• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC?

    2018-06-11 12:21:30NengWan萬能NiuLi李牛BoZhang張波HuanYang楊歡MinFuZhao趙敏福MaoSong宋昴GangLi李剛andJianYouGuo郭建友
    Communications in Theoretical Physics 2018年5期
    關(guān)鍵詞:張波李剛萬能

    Neng Wan(萬能),Niu Li(李牛),Bo Zhang(張波),Huan Yang(楊歡),Min-Fu Zhao(趙敏福), Mao Song(宋昴), Gang Li(李剛),and Jian-You Guo(郭建友)

    1Center of Basic Experiment,West Anhui University,Lu’an 237012,China

    2School of Physics and Material Science,Anhui University,Hefei 230039,China

    1 Introduction

    The astrophysical and cosmographic observational evidences have confirmed the existence of dark matter(DM)and provided the DM density in the universe.[1]However,these observations do not tell us more detailed information about the mass of DM particle or whether it interacts with the Standard Model(SM)particles.Determining the nature of DM particle quantitatively is one of the most important tasks both in cosmology and particle physics.Among all the DM candidates,weakly interacting massive particles(WIMPs)is a promising scenario.This is due to that it offers the possibility to interpret the relic abundance for the DM as a natural deduction of the thermal history of the universe.[2]

    Among various theoretical models,the inert doublet model(IDM)is one of the simplest models for the WIMP dark matter scenario,in which an isospin doublet scalar field is added to the SM Higgs sector and the corresponding field is assumed to be odd under an unbroken discrete Z2symmetry.After electroweak spontaneous symmetry breaking,there are four Z2odd scalar particles,i.e.,the CP-even H,the CP-odd A and two charged H±scalar bosons.The Z2symmetry ensures that the doublet Φ2fields do not spontaneously decay into final states including only the SM particles.Among them,the lightest scalar particle may serve as a dark matter candidate if it is electrical neutral.In addition,the additional doublet Φ2does not interact with the Standard Model fermions at tree level.Their interacts with the Standard Model are achieved via gauge interactions and via the quartic term with the Higgs doublet in the scalar potential.These terms are important in the phenomenology for searching the IDM.

    The lightest scalar Higgs,as a candidate for dark matter,has been studied in extensive literature.[3?9]In Ref.[10],it is found that three mass regions of the inert scalar Higgs can get the correct thermal relic abundance.The dark matter direct detection and indirect detection experiments report their results recently,and not find any dark matter particle signal.This gives more stringent restrictions on the parameters of the IDM model.From the direct detection experiments,the mass of dark matter particle in the IDM has been constrained to two regions:around a half of the Higgs boson mass(125 GeV)in the low mass region or above about 500 GeV in the high mass region.[11?16]

    High energy colliders may also be a useful tool to search the dark matter particle in the IDM.In order to maintain Z2symmetry,Z2odd scalar particles always generate in pairs at high energy colliders.The lightest scalar particles of the IDM will become a dark matter candidate particle,other scalar particles will eventually decay into the lightest scalar particles and SM particles,such as A→ HZ,H±→ HW±.Thus,the final particles in high energy colliders can be observed as dark matter particles and W,Z associated production.Especially,the primary production processes including IDM effect are HHW and HHZ production.Dark matter associated a dilepton/dijet production in the IDM at hadron colliders has been studied in Refs.[12,17–22],where missing ETfollowing A→ HZ(?)(H±→HW±)from HA(H+H?)production and assuming that the CP-even scalar H is a dark matter candidate.This process can be used to measure the mass of all new scalars with statistical precision of the order of few hundred MeV at future e+e?colliders.[23?24]In this paper,we will investigate CP-even scalar H pairs associated a W boson production in the IDM at the LHC.

    The paper is arranged as follows:in Sec.2 we briefly describe the related simplified model and present the calculation strategy.In Sec.3,we summarize all the theoretical and phenomenological constraints on the scalar potential for the IDM.In Sec.4,we present some numerical results and discussion.Finally,a short summary is given in Sec.5.

    2 The Inert Higgs Doublet Model

    The Inert Higgs Doublet Model is an extension of Standard Model(SM),which contains two Higgs doublets Φ1,2and a discrete Z2symmetry.Under Z2symmetry,the Higgs doublet fields are defined by Φ1→ Φ1,Φ2→ ?Φ2.All the SM fields are invariants under the discrete Z2symmetry,and Φ1is almost the same as the SM Higgs doublet.The extension scalar sector of the IDM contains a complex isospin doublet field Φ2with hypercharge Y=1/2,which like the SM Higgs doublet field Φ1.The inert doublet field Φ2is odd under a discrete Z2symmetry.Under the electroweak symmetry SU(2)L×U(1)Yand the unbroken discrete Z2symmetry,the Higgs potential is given by

    In the CP-conserved case,all the parameters are considered to be real.The coupling constants should satisfy the theoretical constraints,such as vacuum stability[25?26]and perturbative unitarity.[27?28]The requirement of vacuum stability is present below,

    The coupling constants constraints from perturbative unitarity are given in Refs.[27–28].In the case with exact Z2symmetry,Φ2does not need any non-zero vacuum expectation value(VEV),and therefore,only the SM field,Φ1takes part in the electroweak symmetry breaking(EWSB).After the EWSB,the doublet scalar fields are parameterized as

    where h is the SM Higgs boson with the mass 125 GeV,v is the vacuum expectation value(VEV)with 246 GeV,and G+and G0are Nambu-Goldstone bosons,which are absorbed into the longitudinal components of the W and Z bosons.We call the other Z2odd scalar bosons H,A,H±as the inert scalar bosons,where H is neutral scalar,A is a neutral pseudoscalar,and H±are two charged Higgs bosons.After applying the stationary condition,the masses of scalar bosons are given by

    The interaction vertices among the Standard Model Higgs boson h,the inert scalar bosons H±,H,and A are the following:

    Being electroweak doublets,they also have gauge interactions,but they do not interact directly with quarks or leptons.

    Assuming the mass hierarchy mH±>mA>mHfor the inert scalar bosons,the stable H appears as missing energy after the decays of A and H±.Since there is no term linear in A or H in Eq.(8),the decay of A only occur through the gauge interaction

    As for H±,its gauge interactions with H and A are given by

    Hence the dominant decays of H±are into W±H and W±A,then the inert scalar A subsequently decays to ZH.

    The IDM scalar sector can be specified by a total of six free parameters:

    We introduce the useful abbreviations λl=(1/2)(λ3+λ4+ λ5)and λs=(1/2)(λ3+ λ4? λ5).Through the above equations,the six parameters can be changed into a set of more meaningful parameters,

    3 Constraints on the Model Parameters

    In this section,we summarize all the theoretical and phenomenological constraints on the scalar potential,which are included in the scan of the parameter space of the IDM.

    First of all,perturbative unitarity for IDM requires that all coupling parameters should be less than 4π.[29]

    Secondly,the physical vacuum of the scalar potential should be stable,which requires[30?32]

    The S-matrix unitarity of 2→2 scalar scattering matrix at tree level requires the scalar coupling satis fi ed that[33?34]

    The global electroweak fit through the oblique S,T,U parameters is a common approach to constrain new physics beyond SM.When the parameters S,T,U remain in the region?S=0.03±0.09,?T=0.07±0.08(?U is fixed to zero),the authors have calculated the contributions of the oblique parameters for IDM in Ref.[35].The results show that the mass splitting among the scalar particles in the IDM can not be large,even if the mass of H0reaches 500 GeV.[36]

    Besides above theoretical constraints on the parameters of the IDM,the high energy collider also gives the experimental limits to this model.The experimental limitations at LEP first come from the measurements of Z→AH,Z→H+H?,W±→AH±and W±→HH±decay,and the results show that there are no signals beyond the standard model.As a good approximations,these imply that the mass of these scalar particles must be satisfied:MA0+MH0≥MZ,2MH±≥MZ,MH±+MH,A≥MW.Secondly,a model-independent lower limit for the mass of the charged scalars is provided from chargino searches at LEPII:MH±&70 GeV.[37]Searches for charginos and neutralinos at LEPII also provide the bound on MH:if MH<80 GeV then MA?MHshould be<8 GeV,or else,MAshould be>110 GeV.[38]

    The experimental limitations at the LHC mainly come from the decay of Standard Model Higgs.In the IDM,the new scalar fields affect the width of Higgs decay to diphoton or the Higgs invisible decay branching ratio.[35,39?41]The limits from the new scalar and SM Higgs coupling require the new scalar boson masses below Mh/2,and this has little limitation for the scalar particles mass above Mh/2.Direct dilepton decay have also been used to restrict the scalar particle mass in the region of MH.60 GeV and MA.150 GeV.[21,42]

    From above constraints,we find that the IDM is strongly restricted if the new scalar particle masses are at sub 100 GeV and not strict constrained above 500 GeV.In addition,the astrophysical constraints are reviewed in Ref.[31].

    4 Signal and Background

    In this section,we perform the Monte Carlo simulation and explore the sensitivity of 14 TeV LHC through the channel,

    where ?=e,μ.The lightest scalar particle H,as a candidate of dark matter,will escape the detector as the missing energy.The W boson is reconstructed using its leptonic decays into electron or muon and corresponding neutrino.The typical Feynman diagrams of production and decay chain are presented in Fig.1.We can see that this process can be used to probe the hHH,H+W?H and HHW+W?coupling.

    The Feynman Rules are extracted by the package FeynRules[43]from the Lagrangian of IDM.These Feynman Rules are generated into Universal FeynRules Output(UFO) files[44]and then add into the Monte Carlo event generator MadGraph@NLO(MG5)[45]for the generation of event samples.All the signal and backgrounds events are generated at LO with the CTEQ6L parton distribution function(PDF)and the renormalization and factorization scales are set dynamically by default along with basic acceptance cuts employed.PYTHIA6[46]is utilized for parton shower and hadronization with the options of ISR and RSR included.Delphes[47]is then employed to account for the detector simulations with the CMS card and MadAnalysis5 for analysis,where the(mis-)tagging efficiencies and fake rates are assumed to be their default values in Delphes,which is formulated as a function of the transverse momentum and rapidity of the jets.The anti-ktalgorithm[48]with the jet radius of 0.5 is used to reconstruct jets.The IDM mediator width is automatically computed by using the MadWidth module for each parameter point.The SM input parameters relevant in our work are taken as:

    We choose{mH±,mA,mH,mh,λl,λ2}as the input physical parameters:mH±,mA,mHare the Z2odd scalar particles masses,the couplings λ2and λlcorrespond to self-interaction in the dark sector and interaction between the dark matter and SM-like Higgs boson,respectively.Considering all the dark matter and collider constraints available presently,the following benchmark points(BP)are selected for our study as in Ref.[22],which is based on the the work in Refs.[18,49].

    Benchmark Points are listed in the Table:

    Fig.1 The Feynman diagrams for process pp→HHW±in IDM including the leptonic decay of W boson.

    The mass of the SM-like Higgs particle is always set to the value Mh=125.1 GeV.We have fixed the mass of the dark matter candidate to be mH=65 GeV,in order to avoid the invisible decay of the SM Higgs boson to a pair of DM.However,we have confirmed that,varying the mass slightly,within the window available,as described above does not bring in any significant change in our conclusions.We have then chosen different representative values of mH+,the main object of our study.This then naturally limits the value of mAto be close to mH+.The values considered in the BP’s are obtained from a random scan,satisfying all the dark matter and collider constraints mentioned above.The cross sections of the lightest scalar particle H pair associated a W boson production at the LHC with=14 TeV for these benchmark points are given in Table 1.

    Table 1 The cross sections of the pp → HHW±(→ l±ν)production in the IDM at the LHC with=14 TeV for these benchmark points are given.

    Table 1 The cross sections of the pp → HHW±(→ l±ν)production in the IDM at the LHC with=14 TeV for these benchmark points are given.

    BP1 BP2 BP3 BP4 BP5 BP6 σ/fb 0.1523(2)70.5(1)25.00(3) 7.166(8)2.774(3)1.322(2)

    4.1 Background

    The primary source of background for the signal is come from the SM W → ?ν decays with ?=e,μ.Meanwhile,a W → τν sample,where the τ-lepton decays to an electron or a muon,can not be separated from prompt leptons and missing energy.Top-quark pair production is another source of high-pTleptons andMultijet background(QCD),enriched in electrons/photons and muons,has by far the largest cross section,it is efficiently rejected by the isolation requirements imposed to select the lepton candidates as well as the requirement on the ET.Despite the large suppression of these events,the misidenti fi ca-tion of jets as leptons(especially as electrons)still occurs.Drell-Yan production of dileptons(?=e,μ)constitutes a background when one lepton escapes detection.Contributions from Dibosons(WW,WZ,ZZ)decaying to a state with at least one lepton can not be ignored.In the electron channel,a γ+jet event sample is used to estimate the e ff ects of photons misidentified as electrons,which are largely rejected by the requirement of two-body decay kinematics.

    In our simulation,we generate 100,000 events for the signals and 100,000 events for all the backgrounds.We fi rst employ some basic cuts for the selection of events:

    whereand ηj,lare the transverse momentum and the pseudorapidity of the jet and leptons,respectively.is the particle separation among the objects(the jet,the lepton,and the photons)in the final state with??,and?η being the separation in the azimuth angle and rapidity,respectively.The ηl,jacceptance region avoids the gap between barrel and endcap,where the misidentification probability is the highest.

    Fig.2 (Color online)Normalized distributions of numbers of lepton N(?)and b quark N(b),the transverse missing energy ET,the azimuthal angle between the directions of the missing transverse energy ??(?,ET),the leptonic transverse momentum ,the ratio of /the total transverse hadronic energy HT;and the transverse mass of lepton-ETsystem MT(?,in the signals and backgrounds at 14 TeV LHC.

    According to the distribution differences between the signal and backgrounds,we can improve the ratio of signal to backgrounds by making suitable kinematical cuts.Through the investigation,we find that the backgrounds of W decay to τ-lepton,Multijet(QCD)and γ+jet event are suppressed seriously after suitable cuts,and can be neglected.Therefore,we will not list the these three backgrounds in the following analysis.In Fig.2,we show the distributions of some kinematical variables for the signal and backgrounds at 14 TeV LHC.N(?)and N(b)are the numbers of lepton and b quark. The total transverse hadronic energy HTis a global observable,which is defined by

    In the leptonic decay channel,the kinematic variable transverse mass of the lepton-ETis defined,

    where ??l,ETis the azimuthal opening angle between the directions of the missing transverse energy and the charged lepton. The distributions of the observable MT(?,ET),ETand PT(l)are similar.In fact,these variables are not completely independent.We only need to chose one of them,then select the suitable cut to suppress the SM backgrounds.From Fig.2,we find the total transverse hadronic energy HTcan significantly reduce all the SM background except ttˉ background.The ttˉ background can not be suppressed by changing other observables,such as MT(?,ET),ET,PT(l).We first select the events with N(l)=1,N(b)=0.Through requiring the number of final state only one lepton and one b quark,we can suppress amounts of Standard Model backgrounds,especially the background of top-quark pair production.Next,we require the total transverse hadronic energy HT>150 GeV.All the SM backgrounds are suppressed seriously.Finally,we require the transverse missing energy ET>40 GeV to improve the discovery significance

    For a short summary,we list all the cut-based selections here:

    (i)Basic cut:pjT>25 GeV,p?T>20 GeV,|ηj|<2.5,|η?|<2 and ?Rij>0.4(i,j= ?,j,γ).

    (ii)Cut 1 means the basic cuts plus missing N(?)=1 and N(b)=0.

    (iii)Cut 2 means Cut 1 plus requiring the total transverse hadronic energy HT>150 GeV.

    (iv)Cut 3 means Cut 2 plus requiring the transverse missing energy ET>40 GeV.

    Table 2 The number of events for the signal(HHW)in BP2 and backgrounds(W → ?ν,tˉt,DY and Diboson)after the cut flows are listed in the brackets at the 14 TeV LHC with integrated luminosity L=3000 fb?1.The values of discovery significance S at each step of cut are also shown.

    The results of the number of events(with luminosity=3000 fb?1)are shown in Table 2 at each step of cut.The values of the discovery significanceare also shown,where S and B are the numbers of signal and total background events,respectively.From the result in the table,we find that the backgrounds mainly come from W lepton decay channel in SM.After applying all select cuts,the backgrounds can be reduced to ten thousandth.For the BP2,the discovery significancecan reach 19.26σ.Thus,we can observe the IDM effect though the neutral scalar H pair associated W in some parameter space with large luminosity at the 14 TeV LHC.The statistical significance are affected significantly by the systematic error.If the systematic error is considered,the statistical significance uncertainty needs to be added to this part,which is defined(S??B)/(2(S+B)3/2),where?B is the systematic error on the background number of events.If we take?B as 5%of the background number of events,statistical significance uncertainty will arrive 0.484 after cut 3 in Table 2.

    Fig. 3 (Color online) Contour plots in plane mH+ ?mA with 3σ discovery significance for process pp → HHW production at 14 TeV LHC with integrated luminosity of 3000 fb-1.

    In Fig.3,we plot the 3σ discovery reach in the plane mH+?mAwith the integrated luminosity of 3000 fb?1.we investigate the effects of coupling parameter λ2and λLand find that the cross section has little change with the varying λ2and λL.In this paper,we assume the mass hierarchy mH±>mA>mH.As in the previous benchmark points,we set the lightest scalar Higgs mH=65 GeV.Thus,the minimal value of mAis 65 GeV,the maximal value of mAis equal mH±.In Fig.3,The two red lines represent the line mH+=mAand mA=65 GeV.The other two black lines are the 3σ discovery limit.From Fig.3,we find that,in the range of 120 GeV

    5 Summary

    The origin of dark matter is one of the most compelling mysteries in our understanding of the universe now.High energy colliders provide ideal facilities to search for DM particle.The Inert Doublet Model,which is one of the most simple extension of the Standard Model,provides a scalar DM particle candidate.In this paper,we have studied the lightest scalar particle H pair associated a W boson production in IDM at the 14 TeV LHC,in which H is the DM particle,W will decay to leptons or hadrons.We focus on the leptonic channel of W boson.The SM main backgrounds include single W leptonic decay,top pair production,Drell-Yan process,and Diboson leptonic decay.We implemented the Multivariate Analysis(MVA)method for selecting suitable cuts to suppress these SM backgrounds and improve the discovery significance.We also gave the contour plots in plane mH+?mAwith 3σ discovery significance at 14 TeV LHC with integrated luminosity of 3000 fb?1and found that it has potential for observing the mono-W signal in the range of 120 GeV

    [1]G.Bertone,D.Hooper and J.Silk,Phys.Rept.405(2005)279,[hep-ph/0404175].

    [2]J.L.Feng and J.Kumar,Phys.Rev.Lett.101(2008)231301,[arXiv:0803.4196].

    [3]E.Ma,Phys.Rev.D 73(2006)077301,[hep-ph/0601225].

    [4]R.Barbieri,L.J.Hall,and V.S.Rychkov,Phys.Rev.D 74(2006)015007,[hep-ph/0603188].

    [5]M.Cirelli,N.Fornengo,and A.Strumia,Nucl.Phys.B 753(2006)178,[hep-ph/0512090].

    [6]L.Lopez Honorez,E.Nezri,J.F.Oliver,and M.H.G.Tytgat,JCAP 0702(2007)028,[hep-ph/0612275].

    [7]L.Lopez Honorez and C.E.Yaguna,JHEP 09(2010)046,arXiv:1003.3125[hep-ph].

    [8]L.Lopez Honorez and C.E.Yaguna,JCAP 1101(2011)002,arXiv:1011.1411[hep-ph].

    [9]A.Dasgupta and D.Borah,Nucl.Phys.B 889(2014)637,arXiv:1404.5261[hep-ph].

    [10]M.A.Diaz,B.Koch,and S.Urrutia-Quiroga,arXiv:1511.04429[hep-ph].

    [11]A.Goudelis,B.Herrmann,and O.St?al,JHEP 1309(2013)106.

    [12]N.Blinov,J.Kozaczuk,D.E.Morrissey,and A.de la Puente,Phys.Rev.D 93(2016)035020.

    [13]T.Abe and R.Sato,JHEP 1503(2015)109.

    [14]E.Aprile[XENON1T Collaboration],Springer Proc.Phys.148(2013)93.

    [15]D.S.Akerib,et al.[LZ Collaboration],arXiv:1509.02910[physics.ins-det].

    [16]C.Garcia-Cely,M.Gustafsson,and A.Ibarra,JCAP 1602(2016)043,[arXiv:1512.02801[hep-ph]].

    [17]A.Arhrib,Y.L.S.Tsai,Q.Yuan,and T.C.Yuan,AMS-02 and LHC,JCAP 1406(2014)030.

    [18]A.Ilnicka,M.Krawczyk,and T.Robens,Phys.Rev.D 93(2016)055026.

    [19]Q.H.Cao,E.Ma,and G.Rajasekaran,Phys.Rev.D 76(2007)095011.

    [20]E.Dolle,X.Miao,S.Su,and B.Thomas,Phys.Rev.D 81(2010)035003.

    [21]G.Belanger,B.Dumont,A.Goudelis,et al.,Phys.Rev.D 91(2015)115011.

    [22]P.Poulose,S.Sahoo,and K.Sridhar,arXiv:1604.03045[hep-ph].

    [23]M.Aoki,S.Kanemura,and H.Yokoya,Phys.Lett.B 725(2013)302.

    [24]M.Hashemi,M.Krawczyk,S.Najjari,and A.F.˙Zarnecki,JHEP 1602(2016)187.

    [25]A.Arhrib,R.Benbrik,J.El Falaki,and A.Jueid,JHEP 1512(2015)007.

    [26]I.F.Ginzburg,K.A.Kanishev,M.Krawczyk,and D.Sokolowska,Phys.Rev.D 82(2010)123533.

    [27]S.Kanemura,T.Kubota,and E.Takasugi,Phys.Lett.B 313(1993)155.

    [28]A.G.Akeroyd,A.Arhrib,and E.M.Naimi,Phys.Lett.B 490(2000)119.

    [29]C.A.Garcia Cely,PhD thesis,Technische Universit¨at München(TUM)(2014).

    [30]J.F.Gunion and H.E.Haber,Phys.Rev.D 67(2003)075019,[hep-ph/0207010].

    [31]M.Gustafsson,PoSCHARGED2010(2010)030,[arXiv:1106.1719].

    [32]N.Khan and S.Rakshit,arXiv:hep-ph/1503.0308.

    [33]I.F.Ginzburg and M.Krawczyk,Phys.Rev.D 72(2005)115013,[hep-ph/0408011].

    [34]G.Branco,P.Ferreira,L.Lavoura,et al.,Phys.Rept.516(2012)1,[arXiv:1106.0034].

    [35]A.Arhrib,R.Benbrik,and N.Gaur,Phys.Rev.D 85(2012)095021,[arXiv:1201.2644].

    [36]T.Hambye,F.S.Ling,L.Lopez Honorez,and J.Rocher,JHEP 0907(2009)090;Erratum:[JHEP 1005(2010)066].

    [37]A.Pierce and J.Thaler,JHEP 0708(2007)026,[hepph/0703056].

    [38]E.Lundstrom,M.Gustafsson,and J.Edsjo,Phys.Rev.D 79(2009)035013.

    [39]B.Swiezewska and M.Krawczyk,Phys.Rev.D 88(2013)035019,[arXiv:1212.4100].

    [40]M.Krawczyk,D.Sokolowska,P.Swaczyna,and B.Swiezewska,JHEP 1309(2013)055,[arXiv:1305.6266].

    [41]A.Goudelis,B.Herrmann,and O.Stal,JHEP 09(2013)106,[arXiv:1303.3010].

    [42]S.Kanemura,M.Kikuchi,and K.Sakurai,Higgs boson couplings,Phys.Rev.D 94(2016)115011,[arXiv:1605.08520[hep-ph]].

    [43]A.Alloul,N.D.Christensen,C.Degrande,et al.,Comput.Phys.Commun.185(2014)2250,[arXiv:1310.1921].

    [44]C.Degrande,C.Duhr,B.Fuks,et al.,Comput.Phys.Commun.183(2012)1201,[arXiv:1108.2040]

    [45]J.Alwall,R.Frederix,S.Frixione,et al.,JHEP 1407(2014)079,[arXiv:1405.0301].

    [46]T.Sjostrand,S.Mrenna,P.Z.Skands,PYTHIA 6.4 Physics and Manual,JHEP 0605(2006)026.

    [47]J.de Favereau,et al,DELPHES 3 Collaboration,DELPHES 3,A modular framework for fast simulation of a generic collider experiment,JHEP 1402(2014)057.

    [48]M.Cacciari,G.P.Salam,and G.Soyez,JHEP 0804(2008)063.

    [49]A.Ilnicka,M.Krawczyk,and T.Robens,arXiv:1505.04734[hep-ph].

    猜你喜歡
    張波李剛萬能
    入木三分
    The Channel Tunnel
    李剛作品
    國畫家(2021年2期)2021-06-04 05:33:54
    Best fight
    萬能衣
    Testing Photons Coupled to Weyl Tensor with Gravitational Time Advancement?
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    我有一雙萬能的手
    未來的萬能草
    小布老虎(2016年10期)2016-12-01 05:46:45
    你撿到錢了
    喜劇世界(2016年15期)2016-11-26 17:08:36
    国产高清视频在线播放一区| 19禁男女啪啪无遮挡网站| 久久精品国产综合久久久| 亚洲欧美激情综合另类| 日本a在线网址| 欧美黑人精品巨大| 日韩欧美国产一区二区入口| 国产免费男女视频| 国产精品一区二区免费欧美| 首页视频小说图片口味搜索| 成年人黄色毛片网站| 美女大奶头视频| 夜夜看夜夜爽夜夜摸| 中文字幕最新亚洲高清| 少妇的丰满在线观看| 日本一区二区免费在线视频| 国产真实乱freesex| 真人一进一出gif抽搐免费| 青草久久国产| 欧美性猛交黑人性爽| 亚洲精品中文字幕在线视频| 一本精品99久久精品77| bbb黄色大片| 母亲3免费完整高清在线观看| 两个人视频免费观看高清| www.自偷自拍.com| 不卡一级毛片| 老司机靠b影院| 丝袜在线中文字幕| 国产亚洲av高清不卡| 日本免费一区二区三区高清不卡| 午夜视频精品福利| 天天躁夜夜躁狠狠躁躁| 韩国精品一区二区三区| 丝袜在线中文字幕| 国产一区二区三区视频了| 黄网站色视频无遮挡免费观看| av电影中文网址| 国产色视频综合| 国产精品影院久久| 99久久99久久久精品蜜桃| 国产精品久久电影中文字幕| 国产极品粉嫩免费观看在线| 中文字幕另类日韩欧美亚洲嫩草| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲黑人精品在线| 1024视频免费在线观看| 久久香蕉激情| 日韩有码中文字幕| 很黄的视频免费| 亚洲av电影不卡..在线观看| 一本精品99久久精品77| 亚洲无线在线观看| 精品电影一区二区在线| 亚洲 国产 在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲天堂国产精品一区在线| 97超级碰碰碰精品色视频在线观看| 久久久久国内视频| or卡值多少钱| 变态另类丝袜制服| 国产精品久久久久久精品电影 | 91国产中文字幕| 国产伦人伦偷精品视频| 人成视频在线观看免费观看| 亚洲欧美一区二区三区黑人| 久久久国产欧美日韩av| 一级a爱视频在线免费观看| 国产激情欧美一区二区| 最新美女视频免费是黄的| 成人18禁高潮啪啪吃奶动态图| 久久久久久亚洲精品国产蜜桃av| 欧美成人一区二区免费高清观看 | 欧美日韩亚洲国产一区二区在线观看| 满18在线观看网站| 视频区欧美日本亚洲| 美女高潮喷水抽搐中文字幕| 久久久久久人人人人人| 又紧又爽又黄一区二区| xxx96com| 人妻丰满熟妇av一区二区三区| 午夜日韩欧美国产| 国产成人精品久久二区二区免费| 少妇的丰满在线观看| 日本一区二区免费在线视频| 黄色毛片三级朝国网站| 国产成人av教育| 在线观看免费日韩欧美大片| 一夜夜www| 琪琪午夜伦伦电影理论片6080| 国产精品,欧美在线| 中文字幕人成人乱码亚洲影| 日韩欧美国产一区二区入口| 老汉色∧v一级毛片| 国产精品免费视频内射| 成人国产综合亚洲| 欧美乱色亚洲激情| 国产成+人综合+亚洲专区| 黄色毛片三级朝国网站| 日日爽夜夜爽网站| 最近最新中文字幕大全电影3 | 欧美日韩一级在线毛片| 少妇裸体淫交视频免费看高清 | 国产精品国产高清国产av| 亚洲 欧美 日韩 在线 免费| 男人舔奶头视频| 国产精品久久久久久精品电影 | 亚洲男人的天堂狠狠| 久久青草综合色| 波多野结衣巨乳人妻| 亚洲国产欧美网| 欧美日韩亚洲国产一区二区在线观看| 99riav亚洲国产免费| 久久久久久久午夜电影| 亚洲狠狠婷婷综合久久图片| 啪啪无遮挡十八禁网站| 国产成人影院久久av| 最近最新免费中文字幕在线| 国产精品 国内视频| 女警被强在线播放| svipshipincom国产片| 精品高清国产在线一区| 一区二区三区激情视频| 韩国精品一区二区三区| 免费电影在线观看免费观看| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 国产极品粉嫩免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 国产成人av激情在线播放| 热re99久久国产66热| 日韩精品中文字幕看吧| 精品一区二区三区视频在线观看免费| 亚洲国产精品999在线| 啦啦啦免费观看视频1| 欧美乱色亚洲激情| 欧美最黄视频在线播放免费| 正在播放国产对白刺激| 国产成人av教育| 麻豆av在线久日| 后天国语完整版免费观看| 精品久久久久久久末码| 久久精品91无色码中文字幕| 国产av又大| 人妻久久中文字幕网| 亚洲在线自拍视频| 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av| 不卡一级毛片| 日本五十路高清| 久久亚洲精品不卡| 国产欧美日韩一区二区三| 日本免费一区二区三区高清不卡| 国产成人欧美| 18禁观看日本| 欧美国产精品va在线观看不卡| 黄片播放在线免费| 国产激情久久老熟女| 精品久久久久久久久久久久久 | 国产成人精品久久二区二区免费| 99久久99久久久精品蜜桃| 国产激情欧美一区二区| 人妻丰满熟妇av一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 九色国产91popny在线| 99国产精品99久久久久| 可以在线观看毛片的网站| 成人18禁在线播放| 啦啦啦韩国在线观看视频| 欧美色欧美亚洲另类二区| 操出白浆在线播放| 久久香蕉激情| 亚洲欧美激情综合另类| 亚洲成国产人片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲男人的天堂狠狠| 日韩欧美国产在线观看| 国产又黄又爽又无遮挡在线| 亚洲在线自拍视频| 国产99久久九九免费精品| 看片在线看免费视频| 国产精品久久电影中文字幕| 午夜福利视频1000在线观看| 成年人黄色毛片网站| 给我免费播放毛片高清在线观看| 亚洲一区高清亚洲精品| 国产又黄又爽又无遮挡在线| 成年版毛片免费区| 人人妻,人人澡人人爽秒播| 1024香蕉在线观看| 一个人观看的视频www高清免费观看 | 免费人成视频x8x8入口观看| or卡值多少钱| 黄色视频不卡| 亚洲男人天堂网一区| 美女高潮到喷水免费观看| 禁无遮挡网站| 午夜久久久在线观看| 无限看片的www在线观看| 777久久人妻少妇嫩草av网站| 亚洲熟女毛片儿| 一级a爱片免费观看的视频| 欧美性猛交黑人性爽| 嫁个100分男人电影在线观看| 午夜老司机福利片| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久人人做人人爽| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 伦理电影免费视频| 757午夜福利合集在线观看| 久久久国产欧美日韩av| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 成人一区二区视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 50天的宝宝边吃奶边哭怎么回事| 在线播放国产精品三级| 成人欧美大片| 亚洲专区字幕在线| 999久久久精品免费观看国产| 亚洲美女黄片视频| 亚洲av成人av| 丝袜人妻中文字幕| 成人18禁在线播放| 岛国在线观看网站| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 国产免费男女视频| 亚洲中文日韩欧美视频| 亚洲国产日韩欧美精品在线观看 | 精品欧美一区二区三区在线| a在线观看视频网站| 非洲黑人性xxxx精品又粗又长| 国产亚洲欧美98| 亚洲人成网站高清观看| 又黄又粗又硬又大视频| 国产一区二区三区视频了| 老熟妇仑乱视频hdxx| 2021天堂中文幕一二区在线观 | 黄频高清免费视频| 国产精品 国内视频| 国产成人影院久久av| 国产精品亚洲av一区麻豆| 一本精品99久久精品77| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 亚洲真实伦在线观看| 国产私拍福利视频在线观看| 极品教师在线免费播放| 午夜精品在线福利| 可以免费在线观看a视频的电影网站| 人人澡人人妻人| 又黄又爽又免费观看的视频| 午夜福利高清视频| 国产又色又爽无遮挡免费看| 亚洲熟妇熟女久久| www.www免费av| 日本一区二区免费在线视频| 成人手机av| 国产精品美女特级片免费视频播放器 | 亚洲精品国产一区二区精华液| 热re99久久国产66热| 亚洲 国产 在线| 国产三级黄色录像| 青草久久国产| 中文在线观看免费www的网站 | 亚洲 欧美一区二区三区| 一级毛片高清免费大全| 99国产精品一区二区蜜桃av| 欧美黑人巨大hd| 国产99久久九九免费精品| 无限看片的www在线观看| 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 久久人人精品亚洲av| 国产精品精品国产色婷婷| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 亚洲男人天堂网一区| 日韩有码中文字幕| 成人亚洲精品av一区二区| 啦啦啦韩国在线观看视频| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲| 国产成人系列免费观看| 夜夜爽天天搞| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 嫩草影视91久久| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 岛国在线观看网站| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 久久久国产成人精品二区| av电影中文网址| 亚洲片人在线观看| 一本久久中文字幕| 国产激情欧美一区二区| 午夜免费成人在线视频| 91av网站免费观看| 精品无人区乱码1区二区| 日本熟妇午夜| 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 变态另类丝袜制服| 精品无人区乱码1区二区| 黄色成人免费大全| 老汉色av国产亚洲站长工具| 十分钟在线观看高清视频www| 色老头精品视频在线观看| 国产蜜桃级精品一区二区三区| 制服诱惑二区| 成人欧美大片| 熟女电影av网| 国产精品久久久久久精品电影 | 搡老熟女国产l中国老女人| 久久国产乱子伦精品免费另类| 日韩欧美免费精品| 成人三级做爰电影| 动漫黄色视频在线观看| 免费电影在线观看免费观看| 丝袜人妻中文字幕| 国内久久婷婷六月综合欲色啪| 亚洲一区中文字幕在线| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 免费在线观看成人毛片| 国产精品野战在线观看| 国产一区在线观看成人免费| 香蕉国产在线看| 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 不卡av一区二区三区| 久久99热这里只有精品18| 欧美成狂野欧美在线观看| 精品久久久久久久久久免费视频| 亚洲中文字幕日韩| 88av欧美| 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 日韩精品青青久久久久久| 啦啦啦 在线观看视频| 国产av又大| 国产成人av激情在线播放| 久久香蕉精品热| 久久中文看片网| 香蕉国产在线看| 我的亚洲天堂| 久久久久久人人人人人| 国产欧美日韩精品亚洲av| 麻豆成人午夜福利视频| 怎么达到女性高潮| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 日本一区二区免费在线视频| 成人精品一区二区免费| 欧美av亚洲av综合av国产av| cao死你这个sao货| 观看免费一级毛片| 日本五十路高清| 啪啪无遮挡十八禁网站| xxx96com| 神马国产精品三级电影在线观看 | 亚洲黑人精品在线| 日韩欧美国产在线观看| 男人舔女人的私密视频| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| www.自偷自拍.com| 国产精品 国内视频| 日韩欧美国产在线观看| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 成人欧美大片| 亚洲第一av免费看| 高清毛片免费观看视频网站| 国产成人精品久久二区二区免费| 国产一区在线观看成人免费| 国产精华一区二区三区| 99国产精品一区二区三区| 99热只有精品国产| 成年免费大片在线观看| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久人妻精品电影| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 国产黄色小视频在线观看| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 国产午夜精品久久久久久| 久久久国产成人免费| 亚洲自偷自拍图片 自拍| 亚洲精品在线观看二区| 91av网站免费观看| 中文在线观看免费www的网站 | 一本综合久久免费| 在线观看一区二区三区| 这个男人来自地球电影免费观看| 久久人妻av系列| 国产精品影院久久| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 久久久久亚洲av毛片大全| a在线观看视频网站| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 亚洲av熟女| 特大巨黑吊av在线直播 | 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 丁香欧美五月| 俺也久久电影网| 精品高清国产在线一区| 伊人久久大香线蕉亚洲五| 亚洲黑人精品在线| 人人妻人人看人人澡| 男女床上黄色一级片免费看| 国产v大片淫在线免费观看| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 国产97色在线日韩免费| 757午夜福利合集在线观看| 99热只有精品国产| 国产麻豆成人av免费视频| 午夜两性在线视频| 成人午夜高清在线视频 | 亚洲一码二码三码区别大吗| 日韩有码中文字幕| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 99热6这里只有精品| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区 | 亚洲五月色婷婷综合| 国产黄a三级三级三级人| 亚洲成国产人片在线观看| 精品不卡国产一区二区三区| 国产av不卡久久| 免费看日本二区| 日本黄色视频三级网站网址| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看 | 欧美在线一区亚洲| 黄色a级毛片大全视频| 亚洲精品在线观看二区| a级毛片在线看网站| 啦啦啦韩国在线观看视频| 亚洲国产毛片av蜜桃av| 高清毛片免费观看视频网站| 色综合婷婷激情| 精品乱码久久久久久99久播| xxxwww97欧美| 午夜两性在线视频| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 村上凉子中文字幕在线| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 免费观看人在逋| 欧美乱码精品一区二区三区| 久久久久久大精品| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 一级毛片精品| 国内揄拍国产精品人妻在线 | 中文字幕久久专区| 亚洲激情在线av| 久久伊人香网站| 一a级毛片在线观看| 亚洲免费av在线视频| 一进一出抽搐gif免费好疼| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 日韩欧美免费精品| 黄色毛片三级朝国网站| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 男人舔奶头视频| 亚洲成人久久爱视频| 国产一区二区三区视频了| 色播亚洲综合网| 国产熟女xx| 午夜福利免费观看在线| 99国产精品99久久久久| 国产成年人精品一区二区| 午夜久久久久精精品| www日本黄色视频网| 国产成人av教育| 免费在线观看影片大全网站| 亚洲成av人片免费观看| 熟女电影av网| 亚洲五月婷婷丁香| 亚洲 欧美 日韩 在线 免费| 十八禁人妻一区二区| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av高清一级| 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 亚洲 欧美一区二区三区| 国产高清激情床上av| 最新在线观看一区二区三区| 亚洲成人久久性| 又大又爽又粗| 亚洲国产精品合色在线| 免费高清在线观看日韩| 高潮久久久久久久久久久不卡| 日本 av在线| 最新在线观看一区二区三区| 悠悠久久av| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 亚洲精品国产精品久久久不卡| 中文字幕最新亚洲高清| 国内揄拍国产精品人妻在线 | 欧美乱码精品一区二区三区| 淫秽高清视频在线观看| 亚洲国产日韩欧美精品在线观看 | 一夜夜www| 午夜日韩欧美国产| 变态另类丝袜制服| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线 | 热re99久久国产66热| 亚洲中文av在线| 成人精品一区二区免费| 久久久国产精品麻豆| 色播在线永久视频| 欧美日韩乱码在线| 老司机深夜福利视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲人成网站高清观看| 少妇被粗大的猛进出69影院| 免费看日本二区| av中文乱码字幕在线| 国产色视频综合| 香蕉久久夜色| 日韩欧美 国产精品| www.www免费av| 婷婷精品国产亚洲av| 国产成人精品无人区| 欧美乱色亚洲激情| 国产精品精品国产色婷婷| 麻豆一二三区av精品| 久久久水蜜桃国产精品网| 我的亚洲天堂| 岛国视频午夜一区免费看| 一本精品99久久精品77| 久久99热这里只有精品18| 亚洲男人的天堂狠狠| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 国产亚洲精品第一综合不卡| aaaaa片日本免费| 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 99久久久亚洲精品蜜臀av| 久久中文字幕人妻熟女| 国产亚洲精品av在线| 淫秽高清视频在线观看| 亚洲av中文字字幕乱码综合 | 国产精品 欧美亚洲| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 88av欧美| 中文字幕高清在线视频| 亚洲狠狠婷婷综合久久图片| 一本综合久久免费| 大型av网站在线播放| 亚洲欧美精品综合一区二区三区| 久久精品91无色码中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 视频在线观看一区二区三区| 亚洲中文字幕日韩| 男人操女人黄网站| 国内少妇人妻偷人精品xxx网站 | 亚洲国产欧美日韩在线播放| 三级毛片av免费| 无遮挡黄片免费观看| 99热这里只有精品一区 | 免费在线观看亚洲国产| 久久国产乱子伦精品免费另类| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 一级毛片高清免费大全| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 岛国在线观看网站| 这个男人来自地球电影免费观看| 999精品在线视频|