• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle Size Influence on the effective Permeability of Composite Materials?

    2018-06-11 12:21:26TaiXiang向泰RuNengZhong鐘汝能BinYao姚斌ShaoJingQin覃紹京andQinHongZheng鄭勤紅
    Communications in Theoretical Physics 2018年5期

    Tai Xiang(向泰),Ru-Neng Zhong(鐘汝能),Bin Yao(姚斌),Shao-Jing Qin(覃紹京),and Qin-Hong Zheng(鄭勤紅),?

    1Key Laboratory of Photoelectric Information Technology,Yunnan Province&Solar Energy Research Institute,Yunnan Normal University,Kunming 650500,China

    2Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    It is highly advantageous to obtain theoretical predictions for the electromagnetic parameters of materials,to establish the general dependence and relation between various microstructure and macroscopic quantities of composite materials.A theoretical estimation provides much more information than a numerical simulation data or an experimental data,and it guides material design.This work is concerned with the theoretical model of the technology and application of composite materials,especially for the effective permeability of particle dispersed system in Fig.1.

    The effective electromagnetic parameters of composite materials can be obtained through assumptions and simplifications,such as Clausius-Mossotti equation,[1]Lorentz-Lorentz equation[2]and Maxwell-Garnett formula.[3?5]Many such kind of self-consistent effective medium theories have been developed.[6?10]Markel summarized two tutorials which are devoted to the Maxwell-Garnett approximation and related theories.[11?12]The effective permeability of composites has been theoretically estimated.[13?17]The effective permeability of Ce2Fe17N3?δparticles/epoxy resin composites with various volume concentrations were measured in the frequency range of(0.1–15)GHz.[18]Materials were analyzed in a finite element software(COMSOL Multiphysicsc),[19]and other numerical methods.[20]The variation approach is another kind of method to calculate the effective magnetic permeability of composite material,[21?24]and it has been implemented numerically.[25]Series expansion and several derivations have been done for materials with special structures.[26?31]Numerical method in these schemes has also been developed.[32?33]

    In the meantime,the study of macroscopic electromagnetic properties of the soft magnetic composite has made much progress.[34?39]Peng et al.studied the effective electromagnetic parameters in random mixture media of magnetic iron fiber.[40]Choi et al.designed the microstructure with the prescribed magnetic permeability and proposed a design method to control the magnetic flux flow by layered microstructures.[41]Thabet et al.studied the effective permeability of new nanocomposites magnetic materials based on theoretical approaches at terahertz frequencies to exhibit weak electric and magnetic responses.[42]Barski et al. first considered the possibility of theoretical predictions of effective properties for smart materials.[43]

    According to the de fi nition of the magnetic permeability,one estimation of the effective magnetic permeability is calculated from the average of the fields /.This average method is used in Maxwell-Garnett formula.Another estimation of the effective magnetic permeability is calculated from the average of the energy /·.We call this the average energy field method.Energy method has a deep root in energy storage concept in magnetization process.In this work,we will compare the magnitude difference of these two estimations.There is a third estimation given by averaging ·/.Its magnitude can be given directly by the first two estimations.We will not discuss it for lack of physical meaning.In this work,for the composited material in Fig.1(a),we model the interfaces between the small particles and the medium as a finite thickness layer of substance in Fig.1(b).The particles are embedded in the medium homogeneously.Filler particles are surrounded by a matrix of media.There will be several stacks of atoms at the interface,which have properties different from the particle and different from the medium either.This interface layer has a thickness of nanoscale and we will model them into the interface layer with physical quantities for itself.

    Fig.1 Model for composite material with mixed particles.(a)There is not an interface layer on the surface of a particle.(b)There is an interface layer on the surface of a particle.

    Particles can be so tiny on nanometer scale,and the size of the interface to the size of the particle is big.We will study particles in nanoscale.The distance between particles is larger than the particle size.The interaction between particles is negligible.The particle radius is much smaller than the electromagnetic wavelength.With these approximations,we study in the following sections how the particle size affects the effective permeability through classical models for superconductor and normal particles,we discuss the difference between the energy method and direct field average method.

    2 Mawell-Garnett Method

    We derive the magnetic intensity and induction of every domain of the composite material from Maxwell equation,then calculate the effective magnetic permeability of the composite material.

    Let the composite material be in a uniform static magnetic field.The static magnetic intensity is H0eZ,the volume of the composite material is V,the total volume of all particles isV1,the medium volume which excludes particles is V3.Letfbe the volume ratio of the particles.The radius of a particle is R,the number of the particles in the composite material isN.Thus,V1=f V=4Nπ R3/3 and V3=(1?f)V.The magnetic intensity in the particles and medium are H1and H3,and the magnetic induction of the particles and medium are B1and B3,respectively.The magnetic permeability of the particles and medium is μcand μm.The effective magnetic permeability of the composite material is μeff?MG.

    Equation(1)is the Laplace equation of magnetic scalar potential of the static magnetic field,and its general solution is Eq.(2).an,bn,cn,dn(n=1,2,3,...)are coefficients of the general solution,which must satisfy the boundaryvalue relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation as Eq.(3),the coefficients of the functions in all domains can be exactly determined for this system.

    The unique solution with all nonzero coefficients can be calculated.

    Local magnetic intensity is

    Then,we can get the magnetic intensity in the particle and medium,respectively.

    The effective magnetic permeability obtained from the volume average of the fields is

    with

    Thus,

    It is the Maxwell-Garnett equation.

    Fig.2 The effect of particle filling in Eq.(11).It is a three-dimensional scattering point map with μe ff?MG/μm vs.fand μc/μm.

    The effect of the particle filling can be discussed through μeff?MG/μmplotted in Fig.2,which indicates the tendency with μeff?MG/μmvs.fand μc/μm.

    In Fig.2,the effective permeability of the composite can be increased or decreased through the change of the magnetic particle permeability and particle volume ratio.When μcis bigger than μm,the effective permeability of the composite material increases with the increase of particle volume ratio. Ifμc/μm→ ∞,andf→ 0.5,μeff?MG/μm→ 4.When μcis smaller than μm,the effective permeability of the composite material decreases with the increase of particle volume ratio.Ifμc/μm→ 0,and f→ 0.5,μeff?MG/μm→0.4.Therefore,for the reasonable filling range f<0.5,no matter how we change the properties of the particle,we always have a permeability for the composite in a finite range,0.4μm≤ μeff?MG≤4μm.

    3 Energy Method

    Magnetic field is a form of energy,so the process of magnetization can be analyzed through energy.The energy of the magnetic field is related to the integral of the magnetic intensity,magnetic induction and space volume of magnetic field.Let

    with

    By Eqs.(4),(6),(9),and(13),we can obtain

    So,the effective permeability of the composite material is

    Forboth Maxwell-Garnett method and energy method,the effective permeability of the composite material depends on μc,μm,andf.It does not depend on particle size R.We will reveal in next section the size dependence of the effective permeability,after we consider the thickness of the interface layer between the particle and the medium.

    Obviously,(1/R6)fμmin Eq.(15)is the energy,which comes from the magnetic dipole of the particle in numerator of the energy method equation.When we integrate the energy density,the integration contains the contribution of the magnetic dipole.The field contribution of the magnetic dipole is zero in the denominator in Eq.(12)of energy method,where the magnetic intensity field is averaged.When the magnetic intensity and induction are integrated in the Maxwell-Garnett formula,the average fields generated by the dipole are also zero because of the symmetry.So comes the difference between Eqs.(10)and(16),with the dipole energy effect missed in the Maxwell-Garnett formula.

    The effect of the magnetic particle dipole can be demonstrated by the ratio of effective permeability by energy method and the Maxwell-Garnett method,and it is plotted in Fig.3:

    Fig.3 The effect of the magnetic dipole of the particle in Eq.(17). μe ff?W(f,μc/μm)/μe ff?MG(f,μc/μm)vs.volume ratio fis plotted for parameters μc/μm =1000,100,2,1,0.5,0.01,0.001,0. μeff?MG(f,μc/μm)is much different from μe ff?W(f,μc/μm)when μc/μmis far from unity.

    When μc? μmand f→0.5,the effect of the magnetic dipole of the particle is the biggest,

    Fig.4 The filling dependence of the effective quasistatic permeability for Ce2Fe17N3?δ composite. The squares are experimental data;[18]the line and inverted triangle is the calculate data based on Eq.(16);The line and dot is the calculate data based on Eq.(10);The line and triangle is the calculate data base on Bruggeman equation.

    In Fig.3,we see for both μc> μmand μc< μmthe effective permeability of composite material obtained by energy method is bigger than the one by Maxwell-Garnett method.

    increases withf.When μc? μmandf→0.5,the effect of the magnetic dipole of the particle is the biggest,

    When μc? μmorμc? μm,the effect of the magnetic dipole of the particle should not be ignored.For these situation,the energy method is more feasible to calculate the effective permeability of the composite material.It can also be seen in Fig.3 that the difference of the two methods is not significant whenμc≈μmorfis small.For this kind of situation,Maxwell-Garnett method is really simple and feasible.

    Figure4is the comparison of Maxwell-Garnett method,Bruggeman method,energy method,and experiment result.It can be found that the energy method’s result is in agreement with the experiment.[18]

    For the composite material filled by superconductor particles,no matter how to change the volume ratio of particles,we will have μeff≤μmfor the Maxwell Garnett method and the energy method,because of the Meissner effect,[44]μc=0.Thus,superconductor particles cannot be used to increase the permeability of the composite material,but they can help to decrease the permeability of the composite material.

    4 Interaface Layer for Particle

    We have discussed the Maxwell-Garnett and the energy method for calculating the effective permeability of ideal two phase composite material ideally as above.But actually,in the composite material there will have an interface layer between particle and medium of one nanometer thickness.The interface layer is neither particle nor medium.When the size of the particle is big,the effect of interface layer in electromagnetic properties of composite material can be ignored.But the effect of interface layer on electromagnetic properties of composite material cannot be ignored when the size of the particle is small,especially when the size of the particle is nano-sized.When the particles are of nano-size,it is valuable to observe the effect of the physical properties of the interface layer to the effective electromagnetic properties of the composite material.[45]

    As the model of the composite material in Fig.1(b),letR1be the radius of the particle with the interface layer enclosed,anddbe the thickness of the interface layer.Then the core sphere has a radiusR=R1?d with the interface layer excluded.The volume of the interface of the particles isV2.The permeability of the interface layer isμs.The magnetic intensity of the interface isH2,and the magnetic induction of the interface isB2.The definition of other parameters are the same as Sec.2.

    We will calculate the magnetic scalar potential in the semi-analytical multi-pole method.Following the multipole technique,[46?47]we set all the poles at the center of the particle for the magnetic scalar potentialφ(r).The static magnetic field in the core,in the interface layer and in the media satisfy the Laplace equation as Eq.(18).The general solution is Eq.(19),1,2,3,...)are the coefficients of the general solution,which must satisfy the boundary-value relation and boundary condition.

    According to the asymptotic boundary condition and the boundary-value relation atr=Randr=R1,coefficients in Eq.(19)in all domains can be exactly determined for this system.And the unique solution with all nonzero coefficients can be calculated:

    Then,we get the magnetic intensity of the core,interface and media,respectively.

    It can be seen from Eq.(22)that the magnetic dipole moment M and magnetization intensitym of the magnetic dipole.

    The effective permeability can be obtained in the same way from the energy method in Sec.3,

    If the particle is made of superconductor material,because of the Meissner effect,we takeμc=0in above equations and obtain the effective permeability for the composite material.

    5 Discussion and Conclusion

    The effective permeability of composite materialμeff?Win Eq.(25)depends on the permeability of the particlesμc,μs,μm,the volume fractionf,the particle sizeR,and also the thickness of the interface layerd.While in Secs.2 and 3,the interface layer were not considered,and the estimations there missed the particle size dependence.

    By taking the limitR→0,the complex equation(25)recovers the result given in Eq.(16).The interesting point here is in the limitR→R1,in the behavior for thin layers.InR→R1limit,we can also recover Eq.(16)for bare magnetic balls in the medium.For μeff?Wequation,ifd is small but nonzero,the approximated magnetic scalar potential coefficients in Eq.(21)for the interface layer is:

    Therefore,for smalld,the uniform component of the local magnetic field in interface layer is

    μm/(μc+2μm)is the property of the medium and the particle.The interface layer gives proportional factorsμc/μs+2and μc/μs?1,which enhances the local magnetic field.For smallμs,this factor can be big.

    The thicknessd interacts with particle property through the volume average for the layer fi rst.The effective permeability up to the leading orders of the relative thickness of the interface layer can be easily derived from the following equation,

    Fig.5 The e ff ect of the interface layer of magnetic balls given by equation(28). μe ff?W(f,d/R1)/μe ff?W(f,0)vs. volume ratiofis plotted for parametersd/R1=0.05,0.1,0.2,μs/μm=0.25,4.We choose μc/μm=2for all curves.Whend/R1is big,μe ff?W(f,d/R1)increases much from μe ff?W(f,0)ifμs>μc,and decreases much ifμs<μc.

    We display the e ff ect of the interface layer in Fig.5,which plots Eq.(28). In Fig.5,it can be seen thatμeff?W(f,d/R1)increases or decreases along with the increase of filling factor,and this can be controlled by the sign of μs? μc.The change of μeff?W(f,d/R1)is big for small particles.For nano-sized particles,letR1be about 5 nm anddof the order 1 nm,thed/R1=0.2curves in e Fig.5 show much improvement ofμeff?Westimation after we consider carefully the interface layer.

    We plot Fig.6 for special cases with μc? μmorμc? μmthrough Eq.(28). It can be seen thatμeff?W(f,d/R1)/μeff?W(f,0)curves all tend to 1 when μc?μmorμc?μm.For these cases,the influence of the interface layer to the effective permeability can be ignored.

    In this study we show the essential features of the mechanism of the interface layer.A fine tuning ofdandμscan be guided by the effective permeability expression in Eq.(25),then one can produce material with a targeted permeability.In this study,the energy method is proposed for calculating the effective static permeability of composites.The effect of interface layer has been fully demonstrated and discussed with the help of magnetic particles and superconductor particles.The predicted effective permeability of composite material based on the energy method agrees with experimental.These results encourage applications of energy average method and interface layer model in design,fabricating,and analysis of particle dispersed composite materials.

    Fig.6 The influence of the interface layer when μc?μmor μc?μm.Allμeff?W(f,d/R1)/μeff?W(f,0)curves tend to 1.Thus,the influence of the interface layer to the effective permeability can be ignored.

    [1]J.H.Hannay,Eur.I.Phls.4(1983)141.

    [2]H.A.Lorentz,Annalen Der Physik 245(2010)641.

    [3]J.C.M.Garnett,Trans.Roy.Soc.53(1904)385.

    [4]J.C.M.Garnett,Phil.Trans.R.Soc.London 205(1906)237.

    [5]A.Sihvola,IEEE Electromagn.Waves Series 47(1999)63.

    [6]Giordano Stefano,J.Electrostat.58(2003)59.

    [7]D.A.G.Bruggeman,Annalen der Physik 5(1935)636.

    [8]L.Tsang and J.A.Kong,Theory of Microwave Remote Sensing,John Wiley&Sons,New York 6(1985)pp.575–602.

    [9]R.E.Meredith and C.W.Tobias,J.Appl.Phys.32(1961)132.

    [10]T.Liu,P.H.Zhou,L.J.Deng,and W.Tang,J.Appl.Phys.106(2009)3401.

    [11]V.A.Markel,J.Opt.Soc.America A 33(2016)1244.

    [12]V.A.Markel,J.Opt.Soc.America A 33(2016)2237.

    [13]C.Brosseau,J.Appl.Phys.91(2002)3197.

    [14]V.B.Bregar,Phys.Rev.B 50(2005)174418.

    [15]V.Boucher,L.P.Carignan,T.Kodera,et al.,Phys.Rev.B 80(2009)308.

    [16]J.Jin,S.Liu,Z.Lin,and S.T.Chui,Phys.Rev.B:Condensed Matter 80(2009)115101.

    [17]A.V.Goncharenko,Phys.Rev.E 68(2003)041108.

    [18]W.L.Zuo,L.Qiao,X.Chi,et al.,J.Alloy.Compd.509(2011)6359.

    [19]A.Bordianu,L.Petrescu,and V.Ionita,J.Phys.:Conference Series 585(2015)012003.

    [20]B.Drnovsek,V.B.Bregar,and M.Pavlin,J.Appl.Phys.103(2008)335.

    [21]Z.Hashin and S.Shtrikman,J.Appl.Phys.33(1962)3125.

    [22]Z.Qu,S.Liu,Q.Wang,et al.,Comput.Mater.Sci.88(2014)145.

    [23]L.Wu and S.Pan,Compos.Sci.Technol.72(2012)1443.

    [24]H.Waki,H.Igarashi,and T.Honma,IEEE Trans.Magn.41(2005)1520.

    [25]J.J.Wang,Y.Song,X.Q.Ma,et al.,J.Appl.Phys.117(2015)4184.

    [26]J.Lam,J.Appl.Phys.60(1986)4230.

    [27]T.M.Simon,F.Reitich,M.R.Jolly,et al.,J.Intel.Mat.Syst.Str.10(1998)872.

    [28]J.E.Martin,E.Venturini,J.Odinek,and R.A.Anderson,Phys.Rev.E 61(2000)2818.

    [29]H.M.Yin and L.Z.Sun,Acta Mater.54(2006)2317.

    [30]H.Zhang and X.Wang,Smart Mater.Struc.23(2014)045009.

    [31]Y.L.Jiang,Int.J.Engineering Sci.38(2000)1993.

    [32]K.S.Yee,IEEE Trans.Antennas Propag.14(1966)302.

    [33]B.Patel and T.I.Zohdi,Mater.Des.94(2016)546.

    [34]Y.Pittini-Yamada,E.A.Périgo,Y.Hazan,et al.,Acta Mater.59(2011)4291.

    [35]X.Huang,Y.M.Xie,B.Jia,et al.,Struc.Multidiscip.Opt.46(2012)385.

    [36]Y.Ito and H.Igarashi,IEEE Trans.Magn.49(2013)1953.

    [37]J.H.Paterson,R.Devine,and A.D.R.Phelps,J.Magn.Magn.Mater.196–197(1999)394.

    [38]M.Anhalt and B.Weidenfeller,J.Appl.Phys.105(2009)023907.

    [39]Ge Fuding and Zhu Jing,Aerosp.Mater.Technol.5(1996)42(in Chinese).

    [40]Peng Weicai and Chen Kanghua,Rare Metal Mat.Eng.34(2005)1407(in Chinese).

    [41]J.S.Choi and J.Yoo,Int.J.Numer.Meth.Eng.82(2010)1.

    [42]A.Thabet,M.A.Abdel-Moamen,and S.Abdelhady,PSC.IEEE(2016)52.

    [43]M.Barski and A.Muc,Mech.Compos.Mater.47(2011)387.

    [44]W.Meissner and R.Ochsenfeld,Die Naturwissenschaften.21(1933)787.

    [45]T.Xiang,Q.Zheng,and S.Qin,IEEE Trans.Dielectr.Electr.Insul.24(2017)1197.

    [46]Q.Zheng,F.Xie,Y.Yang,and W.Lin,J.Electromagn.Wave.13(1999)1153.

    [47]J.N.Sheng,Q.S.Ma,B.Yuan,et al.,Theory and Application of Semi-analytical Method in Electromagnetic Fields and Waves,Chinese Academic Press,Beijing(2006)pp.45–49.

    亚洲av成人不卡在线观看播放网| 可以在线观看毛片的网站| 性欧美人与动物交配| 亚洲最大成人手机在线| 久久久久久久精品吃奶| 男女之事视频高清在线观看| a在线观看视频网站| 国模一区二区三区四区视频| www.熟女人妻精品国产| 亚洲av五月六月丁香网| 国语自产精品视频在线第100页| 欧美精品啪啪一区二区三区| 香蕉久久夜色| 少妇的丰满在线观看| 成人精品一区二区免费| 12—13女人毛片做爰片一| 在线观看一区二区三区| 午夜福利高清视频| 国产精品一及| 搡老岳熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 国产精品电影一区二区三区| 国产亚洲欧美98| 精品午夜福利视频在线观看一区| 国产精品亚洲av一区麻豆| 欧美成人免费av一区二区三区| 国产精品久久电影中文字幕| www国产在线视频色| 精品99又大又爽又粗少妇毛片 | 变态另类成人亚洲欧美熟女| 1000部很黄的大片| 亚洲美女黄片视频| 91在线精品国自产拍蜜月 | www日本黄色视频网| 男人的好看免费观看在线视频| 国产淫片久久久久久久久 | 国产av麻豆久久久久久久| 一区二区三区激情视频| 国产高清视频在线观看网站| 真人一进一出gif抽搐免费| 久久久久精品国产欧美久久久| www日本在线高清视频| 美女大奶头视频| 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 怎么达到女性高潮| 我的老师免费观看完整版| av欧美777| 在线观看美女被高潮喷水网站 | www国产在线视频色| 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| 亚洲av熟女| 成年女人毛片免费观看观看9| 一级毛片高清免费大全| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 国产黄片美女视频| 天堂动漫精品| 国产亚洲精品久久久com| 亚洲人成电影免费在线| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| АⅤ资源中文在线天堂| 很黄的视频免费| 午夜免费男女啪啪视频观看 | 首页视频小说图片口味搜索| 亚洲国产欧美网| 国内精品美女久久久久久| 五月玫瑰六月丁香| 日韩有码中文字幕| 欧美一级a爱片免费观看看| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 午夜福利在线观看免费完整高清在 | 在线播放无遮挡| 日韩欧美 国产精品| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 看免费av毛片| 婷婷精品国产亚洲av在线| 天天添夜夜摸| 欧美中文综合在线视频| 麻豆成人av在线观看| 亚洲激情在线av| 国产成人影院久久av| 两个人看的免费小视频| 国产高清视频在线播放一区| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| 精品一区二区三区视频在线 | 超碰av人人做人人爽久久 | 国产精品影院久久| 欧美性感艳星| 国产久久久一区二区三区| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 欧美乱妇无乱码| 免费观看精品视频网站| 色在线成人网| 18美女黄网站色大片免费观看| 国产在视频线在精品| 午夜两性在线视频| 国产一区二区在线av高清观看| 51国产日韩欧美| 在线观看舔阴道视频| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 国产精品 欧美亚洲| 久久精品91蜜桃| 成年女人永久免费观看视频| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| ponron亚洲| 法律面前人人平等表现在哪些方面| 岛国在线免费视频观看| 久9热在线精品视频| 成人精品一区二区免费| 精品久久久久久,| 精品免费久久久久久久清纯| 99热这里只有是精品50| 欧美+亚洲+日韩+国产| 观看美女的网站| 欧美另类亚洲清纯唯美| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 99久久成人亚洲精品观看| 国产亚洲精品久久久久久毛片| 中文字幕人妻丝袜一区二区| 欧美日韩福利视频一区二区| 亚洲无线观看免费| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 在线观看美女被高潮喷水网站 | 亚洲真实伦在线观看| 日韩精品青青久久久久久| 亚洲美女视频黄频| 国产成年人精品一区二区| 午夜两性在线视频| 国产精品乱码一区二三区的特点| 国产探花极品一区二区| 在线观看免费视频日本深夜| 欧美日韩瑟瑟在线播放| 亚洲一区二区三区色噜噜| 国产高清视频在线播放一区| 精品国产美女av久久久久小说| 亚洲性夜色夜夜综合| 亚洲精品久久国产高清桃花| 宅男免费午夜| 男女之事视频高清在线观看| 在线免费观看不下载黄p国产 | 99精品欧美一区二区三区四区| 亚洲av日韩精品久久久久久密| 俺也久久电影网| 久久精品国产99精品国产亚洲性色| 亚洲天堂国产精品一区在线| 天堂网av新在线| av天堂中文字幕网| 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 亚洲久久久久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费成人在线视频| 黄色视频,在线免费观看| 欧美丝袜亚洲另类 | 久久6这里有精品| 亚洲第一欧美日韩一区二区三区| 国内精品一区二区在线观看| 美女免费视频网站| 亚洲欧美一区二区三区黑人| 亚洲成人久久爱视频| 级片在线观看| 人人妻人人看人人澡| 悠悠久久av| 久久久久久久久大av| 亚洲av一区综合| 成人av在线播放网站| 精品99又大又爽又粗少妇毛片 | 免费搜索国产男女视频| 成年免费大片在线观看| 看片在线看免费视频| av在线蜜桃| 欧美bdsm另类| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 女人高潮潮喷娇喘18禁视频| 日本一二三区视频观看| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| av片东京热男人的天堂| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 国产欧美日韩一区二区精品| 伊人久久精品亚洲午夜| 哪里可以看免费的av片| 日韩欧美在线二视频| 悠悠久久av| 最近最新中文字幕大全免费视频| 看片在线看免费视频| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 免费av观看视频| 日本 av在线| 三级毛片av免费| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播| 精品人妻偷拍中文字幕| 国产亚洲av嫩草精品影院| 老司机深夜福利视频在线观看| 亚洲18禁久久av| 成人鲁丝片一二三区免费| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 两个人看的免费小视频| 男女做爰动态图高潮gif福利片| 亚洲人与动物交配视频| 成人特级黄色片久久久久久久| 日本免费a在线| 脱女人内裤的视频| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 久久香蕉精品热| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 无人区码免费观看不卡| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 一进一出好大好爽视频| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 精品免费久久久久久久清纯| 日本在线视频免费播放| 琪琪午夜伦伦电影理论片6080| 免费大片18禁| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 女警被强在线播放| 成人一区二区视频在线观看| 国产精品久久久久久久电影 | 99久久成人亚洲精品观看| 国产老妇女一区| 久久久久久久久大av| 99riav亚洲国产免费| 一本精品99久久精品77| 天天一区二区日本电影三级| 欧美午夜高清在线| 熟女人妻精品中文字幕| 高清在线国产一区| 国产精品综合久久久久久久免费| 乱人视频在线观看| 中出人妻视频一区二区| 欧美日韩综合久久久久久 | 国产又黄又爽又无遮挡在线| 国产亚洲精品av在线| 999久久久精品免费观看国产| 国产黄a三级三级三级人| aaaaa片日本免费| 久久久久免费精品人妻一区二区| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 啦啦啦韩国在线观看视频| av中文乱码字幕在线| 精品久久久久久,| 国产精品精品国产色婷婷| www国产在线视频色| 波野结衣二区三区在线 | 啪啪无遮挡十八禁网站| 99久国产av精品| av福利片在线观看| 少妇丰满av| 免费看十八禁软件| 国产成人a区在线观看| 国产精品久久久久久久电影 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费在线观看成人毛片| 国产亚洲精品av在线| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 手机成人av网站| 舔av片在线| 美女被艹到高潮喷水动态| 黄片小视频在线播放| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 色综合欧美亚洲国产小说| 亚洲真实伦在线观看| 欧美日韩福利视频一区二区| 老熟妇仑乱视频hdxx| 禁无遮挡网站| 欧美日韩精品网址| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 深爱激情五月婷婷| 在线播放无遮挡| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 亚洲成人中文字幕在线播放| 婷婷丁香在线五月| 国产真人三级小视频在线观看| x7x7x7水蜜桃| 国产爱豆传媒在线观看| 久99久视频精品免费| 全区人妻精品视频| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区| 亚洲片人在线观看| 非洲黑人性xxxx精品又粗又长| 午夜两性在线视频| 国产精品久久视频播放| 国语自产精品视频在线第100页| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 97碰自拍视频| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 久久久精品大字幕| 日本精品一区二区三区蜜桃| 日本一本二区三区精品| 精品乱码久久久久久99久播| 一本精品99久久精品77| 99热只有精品国产| 午夜精品一区二区三区免费看| 精品国产美女av久久久久小说| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 久久久久久久久大av| 国产av一区在线观看免费| 草草在线视频免费看| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 在线看三级毛片| 日本免费一区二区三区高清不卡| 99在线视频只有这里精品首页| 波野结衣二区三区在线 | 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 精品免费久久久久久久清纯| 久久草成人影院| 一区二区三区高清视频在线| 偷拍熟女少妇极品色| 亚洲第一电影网av| 国产三级中文精品| 日韩av在线大香蕉| 国产成人a区在线观看| 精品电影一区二区在线| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 日韩人妻高清精品专区| 黄色视频,在线免费观看| 亚洲第一电影网av| 成人特级黄色片久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| bbb黄色大片| 欧美精品啪啪一区二区三区| 国产成人福利小说| 性色avwww在线观看| 欧美最黄视频在线播放免费| 亚洲乱码一区二区免费版| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 国产成人系列免费观看| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 婷婷六月久久综合丁香| 欧美色视频一区免费| 波多野结衣巨乳人妻| 亚洲一区二区三区不卡视频| 午夜a级毛片| 午夜激情福利司机影院| 变态另类成人亚洲欧美熟女| 69人妻影院| 美女被艹到高潮喷水动态| 日本 av在线| 免费在线观看成人毛片| 成人特级黄色片久久久久久久| 天堂√8在线中文| 少妇的丰满在线观看| av福利片在线观看| 噜噜噜噜噜久久久久久91| 国产精品一区二区免费欧美| 此物有八面人人有两片| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 男人的好看免费观看在线视频| 99久久九九国产精品国产免费| 亚洲精品国产精品久久久不卡| 看片在线看免费视频| 乱人视频在线观看| 国产精品一区二区三区四区免费观看 | 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看 | 成年版毛片免费区| 亚洲精华国产精华精| 亚洲中文字幕日韩| 亚洲成av人片免费观看| 国产三级中文精品| 午夜精品久久久久久毛片777| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 97碰自拍视频| 日本黄色片子视频| 精华霜和精华液先用哪个| 日韩欧美在线二视频| 国产精品久久久久久精品电影| 午夜久久久久精精品| 亚洲av美国av| 日韩欧美在线乱码| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 亚洲欧美激情综合另类| 精华霜和精华液先用哪个| 熟女少妇亚洲综合色aaa.| 搡女人真爽免费视频火全软件 | 免费看a级黄色片| 首页视频小说图片口味搜索| 久久精品夜夜夜夜夜久久蜜豆| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 精品99又大又爽又粗少妇毛片 | 男人舔女人下体高潮全视频| 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 天堂网av新在线| 九九热线精品视视频播放| 韩国av一区二区三区四区| av在线天堂中文字幕| 国产成人av激情在线播放| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美| 午夜激情欧美在线| 五月伊人婷婷丁香| 99久久成人亚洲精品观看| 长腿黑丝高跟| 欧美日韩国产亚洲二区| 69av精品久久久久久| 亚洲av二区三区四区| 欧美xxxx黑人xx丫x性爽| 老汉色∧v一级毛片| 熟女人妻精品中文字幕| 国产成人系列免费观看| 日本在线视频免费播放| 哪里可以看免费的av片| 久久精品亚洲精品国产色婷小说| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 午夜精品久久久久久毛片777| 国产三级在线视频| 熟女少妇亚洲综合色aaa.| 高清日韩中文字幕在线| 国产高清三级在线| 19禁男女啪啪无遮挡网站| 国产成+人综合+亚洲专区| 成人午夜高清在线视频| 日本黄色视频三级网站网址| 18禁黄网站禁片午夜丰满| 日韩欧美精品v在线| 精品久久久久久久久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲国产日韩欧美精品在线观看 | 一区二区三区高清视频在线| 国产亚洲欧美98| 国内揄拍国产精品人妻在线| 一级毛片女人18水好多| 亚洲av一区综合| 免费av不卡在线播放| 成年人黄色毛片网站| 国产99白浆流出| 两人在一起打扑克的视频| 国产伦精品一区二区三区视频9 | 欧美bdsm另类| 久久久久久久亚洲中文字幕 | 国产成人aa在线观看| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 九色成人免费人妻av| 国产精品亚洲美女久久久| 成人无遮挡网站| 国产高潮美女av| 国产精品亚洲av一区麻豆| 国产私拍福利视频在线观看| 一区二区三区国产精品乱码| 欧美在线一区亚洲| 老汉色∧v一级毛片| 日本黄色片子视频| 国产91精品成人一区二区三区| 国产 一区 欧美 日韩| 中文字幕熟女人妻在线| 久久国产精品影院| 国产美女午夜福利| 久久这里只有精品中国| 窝窝影院91人妻| 亚洲av熟女| 精品国产超薄肉色丝袜足j| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| 免费在线观看日本一区| 女人十人毛片免费观看3o分钟| 熟女电影av网| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三| 波多野结衣巨乳人妻| 嫩草影院入口| 国产国拍精品亚洲av在线观看 | 亚洲国产欧美人成| 国产毛片a区久久久久| 久久久色成人| 村上凉子中文字幕在线| 国产精品一区二区免费欧美| 国内毛片毛片毛片毛片毛片| 亚洲精品在线美女| 女人被狂操c到高潮| 88av欧美| 久久精品国产综合久久久| 一个人观看的视频www高清免费观看| 午夜福利高清视频| 99热这里只有精品一区| 有码 亚洲区| www日本在线高清视频| 久久久色成人| 男人舔女人下体高潮全视频| 亚洲av中文字字幕乱码综合| 欧美成人性av电影在线观看| 国产免费一级a男人的天堂| 免费看日本二区| 一二三四社区在线视频社区8| 成人高潮视频无遮挡免费网站| 男人的好看免费观看在线视频| 亚洲自拍偷在线| 男女那种视频在线观看| 免费看美女性在线毛片视频| 欧美日韩黄片免| 中出人妻视频一区二区| 有码 亚洲区| 波野结衣二区三区在线 | 老汉色∧v一级毛片| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区视频9 | 亚洲精品美女久久久久99蜜臀| 内射极品少妇av片p| 禁无遮挡网站| 成人三级黄色视频| 国产av麻豆久久久久久久| 色精品久久人妻99蜜桃| 91字幕亚洲| 日韩欧美国产在线观看| 十八禁网站免费在线| 在线国产一区二区在线| 90打野战视频偷拍视频| 国产熟女xx| 欧美激情在线99| 成年女人看的毛片在线观看| 日韩有码中文字幕| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 丁香欧美五月| 欧美大码av| 丰满乱子伦码专区| 婷婷精品国产亚洲av| e午夜精品久久久久久久| 岛国视频午夜一区免费看| 久久久久国产精品人妻aⅴ院| 国产成人av教育| 丁香欧美五月| 精品久久久久久久人妻蜜臀av| 性色avwww在线观看| 久久人人精品亚洲av| 欧美最黄视频在线播放免费| 母亲3免费完整高清在线观看| 亚洲精品一区av在线观看| 久久人妻av系列| 69人妻影院| 亚洲av成人不卡在线观看播放网| 久久国产精品人妻蜜桃| 免费大片18禁| 日韩免费av在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 超碰av人人做人人爽久久 | 最后的刺客免费高清国语| 村上凉子中文字幕在线| 可以在线观看毛片的网站| 日韩高清综合在线| 国产三级在线视频|