• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CYGNSS海表風場觀測數(shù)據(jù)驗證及其可能的應用

    2018-05-30 12:50:50胡運王曉春王東曉
    南京信息工程大學學報 2018年3期
    關鍵詞:驗證

    胡運 王曉春 王東曉

    摘要海表面風場可以用于獲取許多大氣和海洋現(xiàn)象的信號,高質量、高時空分辨率的海表面風場數(shù)據(jù)產(chǎn)品將有利于海洋-大氣動力過程的研究.本文使用全球熱帶系泊浮標陣列計劃(Global Tropical Moored Array Programs)的錨定浮標風場數(shù)據(jù)和西沙通量塔氣象觀測資料驗證了 Cyclone Global Navigation Satellite System (CYGNSS)的35°N~35°S海面遙感風場觀測數(shù)據(jù).結果表明,CYGNSS海表面風場與實測資料存在著2.17 m/s左右的平均均方根誤差(RMSD),它可能源于觀測數(shù)據(jù)和衛(wèi)星遙感資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.另外,CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.本文使用Madden-Julian Oscillation (MJO)和赤道東部印度洋上升流事件作為兩個個例,說明了CYGNSS海表面風場資料的潛在應用價值.

    關鍵詞CYGNSS;觀測數(shù)據(jù);驗證;潛在應用;MJO;沿岸上升流

    中圖分類號P414.4

    文獻標志碼A

    0 導讀

    本文原文為英文,希望感興趣的讀者進一步關注原文.

    海表風場是海氣界面主要的動量通量和能量通量的來源.為了正確認識海氣相互作用過程,需要進一步提高海表風場數(shù)據(jù)的質量、時間和空間分辨率,以便模擬和預測海洋和大氣現(xiàn)象的發(fā)生及發(fā)展過程.現(xiàn)有的海表風場數(shù)據(jù)的時間和空間分辨率逐漸提高,但降水對風場數(shù)據(jù)的影響仍然存在.2016年底,美國航空航天局的旋風全球導航衛(wèi)星系統(tǒng)(CYGNSS)飛行任務啟動,它是一個用于提高颶風預報準確性的包含8顆微小衛(wèi)星的星座,可以對熱帶氣旋、臺風以及颶風整個壽命周期中的眼壁內(nèi)和眼壁附近的海洋表面風進行頻繁測量,每秒可得到32個實際風速值.另外,CYGNSS觀測系統(tǒng)可對單一樣本點進行多次觀測,時間間隔為幾分鐘至幾小時.總之,CYGNSS觀測數(shù)據(jù)具有兩個明顯優(yōu)點:1)幾乎不受降水影響;2)時間步長短.

    本文使用較多的單點觀測數(shù)據(jù)來驗證CYGNSS觀測數(shù)據(jù)的可靠性.選取的時間段為2017年8月1日—10月4日,共65 d.首先將CYGNSS風場數(shù)據(jù)與中國南海西沙通量塔風場數(shù)據(jù)進行對比.衛(wèi)星數(shù)據(jù)與站點觀測存在著2.49 m/s的均方根誤差(RMSD).另外,時間上均勻、空間上網(wǎng)格化的CYGNSS風場產(chǎn)品更適用于海洋和大氣的研究.將CYGNSS風場數(shù)據(jù)與全球熱帶系泊浮標陣列計劃的錨定浮標風場數(shù)據(jù)進行對比,結果顯示,相對于錨定浮標數(shù)據(jù),CYGNSS風場產(chǎn)品存在著2.17 m/s的平均RMSD.該數(shù)值符合CYGNSS任務數(shù)據(jù)產(chǎn)品的要求,即低于20 m/s風速時,其反演不確定性為2.0 m/s.這些誤差可能源于觀測數(shù)據(jù)和衛(wèi)星資料的觀測誤差,以及兩者在空間和時間上未嚴格匹配而引起的代表性誤差.CYGNSS海表面風速的時間演變與實測資料非常一致,展現(xiàn)了CYGNSS在研究海洋-大氣能量和動量交換過程方面的潛在應用價值.

    為了展現(xiàn)CYGNSS數(shù)據(jù)產(chǎn)品的潛在應用價值,本文使用Madden-Julian Oscillation(MJO)和赤道東部印度洋上升流事件作為兩個個例,驗證CYGNSS風場在獲取兩者信號時的表現(xiàn).結果表明,CYGNSS海表風場較好地展現(xiàn)了MJO東傳的速度和位相,這與850 hPa風場表現(xiàn)一致;同時,CYGNSS海表風場可通過算法來指示赤道印度洋東部上升流的強度,該強度與海表溫度異常值變化一致.

    Abstract Many phenomena in the atmosphere and the ocean can be detected by sea surface winds.High quality and high temporal and spatial resolution sea surface wind data product is needed to study these phenomena.In this paper,sea surface winds from Cyclone Global Navigation Satellite System (CYGNSS) mission over 35°N-35°S are validated against in situ observations in order to evaluate the performance of CYGNSS.The in situ wind observations include measurements from the Xisha flux tower in South China Sea (SCS),and moored buoy data from the Global Tropical Moored Buoy Array (GTMBA).The result indicates a mean root-mean-square-difference (RMSD) of 2.17 m/s of CYGNSS winds with respect to in situ observations.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.The time evolution of CYGNSS winds,however,is consistent with that of in-situ winds,suggesting its potential application in understanding the complex mass and energy interchange processes of atmosphere and ocean.Examples using surface wind to analyze the MJO and the equatorial eastern Indian Ocean upwelling events are also discussed,which indicates potential applications of CYGNSS observation.

    Key words CYGNSS;observations;validation;potential application;Madden-Julian oscillation;coastal upwelling

    1 Introduction

    Sea surface wind is the typical movement of near-surface air and the largest source of momentum for the upper ocean.It can drive ocean currents,develop convection via surface wind convergence and divergence[1],and transfer heat flux,moisture,gases and particulates into and out of the ocean[2].Accurate measurements of sea surface wind will provide researchers with more detailed information about these dynamic processes of the atmosphere and the ocean.Throughout history,the poor spatial and temporal coverage of ship-and buoy-based observations set limits to describe meteorological conditions over the open ocean[3].Of late,as technology developed,many satellite-based monitoring methods have measured higher-quality wind datasets over tropical and global oceans[4].For instance,Quick Scatterometer provides global winds from 1999 to 2009[5],and the National Centers for Environmental Prediction is involved to present two global reanalysis projects,including Reanalysis-1 and Reanalysis-2[6-7].The Cross-Calibrated Multi-Platform (CCMP) gridded surface vector winds are also widely used[8].Many efforts have been made to evaluate or compare the existing wind data products.The resolution of measurements is improved due to the development of technology,while the rainfall effects on the quality of wind data is still a key limitation[9-10].

    At the end of 2016,the orbital injection of a single launch vehicle carrying a constellation of eight small satellites marks the beginning of the Cyclone Global Navigation Satellite System (CYGNSS) mission.One of the primary CYGNSS objectives is to leverage Global Positioning System (GPS) reflectometry to measure wind speeds in tropical cyclones (TCS) inner core with sufficient frequency to resolve genesis and rapid intensification phases of the TC life cycle[11].And another objective is to measure sea wind speeds under rainy conditions,especially those in the eye of the storm.Rather than previous satellite scatterometers,CYGNSS provides more samples of the study area.For instance,if compared with two current scatterometers combined,the percentage of 3-hour intervals that TC inner core regions can be sampled by satellite sensors is improved from 25% to nearly 35%.

    Ground tracks for 6 hours in a particular day are shown in Figure 1.Eight low earth orbit satellites with an inclination of 35 degrees to the equator are each capable of measuring 4 simultaneous reflections,resulting in 32 wind measurements per second across the globe[12].Besides,the satellite revisit time for the same geographical point during the science mission is reduced to a shorter time,few minutes to few hours.The median value of revisit times is 2.8 hours and the mean revisit time is 7.2 hours.Thus,these satellites provide space-based measurements with the following temporal and spatial sampling:(a) temporal sampling better than 12-hour mean revisit time and (b) spatial sampling 70% of all storm tracks between 35°N and 35°S latitude to be sampled within 24 hours.The number of satellites,their orbit altitudes and inclinations,and the alignment of the antennas are all optimized to provide unprecedented high temporal-resolution wind field imagery of TC genesis,intensification and decay.

    Despite the focus on tropical cyclones,the ability of CYGNSS to provide rapid updates of winds,unbiased by the presence of rainfall,shows many other potential applications related to general tropical convection.A reliable application of near-surface wind conditions,observed at a given time at sea,is necessary for practically every kind of human activity both at open sea and in the coastal zone.The Madden-Julian oscillation (MJO) is a large-scale air-sea coupled process that propagates eastward at about 5 m/s with a period of 30-60 day,and the primary mode of intraseasonal variability in the tropical atmosphere[13].Strong MJO activity has significant features with deep clouds,heavier rainfall and westerly wind anomalies.More information about MJO structure and the skill of MJO forecast require detailed knowledge of sea surface winds,which is limited by existing measurement systems and heavy rainfall due to the MJO[12].In addition,much of the signals of enhanced deep convective system comes from the result of empirical orthogonal functions of meteorological measurements,including outgoing long-wave radiation,850 hPa and 250 hPa wind fields,or their combinations[14].Since the low-level zonal wind anomalies are out of phase with those at upper levels due to the MJO[15],sea surface winds may be an alternative indicator for detecting the MJO signal.However,the greatest mean and diurnal maximum of rainfall rate over ocean exist in the MJO envelope.And in theory,little to no rainfall effect on CYGNSS measurements enables researchers to better understand the mechanisms of tropical deep convective system.

    Besides the above,a more robust wind product is also needed by the research of ocean process.In the equatorial eastern Indian Ocean,surface water is driven by the strong,local southeast monsoon winds from June to October.Surface Ekman transport replaces the offshore moving water by upwelled water,leading to lower sea-level altitudes and cold sea surface temperature (SST) anomalies[16].However,long-time series of ocean surface currents are not available,and directly quantifying upwelling is also extremely difficult[17].The idea behind the offshore component of surface Ekman transport driven by geostrophic wind stress is good to describe the intensity of coastal upwelling.Reasonable estimates of surface transport and coastal upwelling may be made using planetary boundary layer theory and the geostrophic wind approximation.Many publications refer to the Bakun (1973) technical memorandum that initially described the upwelling indices.In this method,Ekman mass transport is defined as the wind stress divided by the Coriolis parameter[18].Therefore,the increasing of high temporal and temporal resolution in wind product will be fed back into the improved understanding on quantitative intensity of coastal upwelling in the equatorial eastern Indian Ocean.

    The rest of the paper is organized as follows.Section 2 describes in situ wind data and verifies the performance of CYGNSS observations.Section 3 describes the potential applications of this satellite measurement,including the MJO and the equatorial eastern Indian Ocean events.Section 4 provides a summary and discussion.Results from this study will advance our understanding of the quality and potential application of CYGNSS observations.

    2 Validation of CYGNSS observations

    In general,the results of recent verification studies of satellite winds come from the comparison between model simulations and satellite observations,or on the inter-comparison with in situ buoys[19-20].In this study,the performance of CYGNSS winds is compared with respect to in situ data,including observations from the Xisha Station and the Global Tropical Moored Buoy Array (GTMBA).Within this section,sea surface winds are examined over a 65-day period,from August 1 to October 4,2017.This type of exercise gives a better understanding on the quality of CYGNSS wind in terms of these independent in situ observations.Part of this section describes the winds from Xisha flux tower and moored buoy winds in Indian,Pacific and Atlantic Ocean.

    The Xisha flux tower is located in the South China Sea (SCS),which belongs to a mesoscale hydrological and marine meteorological observation network established by the SCS Institute of Oceanology.This flux tower is off the coast of Yongxing Island (16°49′N,112°20′E;see red point in Fig.2 for its location),and categorized as both a coastal and a deep-sea station due to the deep water (more than 1 000 meters) basin of the northern-central SCS[21-22].This measurement provides meteorological parameters hourly,such as latent and sensible heat flux,carbon dioxide flux,and winds at a height of 5 m,10 m,and 15m above the mean sea-level.Many efforts have also been made to verify the performance of observations from Xisha Station,such as the passages of tropical cyclones[23],the response of heat flux to monsoon[24],as well as the validation of satellite SST[25].

    In this study,moored buoy winds are also compared against CYGNSS observations.They are available from GTMBA through Pacific Marine Environmental Laboratory (www.pmel.noaa.gov).This moored buoy observing system is based on international cooperation and designed to provide real-time measurements for researching and forecasting tropical climate variations.It consists of three major components:the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean,the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) in the Pacific and the Prediction and Research Moored Array in the Atlantic (PIRATA)[26].High quality time series data of these moored arrays have been advancing the research on air-sea interaction in time and space since their implementations.

    Note that only 7 buoys in RAMA,47 buoys in TAO/TRITON and 7 buoys in PIRATA are considered in this study due to the time matching between in situ and satellite winds.Moored buoys are described in Table 1 and shown in Figure 3 (red points).Since satellite winds over the sea surface are provided at the 10 meters neutral stability height,all moored buoy winds are adjusted from 3.1-4.0 meters to a height of 10 meters assuming neutral stability and using a logarithmic profile method[25].This method requires only the wind speed at the reference height.

    Before deriving overall verification statistics,satellite winds are collocated with in situ winds only if they are spatially within a box of 0.2°×0.2° and temporally within 15 minutes.Each buoy wind is used only one time for collocation with the above mentioned resolutions.To make sure that the correct satellite wind is selected,the collocated pair is retained only if none of them conclude the missing data.Since science measurement requirements of CYGNSS mission is to provide wind speed over a dynamic range of 3-70 m/s as determined by a spatially averaged wind field with a resolution of 5.0×5.0 km,in situ winds below 3.0 m/s are not considered for collocation[12].

    Time series comparison of CYGNSS observations and in situ winds from Xisha flux tower is shown in Figure 4.The number of collocations of CYGNSS Level 2 version (L2) and Level 3 version (L3) data against in situ winds is 116 and 100.The L3 gridded wind product is surface wind speed,averaged in space and time (0.2° latitude and longitude,1 hour).As shown in Figure 4a,CYGNSS L2 version data shows positive bias with respect to in situ wind from Xisha flux tower,while its time evolution is consistent with that of in situ winds.Figure 4b is similar to Figure 4a,but for L3 version.Reduced RMSD value (from 2.49 to 2.11) is obtained from the updated version of CYGNSS winds,suggesting a better performance of L3 version due to the gridding of irregular data.

    The CYGNSS winds are also compared against buoy winds from RAMA,TAO/TRITON and PIRATA net works.Here,CYGNSS L3 data are used.A summary of comparison between CYGNSS and in situ observations is listed in Table 1.This table describes the mean buoy wind speed,the mean CYGNSS wind speed,their root-mean-square-difference (RMSD) and the number of collocations.Most of the CYGNSS wind speed values are lower than the buoy measured mean wind speeds.The quick revisit time of CYGNSS satellite on the same geographic points leads to larger number of collocations.The 65-day period is enough for the validation of CYGNSS observations.In addition,the mean RMSD is 2.17 m/s,which meets 2.0 m/s retrieval uncertainty for winds less than 20.0 m/s in terms of CYGNSS mission scientific data product baseline requirements.Part of this discrepancy may come from instrument error,and part of it may come from representative error because of not-exact match of in situ and satellite measurements.Although CYGNSS observations do well on the comparison against in situ winds,much work is needed to be done to increase the satellite data accuracy.

    3 Applications

    High-resolution,time-resolved sea surface wind datasets are needed to better understand,assess,and predict the complex mass and energy interchange processes of atmosphere and ocean,as well as to document any changes that occur because of long-term fluc

    tuations,such as Madden-Julian oscillation (MJO) and coastal upwelling events.Global or tropical sampling for near-surface measurements is necessary to create the required datasets for these phenomena.Analyzing CYGNSS data from the perspective of eight tracks of specular points may enhance the accuracy and the spatio-temporal sampling of retrieved winds.In this section,we apply the results about the MJO and equatorial eastern Indian Ocean coastal upwelling events to discuss the potential applications of CYGNSS observations.

    One of the most distinctive signals of the Madden-Julian oscillation (MJO) is the upscale development and organization of convection in the Indian Ocean.To estimate the fidelity with respect to eastward propagation of MJO,30-60 day filtered 850 hPa and 10 m zonal wind anomalies are regressed against the filtered wind anomalies averaged over an equatorial Indian Ocean box (60-90°E,5°S-5°N),respectively,for time lags from day -20 to day +20.The lag-longitude sections of the regression coefficients are computed over longitudes 30°E-150°W by averaging the coefficients in the 10°S-10°N latitudinal band.The regression coefficient plots with respect to the reference box are shown in Figure 5.The maximum positive regression coefficients are located in the 60-90°E longitudinal band on day -5 to day+5.The eastward propagation phase speed of 5 m/s observed in wind fields is overlaid as a dashed line on all plots for comparison.The observed eastward propagating wind signals are reasonably detected by both 850 hPa and 10 m winds.Thus,10 m wind can be used to detect the MJO signals,suggesting a potential application of CYGNSS observations.

    To further show the potential applications of satellite winds in the eastern equatorial Indian Ocean,we compare the coastal upwelling indices against SST anomalies near the Java Island.The coastal upwelling indices are estimated from CCMP 10 m winds,and SST is available from Remote Sensing Systems Optimally Interpolated SST daily products at 25 km resolution.The time evolution of coastal upwelling indices shows remarkable agreement with that of SST anomalies from 2000 to 2011 (Fig.6).When these indices decrease in the second half of the year,the SST anomalies also decrease.The standard deviations of upwelling indices and SST anomalies are 16.35 and 1.32.Such tight relationship between upwelling indices and SST variations suggests that the dynamical responses of SST in eastern equatorial Indian Ocean to atmospheric forcing exhibits a striking feature,with upwelling being associated with an enhanced offshore Ekman transport and wind speed.Sea surface wind is a good indicator to detect the intensity of coastal upwelling.

    4 Conclusion

    Near-surface winds over the ocean are major contributors to the momentum and energy fluxes at the air-sea interface.To understand the complex mass and energy interchange processes of atmosphere and ocean,high quality of sea surface wind product is key to properly modeling and forecasting the genesis and intensification of phenomena in the atmosphere and the ocean.The limitations of existing satellite measurements of sea surface winds under rainfall conditions become even more severe.By combining the all-weather performance of GPS-based bistatic scatterometry with the sampling properties of a dense satellite constellation,CYGNSS mission measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage,under all precipitating conditions,and over the full dynamic range of wind speeds experienced in tropical cyclones.In short,the CYNSS observation has the advantages as follows:1.Little to no rainfall effect;2.Quick revisit time.

    To verify the performance of satellite measurements,CYGNSS observations over the tropical areas between 35°N and 35°S are evaluated against in situ winds from Xisha flux tower in SCS and moored buoy winds from RAMA buoy network over the Indian Ocean,TAO/TRITON over the Pacific and PIRATA over the Atlantic during August-October 2017.Validation of CYGNSS winds shows maximum collocations in the Pacific Ocean due to the larger group of moored buoys in this area.The comparison of satellite and in situ winds are temporally and spatially separated within 15 minutes and 0.2°.CYGNSS winds show a mean RMSD of 2.17 m/s with respect to in situ winds,suggesting that wind speeds observed by CYGNSS agree with in situ winds.

    CYNSS observations have many potential applications,such as the detection of MJO and coastal upwelling signals.The version of CYGNSS winds updated with space-time homogeneity is better for studying the Indian Ocean and Western-Pacific Warm Pool.High quality and high temporal and spatial resolution sea surface wind data product from CYNSS will advance the study of earth sciences.

    References

    [1] Graham N E,Barnett T P.Sea surface temperature,surface wind divergence,and convection over tropical oceans[J].Science,1987,238(4827):657-659

    [2] Smith S D.Coefficients for sea surface wind stress,heat flux,and wind profiles as a function of wind speed and temperature[J].J Geophys Res,1988,93(C12):15467-15472

    [3] Risien C M,Chelton D B.A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data[J].Journal of Physical Oceanography,2008,38(11):2379-2413

    [4] Kumar B P,Vialard J,Lengaigne M,et al.TropFlux wind stresses over the tropical oceans:evaluation and comparison with other products[J].Climate Dynamics,2013,40(7/8):2049-2071

    [5] Schlax M G,Chelton D B,F(xiàn)reilich M H.Sampling errors in wind fields constructed from single and tandem scatterometer datasets[J].Journal of Atmospheric and Oceanic Technology,2001,18(6):1014-1036

    [6] Kalnay E,Kanamitsu M,Kistler R.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society,1996,77(3):437-470

    [7] Kanamitsu M,Ebisuzaki W,Woolen J,et al.NCEP/DOE AMIP-II reanalysis (R-2)[J].Bulletin of the American Meteorological Society,2002,83(11):1631-1643

    [8] Atlas R,Hoffman R N,Ardizzone J,et al.A cross-calibrated,multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J].Bulletin of the American Meteorological Society,2011,92(2):157-174

    [9] Jones W L,Zec J.Evaluation of rain effects on NSCAT wind retrievals[C]∥Oceans 96 MTS/IEEE,Prospects for the 21st Century,1996:1171-1176

    [10] Nie C,Long D G.The effect of rain on ERS scatterometer measurements[C]∥IEEE International Conference on Geoscience and Remote Sensing Symposium,2013:4119-4121

    [11] Ruf C,Gleason S,Jelenak z,et al.The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission[C]∥IEEE Aerospace Conference,2013:1-7

    [12] Ruf C S,Atlas R,Chang P S,et al.New ocean winds satellite mission to probe hurricanes and tropical convection[J].Bulletin of the American Meteorological Society,2012,97(3):150626133330005

    [13] Madden R A,Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].Journal of the Atmospheric Sciences,1971,28(5):702-708

    [14] Wheeler M C,Hendon H H.An all-season real-time multivariate MJO index:development of an index for monitoring and prediction[J].Monthly Weather Review,2004,132(8):1917-1932

    [15] Demott C A,Klingaman N P,Woolnough S J.Atmosphere-ocean coupled processes in the Madden-Julian oscillation[J].Reviews of Geophysics,2015,53(4):1099-1154

    [16] Chen G X,Han W Q,Li Y L,et al.Intraseasonal variability of upwelling in the equatorial eastern Indian Ocean[J].J Geophys Res,2016,120(11):7598-7615

    [17] Schwing F B,OFarrell M,Steger J M,et al.Coastal upwelling indices west coast of North America 1946-1995[J].Cambridge Studies in Applied Econometric,1996,47(1):313

    [18] Bakun A.Coastal upwelling indices,west coast of North America,1946-71[R].NOAA Technical Report NMFS SSRF-671,1973:103

    [19] Schulz E W,Kepert J D,Greenslade D J M.An assessment of marine surface winds from the Australian Bureau of Meteorology numerical weather prediction systems[J].Weather & Forecasting,2010,22(3):226-227

    [20] Rani S I,Gupta M D.Oceansat-2 and RAMA buoy winds:a comparison[J].Journal of Earth System Science,2013,122(6):1571-1582

    [21] Yang L,Wang D,Huang J,et al.Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea[J].Bulletin of the American Meteorological Society,2015,96(7):150204133247008

    [22] Zeng L L,Wang Q,Xie Q,et al.Hydrographic field investigations in the northern South China Sea by open cruises during 2004-2013[J].Science Bulletin,2015,60(6):607-615

    [23] Wang D X,Li J,Yang L,et al.The variations of atmospheric variables recorded at Xisha station in the South China Sea during tropical cyclone passages[M]∥Hickey K.Advances in hurricane research-modelling,meteorology,preparedness and impacts.Rijeka,Croatia:InTech,2012

    [24] Shi R,Guo X Y,Wang D X,et al.Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea[J].Deep-Sea Research Part II:Topical Studies in Oceanography,2015,119:30-39

    [25] Qin H L,Chen G X,Wang W Q,et al.Validation and application of MODIS-derived SST in the South China Sea[J].International Journal of Remote Sensing,2014,35 (11/12):4315-4328

    [26] McPhaden M J.The global tropical moored buoy array[C]∥Proceedings of Oceanobs09 Sustained Ocean Observations & Information for Society,2010,DOI:10.5270/OceanObs09.cwp.61

    猜你喜歡
    驗證
    歷史不可驗證說的語義結構與內(nèi)在邏輯
    讓冷峻與溫情并存
    校核、驗證與確認在紅外輻射特性測量中的應用
    剖析智能化斷路器機械特性在線監(jiān)測關鍵技術設計及驗證
    科技資訊(2016年25期)2016-12-27 18:48:31
    合理猜想,有效驗證
    晶閘管關斷特性的驗證解析
    小題也可大做
    彈藥保障需求分析實驗模型輸出數(shù)據(jù)的驗證研究
    價值工程(2016年30期)2016-11-24 14:19:29
    汽車外后視鏡抖動問題模型的試驗驗證
    汽車科技(2016年5期)2016-11-14 08:08:15
    核電項目A1號機組L521電氣貫穿件H通道問題處理
    科技視界(2016年23期)2016-11-04 15:08:42
    波野结衣二区三区在线| 国产真实伦视频高清在线观看| 不卡视频在线观看欧美| 又黄又爽又免费观看的视频| 夜夜看夜夜爽夜夜摸| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 国产女主播在线喷水免费视频网站 | 99久国产av精品国产电影| 18禁裸乳无遮挡免费网站照片| 在现免费观看毛片| 国产欧美日韩一区二区精品| 久久精品国产99精品国产亚洲性色| 91精品国产九色| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久久免费视频| 亚洲丝袜综合中文字幕| 天堂网av新在线| 人妻丰满熟妇av一区二区三区| 国产亚洲精品综合一区在线观看| 免费看光身美女| 免费在线观看影片大全网站| 日本 av在线| 哪里可以看免费的av片| 亚洲18禁久久av| 国产一区二区亚洲精品在线观看| 亚洲一级一片aⅴ在线观看| 黑人高潮一二区| 天堂√8在线中文| 日韩强制内射视频| 亚洲欧美日韩卡通动漫| 亚洲va在线va天堂va国产| 国产精品一区www在线观看| 国产69精品久久久久777片| 国产精品久久电影中文字幕| 国产精品一区二区免费欧美| 国产激情偷乱视频一区二区| 伦精品一区二区三区| 熟女电影av网| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 成人无遮挡网站| 久久九九热精品免费| 欧美中文日本在线观看视频| 午夜亚洲福利在线播放| 欧美xxxx性猛交bbbb| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 麻豆一二三区av精品| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| or卡值多少钱| 好男人在线观看高清免费视频| 久久精品国产鲁丝片午夜精品| 内射极品少妇av片p| 亚洲av中文av极速乱| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩卡通动漫| 色视频www国产| 成人美女网站在线观看视频| 免费av不卡在线播放| 亚洲成人中文字幕在线播放| 精品久久久久久久久av| 99久久无色码亚洲精品果冻| 午夜老司机福利剧场| 麻豆乱淫一区二区| 日本三级黄在线观看| 一级黄片播放器| 毛片一级片免费看久久久久| 一区福利在线观看| 一a级毛片在线观看| 一a级毛片在线观看| avwww免费| 日韩精品有码人妻一区| a级毛色黄片| 国产人妻一区二区三区在| 国产人妻一区二区三区在| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| 日韩 亚洲 欧美在线| 三级毛片av免费| 一进一出抽搐动态| 中文字幕精品亚洲无线码一区| 最近的中文字幕免费完整| 精品人妻熟女av久视频| 色av中文字幕| 尤物成人国产欧美一区二区三区| 又黄又爽又刺激的免费视频.| 国产av麻豆久久久久久久| 日本熟妇午夜| 国产极品精品免费视频能看的| 人人妻,人人澡人人爽秒播| 日韩制服骚丝袜av| 丰满乱子伦码专区| 中国美女看黄片| 午夜激情欧美在线| 联通29元200g的流量卡| 亚洲av中文av极速乱| 中国国产av一级| 国产单亲对白刺激| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 韩国av在线不卡| 久久精品国产亚洲av涩爱 | 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 真实男女啪啪啪动态图| av在线蜜桃| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 成年版毛片免费区| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 亚洲精品色激情综合| 一进一出抽搐动态| 熟妇人妻久久中文字幕3abv| 亚洲av美国av| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 97超视频在线观看视频| 国产精品一二三区在线看| 大香蕉久久网| 久久久久久国产a免费观看| 美女高潮的动态| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 三级毛片av免费| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品合色在线| 深夜精品福利| 国产精品久久久久久久久免| 亚洲成人久久性| 久久久久久大精品| 午夜精品国产一区二区电影 | 久久欧美精品欧美久久欧美| 一边摸一边抽搐一进一小说| 国产在线男女| 免费av毛片视频| 日韩亚洲欧美综合| 久久久久国产网址| 99在线人妻在线中文字幕| 国产精品一二三区在线看| 老熟妇乱子伦视频在线观看| 亚洲一级一片aⅴ在线观看| 51国产日韩欧美| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 亚洲精品影视一区二区三区av| 久久久久久久亚洲中文字幕| 大型黄色视频在线免费观看| 日韩高清综合在线| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 热99re8久久精品国产| 黄色配什么色好看| 有码 亚洲区| 99久国产av精品| 全区人妻精品视频| 乱人视频在线观看| 精品久久久久久久久久久久久| 久久热精品热| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲| 亚洲精品久久国产高清桃花| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 日韩三级伦理在线观看| 成熟少妇高潮喷水视频| 久久久午夜欧美精品| 亚洲av熟女| 中文字幕久久专区| 日韩制服骚丝袜av| 成人鲁丝片一二三区免费| 亚洲中文字幕日韩| 久久6这里有精品| 啦啦啦观看免费观看视频高清| 国产精品无大码| 日本一二三区视频观看| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 日韩亚洲欧美综合| 久久精品国产99精品国产亚洲性色| 春色校园在线视频观看| 99热这里只有是精品在线观看| 国产色婷婷99| 国产高清不卡午夜福利| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 欧美成人精品欧美一级黄| 久久天躁狠狠躁夜夜2o2o| 亚洲美女搞黄在线观看 | 哪里可以看免费的av片| 国产欧美日韩一区二区精品| 中文字幕久久专区| 一进一出抽搐gif免费好疼| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 国产高清三级在线| 国产高潮美女av| 岛国在线免费视频观看| 国产毛片在线视频| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 丰满少妇做爰视频| av有码第一页| 视频中文字幕在线观看| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 国产美女午夜福利| 久久精品国产a三级三级三级| 久久久国产一区二区| 青青草视频在线视频观看| 又爽又黄a免费视频| 伦理电影大哥的女人| 日韩精品有码人妻一区| 噜噜噜噜噜久久久久久91| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 伦精品一区二区三区| 国产一区二区三区av在线| 亚洲情色 制服丝袜| 超碰97精品在线观看| 少妇高潮的动态图| 少妇人妻 视频| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 久久免费观看电影| 99九九线精品视频在线观看视频| 丝袜脚勾引网站| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 久久精品久久精品一区二区三区| 自线自在国产av| .国产精品久久| 久久久久久久久大av| av不卡在线播放| 成年人免费黄色播放视频 | 国产成人aa在线观看| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| 成人午夜精彩视频在线观看| 一级片'在线观看视频| 国产一级毛片在线| 国产精品福利在线免费观看| 亚洲欧美日韩另类电影网站| 国内少妇人妻偷人精品xxx网站| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产男女内射视频| 久久久国产欧美日韩av| 美女国产视频在线观看| av线在线观看网站| 人人妻人人澡人人看| 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 最近手机中文字幕大全| 大陆偷拍与自拍| 久久久久久久精品精品| 国产精品不卡视频一区二区| 多毛熟女@视频| 国产高清三级在线| 人人妻人人澡人人看| 啦啦啦啦在线视频资源| freevideosex欧美| 亚洲欧美日韩另类电影网站| 男女啪啪激烈高潮av片| 国产美女午夜福利| 亚洲av欧美aⅴ国产| 99九九在线精品视频 | 丰满少妇做爰视频| 精品酒店卫生间| 我要看日韩黄色一级片| 精品一品国产午夜福利视频| 国产国拍精品亚洲av在线观看| 国产日韩欧美亚洲二区| 七月丁香在线播放| 久久久久久久久久久丰满| 观看av在线不卡| 青春草国产在线视频| 三级国产精品欧美在线观看| 亚洲欧美清纯卡通| 你懂的网址亚洲精品在线观看| 美女福利国产在线| 免费大片黄手机在线观看| 9色porny在线观看| 国产av一区二区精品久久| 亚洲自偷自拍三级| 免费少妇av软件| 美女国产视频在线观看| 又爽又黄a免费视频| 最新中文字幕久久久久| 99热这里只有精品一区| 精品久久久久久久久亚洲| 丰满饥渴人妻一区二区三| 91久久精品电影网| 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 国产精品一区二区在线观看99| av在线播放精品| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 男女无遮挡免费网站观看| 黑人高潮一二区| 91成人精品电影| 亚洲国产av新网站| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线 | 久久99热这里只频精品6学生| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 一级毛片aaaaaa免费看小| 精品午夜福利在线看| 一个人免费看片子| 777米奇影视久久| 国产高清三级在线| 欧美精品国产亚洲| h视频一区二区三区| 啦啦啦在线观看免费高清www| 少妇精品久久久久久久| 亚洲av福利一区| 一级爰片在线观看| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 一级毛片 在线播放| 高清在线视频一区二区三区| 丰满人妻一区二区三区视频av| 国产日韩欧美亚洲二区| 亚州av有码| 观看免费一级毛片| 亚洲欧美成人综合另类久久久| 91精品国产九色| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 欧美3d第一页| 成人黄色视频免费在线看| 成人二区视频| 又大又黄又爽视频免费| 日日啪夜夜爽| 久久久久视频综合| 国产淫语在线视频| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 国产av一区二区精品久久| 免费播放大片免费观看视频在线观看| 建设人人有责人人尽责人人享有的| 汤姆久久久久久久影院中文字幕| 亚洲精品国产av成人精品| 一级毛片 在线播放| 国产91av在线免费观看| 精品久久久久久电影网| 丝瓜视频免费看黄片| 少妇人妻 视频| 亚洲图色成人| 亚州av有码| 国产免费又黄又爽又色| 一级a做视频免费观看| 午夜免费观看性视频| 欧美少妇被猛烈插入视频| 人人妻人人看人人澡| 国产精品一区二区在线不卡| 久久久久久久久久成人| 91久久精品国产一区二区成人| 五月开心婷婷网| 一区二区三区四区激情视频| av福利片在线观看| 一本一本综合久久| 91午夜精品亚洲一区二区三区| 99热6这里只有精品| 最新的欧美精品一区二区| 久久99热6这里只有精品| 欧美精品一区二区免费开放| 亚洲精品国产av蜜桃| 成人国产麻豆网| 日日啪夜夜爽| 又粗又硬又长又爽又黄的视频| 日韩精品免费视频一区二区三区 | 亚洲精品久久久久久婷婷小说| a级毛色黄片| 如日韩欧美国产精品一区二区三区 | 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 亚洲熟女精品中文字幕| 国产91av在线免费观看| 色吧在线观看| 久久这里有精品视频免费| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 嫩草影院入口| 国产免费福利视频在线观看| 一级黄片播放器| 日本av免费视频播放| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| 日韩视频在线欧美| 成人18禁高潮啪啪吃奶动态图 | 国产精品久久久久久久电影| 国产精品一区www在线观看| 最新的欧美精品一区二区| 亚洲av综合色区一区| 久久久久精品久久久久真实原创| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 精品少妇久久久久久888优播| 看十八女毛片水多多多| 欧美 亚洲 国产 日韩一| 国产永久视频网站| 免费看av在线观看网站| 成人国产麻豆网| 丝袜喷水一区| 亚洲精品国产成人久久av| 亚洲久久久国产精品| 男男h啪啪无遮挡| 免费观看在线日韩| 99热全是精品| 免费播放大片免费观看视频在线观看| 国产一区有黄有色的免费视频| 男女边吃奶边做爰视频| 精品人妻熟女毛片av久久网站| av在线播放精品| 亚洲欧美日韩东京热| 久久精品久久精品一区二区三区| 十八禁网站网址无遮挡 | 亚洲人成网站在线播| 高清毛片免费看| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| a级片在线免费高清观看视频| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| 欧美日韩精品成人综合77777| 久久青草综合色| 国产日韩欧美亚洲二区| 久久久久久久久久久久大奶| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费 | 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| av天堂久久9| 成年av动漫网址| 91久久精品电影网| videossex国产| 成人午夜精彩视频在线观看| 午夜av观看不卡| 性色avwww在线观看| 免费大片黄手机在线观看| 国国产精品蜜臀av免费| 99久久人妻综合| 少妇人妻一区二区三区视频| 99热全是精品| 午夜日本视频在线| 在现免费观看毛片| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 国产在线免费精品| 天堂8中文在线网| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久国产电影| 免费观看a级毛片全部| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 亚洲精品久久久久久婷婷小说| 99热全是精品| 国产黄频视频在线观看| 在线观看www视频免费| 免费高清在线观看视频在线观看| 麻豆精品久久久久久蜜桃| 美女主播在线视频| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 国产成人精品无人区| 亚洲高清免费不卡视频| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 热re99久久国产66热| 国产探花极品一区二区| 2018国产大陆天天弄谢| 老熟女久久久| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 在线观看av片永久免费下载| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 美女福利国产在线| 久久久国产精品麻豆| 久久午夜福利片| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 免费观看的影片在线观看| 色网站视频免费| av国产久精品久网站免费入址| 国产熟女欧美一区二区| 大香蕉97超碰在线| 永久免费av网站大全| 狂野欧美激情性bbbbbb| 亚洲精品视频女| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 欧美3d第一页| 日韩中字成人| 国产欧美另类精品又又久久亚洲欧美| 欧美97在线视频| 欧美少妇被猛烈插入视频| 日韩成人伦理影院| 亚洲色图综合在线观看| 波野结衣二区三区在线| 成人无遮挡网站| 亚洲电影在线观看av| 日韩亚洲欧美综合| 欧美三级亚洲精品| 国产高清有码在线观看视频| 亚洲精品一二三| 国国产精品蜜臀av免费| 男女无遮挡免费网站观看| 97超视频在线观看视频| 亚洲精品一区蜜桃| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 国产精品久久久久久久电影| 好男人视频免费观看在线| 亚洲成色77777| 91精品国产国语对白视频| 亚洲中文av在线| 一区二区三区免费毛片| 欧美亚洲 丝袜 人妻 在线| 国产色爽女视频免费观看| 久久久久久久精品精品| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av天美| 久久午夜综合久久蜜桃| 天堂中文最新版在线下载| 特大巨黑吊av在线直播| 国产精品欧美亚洲77777| 成人亚洲欧美一区二区av| 99热这里只有是精品在线观看| 久久久久视频综合| 免费大片黄手机在线观看| 国产黄色视频一区二区在线观看| 国产成人91sexporn| 国产伦在线观看视频一区| 老司机影院成人| 3wmmmm亚洲av在线观看| 日韩一区二区视频免费看| 在线观看免费高清a一片| 汤姆久久久久久久影院中文字幕| 国产精品麻豆人妻色哟哟久久| 亚洲色图综合在线观看| 亚洲精品亚洲一区二区| tube8黄色片| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| tube8黄色片| 日日摸夜夜添夜夜爱| 2022亚洲国产成人精品| 亚洲第一av免费看| 男男h啪啪无遮挡| 只有这里有精品99| 欧美97在线视频| 亚洲婷婷狠狠爱综合网| 亚洲美女黄色视频免费看| 久久婷婷青草| 人妻人人澡人人爽人人| av福利片在线| kizo精华| 在线 av 中文字幕| 日韩制服骚丝袜av| 久久精品国产亚洲av涩爱| 最近2019中文字幕mv第一页| 亚洲国产精品专区欧美| 精品一区二区三卡| 91久久精品国产一区二区三区| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 国产精品一区二区在线观看99| 国产在视频线精品|