网| 久久久久久久精品吃奶| www.熟女人妻精品国产| 国产不卡一卡二| 可以在线观看的亚洲视频| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 夜夜躁狠狠躁天天躁| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区| 国产99白浆流出| 夜夜爽天天搞| 亚洲最大成人中文| 日本免费a在线| 亚洲 欧美一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美丝袜亚洲另类 | 久久午夜亚洲精品久久| 国产视频一区二区在线看| 日本a在线网址| 真人做人爱边吃奶动态| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 欧美zozozo另类| 国产亚洲精品综合一区在线观看| 麻豆国产97在线/欧美| 国产aⅴ精品一区二区三区波| 美女午夜性视频免费| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 日本 欧美在线| 亚洲自偷自拍图片 自拍| 九九热线精品视视频播放| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 成年女人毛片免费观看观看9| 精品电影一区二区在线| 欧美日韩福利视频一区二区| 岛国在线观看网站| 最好的美女福利视频网| 91av网站免费观看| e午夜精品久久久久久久| 男人舔女人的私密视频| 十八禁网站免费在线| 欧美成人一区二区免费高清观看 | 久久99热这里只有精品18| 老鸭窝网址在线观看| 亚洲天堂国产精品一区在线| 少妇人妻一区二区三区视频| 很黄的视频免费| 国产精品综合久久久久久久免费| 俺也久久电影网| 日韩国内少妇激情av| 亚洲av电影在线进入| 免费观看精品视频网站| 99在线人妻在线中文字幕| 高清在线国产一区| 日韩欧美一区二区三区在线观看| 亚洲男人的天堂狠狠| 丁香欧美五月| 国产日本99.免费观看| 精品电影一区二区在线| bbb黄色大片| 一区二区三区激情视频| 精品久久久久久久末码| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 韩国av一区二区三区四区| 久久久久久久久久黄片| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 制服人妻中文乱码| 88av欧美| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 两个人看的免费小视频| 天堂动漫精品| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 精品久久久久久久久久久久久| 一区福利在线观看| www.熟女人妻精品国产| 国产伦精品一区二区三区视频9 | 国产激情偷乱视频一区二区| 成人特级av手机在线观看| 99热精品在线国产| 琪琪午夜伦伦电影理论片6080| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 国内精品久久久久精免费| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 亚洲av成人av| 可以在线观看毛片的网站| 88av欧美| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 欧美av亚洲av综合av国产av| 久久久国产成人精品二区| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 亚洲成人中文字幕在线播放| 欧美中文综合在线视频| 亚洲激情在线av| 国产精品永久免费网站| 黄片小视频在线播放| 两个人看的免费小视频| 国产av不卡久久| 怎么达到女性高潮| 色综合站精品国产| 久久久久免费精品人妻一区二区| 一夜夜www| 成人高潮视频无遮挡免费网站| 岛国在线免费视频观看| av天堂中文字幕网| 桃红色精品国产亚洲av| 黄色 视频免费看| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| 美女大奶头视频| 国产v大片淫在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美极品一区二区三区四区| 少妇丰满av| 国产精品久久电影中文字幕| 香蕉av资源在线| 一本精品99久久精品77| 哪里可以看免费的av片| 中文字幕高清在线视频| 91av网站免费观看| 老司机在亚洲福利影院| 日本一二三区视频观看| 悠悠久久av| 国产麻豆成人av免费视频| www.自偷自拍.com| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产av一区在线观看免费| 香蕉av资源在线| 日本一本二区三区精品| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 91在线精品国自产拍蜜月 | 日本 av在线| 国产久久久一区二区三区| 一进一出好大好爽视频| 日韩大尺度精品在线看网址| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| or卡值多少钱| 超碰成人久久| 成人无遮挡网站| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 国产精品综合久久久久久久免费| 夜夜夜夜夜久久久久| 日韩成人在线观看一区二区三区| 午夜成年电影在线免费观看| 日本精品一区二区三区蜜桃| 色综合婷婷激情| 欧美日韩乱码在线| 久久国产精品影院| 亚洲色图 男人天堂 中文字幕| 国产爱豆传媒在线观看| 女人被狂操c到高潮| 国产精品香港三级国产av潘金莲| 日本在线视频免费播放| 免费高清视频大片| 亚洲国产日韩欧美精品在线观看 | 欧美黑人巨大hd| 搞女人的毛片| 免费av不卡在线播放| 中文字幕人妻丝袜一区二区| 婷婷丁香在线五月| 麻豆av在线久日| 国产探花在线观看一区二区| 深夜精品福利| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 午夜激情福利司机影院| www.自偷自拍.com| a在线观看视频网站| 久久久久国产精品人妻aⅴ院| 久久久水蜜桃国产精品网| 99热精品在线国产| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 成人性生交大片免费视频hd| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 超碰成人久久| 国产精品av久久久久免费| 亚洲人成网站高清观看| 在线国产一区二区在线| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 亚洲精品在线观看二区| 国产麻豆成人av免费视频| 老熟妇仑乱视频hdxx| 久久久久九九精品影院| www日本在线高清视频| 国产精品精品国产色婷婷| 淫妇啪啪啪对白视频| 国产乱人视频| 欧美性猛交黑人性爽| 一级毛片女人18水好多| 精品久久久久久久末码| 免费在线观看视频国产中文字幕亚洲| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 制服丝袜大香蕉在线| 国产成人精品久久二区二区免费| 床上黄色一级片| 精品国内亚洲2022精品成人| 免费高清视频大片| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 欧美一级a爱片免费观看看| 欧美黄色片欧美黄色片| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 国产高清videossex| 国产免费av片在线观看野外av| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 国内少妇人妻偷人精品xxx网站 | 亚洲真实伦在线观看| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 亚洲成av人片在线播放无| 久久亚洲真实| 日本免费一区二区三区高清不卡| 成熟少妇高潮喷水视频| 99在线人妻在线中文字幕| 91在线观看av| 最近最新免费中文字幕在线| 男人舔女人的私密视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久国产a免费观看| 欧美激情久久久久久爽电影| 久久午夜亚洲精品久久| 国产成人系列免费观看| 久久久精品大字幕| 精品免费久久久久久久清纯| 日本黄大片高清| 国产单亲对白刺激| 亚洲18禁久久av| 亚洲专区字幕在线| 亚洲成av人片免费观看| 无遮挡黄片免费观看| 制服人妻中文乱码| av在线天堂中文字幕| 久久香蕉精品热| 97超级碰碰碰精品色视频在线观看| 丰满的人妻完整版| 国产亚洲精品av在线| 这个男人来自地球电影免费观看| 亚洲真实伦在线观看| 级片在线观看| 90打野战视频偷拍视频| 小说图片视频综合网站| 亚洲成a人片在线一区二区| 日韩欧美一区二区三区在线观看| 久久久久久久久中文| 免费搜索国产男女视频| 又粗又爽又猛毛片免费看| svipshipincom国产片| 九九热线精品视视频播放| 一个人看的www免费观看视频| 18禁黄网站禁片午夜丰满| 男人舔女人下体高潮全视频| 国产激情偷乱视频一区二区| a级毛片在线看网站| 日韩精品青青久久久久久| 日本在线视频免费播放| 综合色av麻豆| 一二三四在线观看免费中文在| 久久这里只有精品19| 香蕉av资源在线| 韩国av一区二区三区四区| 嫁个100分男人电影在线观看| 女人高潮潮喷娇喘18禁视频| 日本一本二区三区精品| а√天堂www在线а√下载| 人妻夜夜爽99麻豆av| 人妻久久中文字幕网| 国产一区二区激情短视频| 婷婷精品国产亚洲av| 很黄的视频免费| 色吧在线观看| 无限看片的www在线观看| 后天国语完整版免费观看| 色噜噜av男人的天堂激情| 亚洲av中文字字幕乱码综合| 中国美女看黄片| 最好的美女福利视频网| 久久久精品大字幕| 欧美在线一区亚洲| 午夜视频精品福利| 成人18禁在线播放| 亚洲九九香蕉| 不卡一级毛片| 亚洲国产中文字幕在线视频| 欧美乱妇无乱码| 国产爱豆传媒在线观看| xxxwww97欧美| 国产主播在线观看一区二区| 90打野战视频偷拍视频| 韩国av一区二区三区四区| 欧美日本亚洲视频在线播放| 国产人伦9x9x在线观看| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| 丰满人妻一区二区三区视频av | 男女床上黄色一级片免费看| 日韩欧美在线乱码| 国产成人精品无人区| 亚洲中文字幕日韩| 午夜激情欧美在线| 色在线成人网| 中文在线观看免费www的网站| 欧美午夜高清在线| 免费一级毛片在线播放高清视频| 一夜夜www| 身体一侧抽搐| 免费看日本二区| 中文字幕人妻丝袜一区二区| 国产伦一二天堂av在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品综合久久久久久久免费| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 一级毛片女人18水好多| 嫩草影院精品99| 欧美日韩精品网址| 久久久国产成人免费| 国产男靠女视频免费网站| 精品日产1卡2卡| 欧美黄色片欧美黄色片|