• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    斯里蘭卡近岸風(fēng)暴潮模擬中風(fēng)暴潮—潮汐相互作用特征分析:一個(gè)個(gè)例研究

    2018-05-30 12:50:50R.K.K.A.S.N.KODITHUWAKKU李毅能彭世球朱宇航李少鈿TilakP.D.GAMAGE付莉莉
    關(guān)鍵詞:風(fēng)暴潮潮汐斯里蘭卡

    R.K.K.A.S.N.KODITHUWAKKU 李毅能 彭世球 朱宇航 李少鈿 Tilak P.D.GAMAGE 付莉莉

    摘要利用三維普林斯頓海洋模型(POM)以及逐時(shí)水位觀測(cè)數(shù)據(jù),研究印度洋北部斯里蘭卡北部海岸風(fēng)暴潮-潮汐相互作用特征.選擇了2008年的“Nisha”臺(tái)風(fēng)作為臺(tái)風(fēng)風(fēng)暴潮個(gè)例進(jìn)行研究,并進(jìn)行了3個(gè)數(shù)值敏感性試驗(yàn).經(jīng)驗(yàn)證,該風(fēng)暴潮模型可以很好地再現(xiàn)該臺(tái)風(fēng)期間研究區(qū)域內(nèi)的潮汐和總海水水位.試驗(yàn)結(jié)果表明,沿斯里蘭卡西北海岸的風(fēng)暴潮-潮汐相互作用顯著,其強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m)和從印度洋外海向斯里蘭卡西北部淺灘流入的最大相互作用流場(chǎng).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和向南流出西北部淺水區(qū)域的較弱的相互作用流場(chǎng).在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域.

    關(guān)鍵詞普林斯頓海洋模型(POM);潮汐-風(fēng)暴潮相互作用;風(fēng)暴潮;斯里蘭卡

    中圖分類號(hào)P731.23

    文獻(xiàn)標(biāo)志碼A

    0 導(dǎo)讀

    本文原文為英文,希望感興趣的讀者進(jìn)一步關(guān)注原文.

    本研究利用一個(gè)三維普林斯頓海洋模型(POM)(2002版)以及觀測(cè)到的逐時(shí)水位數(shù)據(jù)研究北印度洋斯里蘭卡北海岸風(fēng)暴潮和潮汐模擬及其相互作用.以2008年的 “Nisha”作為個(gè)例,并進(jìn)行了3個(gè)數(shù)值試驗(yàn)來(lái)評(píng)估所選模式區(qū)域內(nèi)的風(fēng)暴潮-潮汐相互作用.Trincomalee站的每小時(shí)觀測(cè)水位數(shù)據(jù)由斯里蘭卡國(guó)家水產(chǎn)資源研究與發(fā)展機(jī)構(gòu)(NARA)提供.使用潮汐諧波分析軟件包T-TIDE獲得觀測(cè)海平面的潮汐升高和非潮汐殘差(NTR).Nisha(2008)的最佳臺(tái)風(fēng)路徑數(shù)據(jù)和中心壓力數(shù)據(jù)來(lái)自美國(guó)海軍聯(lián)合臺(tái)風(fēng)警報(bào)中心(JTWC).

    POM是一個(gè)三維的原始方程式海洋模型,被廣泛用于近岸和海盆尺度的海洋過(guò)程研究中.用于本研究的海底地形數(shù)據(jù)采用歐洲的海洋一般測(cè)深圖(GEBCO)的全球測(cè)深數(shù)據(jù)集,數(shù)據(jù)經(jīng)過(guò)插值得到模式網(wǎng)格點(diǎn)上的地形數(shù)據(jù).對(duì)于海表風(fēng)場(chǎng)的數(shù)據(jù),我們?cè)贘TWC最佳臺(tái)風(fēng)路徑和強(qiáng)度數(shù)據(jù)的基礎(chǔ)上采用經(jīng)驗(yàn)Holland模型計(jì)算臺(tái)風(fēng)的10 m風(fēng)速.本研究中的風(fēng)暴潮模型由潮汐強(qiáng)迫和大氣強(qiáng)迫驅(qū)動(dòng).為了評(píng)估風(fēng)暴潮-潮汐相互作用,我們進(jìn)行了3個(gè)同驅(qū)動(dòng)力組合的數(shù)值試驗(yàn).

    結(jié)果表明,沿斯里蘭卡西北海岸得到的風(fēng)暴潮-潮汐相互作用非常顯著.Nisha(2008)是一個(gè)中等強(qiáng)度的熱帶氣旋,但仍在斯里蘭卡北部海岸造成了一些顯著的風(fēng)暴潮災(zāi)害.該模型很好地再現(xiàn)了潮汐水位、總水位以及潮汐相互作用水位變化過(guò)程.數(shù)值結(jié)果表明:沿斯里蘭卡西北海岸得到的最大風(fēng)暴潮增水最顯著(達(dá)到2 m);沿印度東南海岸得到風(fēng)暴潮減水的最大值(-2 m).風(fēng)暴潮-潮汐相互作用(TSI)強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).在該臺(tái)風(fēng)風(fēng)暴潮過(guò)程中,當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和強(qiáng)度達(dá)到0.2 m/s的TSI流場(chǎng)流出斯里蘭卡西北部淺水區(qū)域.在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都是發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域,說(shuō)明風(fēng)暴潮-潮汐相互作用在這些區(qū)域的風(fēng)暴潮研究中不能被忽略.

    后續(xù)需要進(jìn)一步的研究來(lái)檢驗(yàn)和量化風(fēng)暴潮-潮汐相互作用對(duì)該地區(qū)海平面的影響,并進(jìn)行多個(gè)臺(tái)風(fēng)個(gè)例比較和統(tǒng)計(jì)分析.

    Abstract A three-dimensional Princeton Ocean Model (POM) along with the observed hourly sea level data are used in this study to investigate the characteristics of the Tide-Surge Interaction (TSI) along the north coast of Sri Lanka in north Indian Ocean.In this study,the cyclone ‘Nisha 2008 case was selected and three numerical experiments were performed.The model reproduces reasonably well the tides,surges and total sea water levels and TSI water levels over the study region during this cyclone.The results show that the characteristics of the TSI are significantly shown along the northwestern coast of Sri Lanka.The maximum TSI intensity is associated with the strength and track of the cyclone.In this study,the maximum positive TSI reaches 0.6 m at hour 42 when the TC was strong.At hour 30 when the TC track was relatively weak,the maximum negative TSI reaches about -0.6 m.The magnitude of the interaction current (UTSI) (0.2 m/s) and the direction of the UTSI were observed significantly to flow out the northwestern coast.During the whole TC cycle,strong TSI occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in the storm surge simulation in this region.

    Key words Princeton Ocean Model(POM);Tide-Surge Interaction (TSI);storm surge;Sri Lanka

    1 Introduction

    The global warming has caused the increase in the intensity of Tropical Cyclones (TCs) which severely affect the TC-induced storm surges on coastal regions with dense population and large economic community[1].Most of the largest cities in the world are located on the coast and most of the worlds population lives within 150 km of the ocean.Coastal regions are often low lying and susceptible to an increase in sea surface elevation[2].

    During the past half century,enormous progress has been made in numerical prediction of storm surge[3-4].Storm surge is a phenomenon related to abnormal rise in near shore water levels above the regular astronomical tides.Forcing mechanisms for storm surge are maximum sustained wind speed,waves,and reduced atmospheric pressure[5].

    A meteorologically forced (strong wind stress and atmospheric pressure depression) long wave motion,and the extremely sustained storm surge increases the water surface elevations above the astronomical tide,causing inundation in low-lying coastal areas[6].

    Storm surges are an extremely serious hazard along the east coast of India,Bangladesh,Myanmar,and Sri Lanka.Although Sri Lanka is affected only occasionally by the storm surge,tropical cyclones of November 1964 and November 1978,and cyclone of November 1992 have caused extensive loss of lives and property damage in the region[7].

    Sri Lanka,an island nation located off the southern tip of India,is vulnerable to cyclones generated mostly in southern part of Bay of Bengal,and to a lesser extent,those in southeast of Arabian Sea[8].However,unfortunately very rare analysis and assessment of the storm surge hazard has been carried out for the coastline of Sri Lanka[9].Therefore,the real-time monitoring and warning of storm surges is of great interest.

    A three-dimensional Princeton Ocean Model along with the observed hourly sea level data are used in this study to investigate the characteristics of the TSI around Sri Lanka in north Indian Ocean.

    The selected tropical cyclone case of Cyclone Nisha hit northern Sri Lanka on November 25,2008,causing heavy rains and flooding that reportedly displaced 70 000 people in Vanni and 20 000 people in Jaffna district.Jaffna recorded the highest weekly cumulative rainfall since 1918.

    Many previous studies were made to improve the storm surge forecasting skills.These studies have identified that the accuracy of storm surge forecasting can be improved by investigating the TSI[10] and by optimizing the wind drag coefficient[1,11].

    Most of the previous studies have analyzed the mechanism of TSI using various approaches.Along the UK coastline[12] this is well studied and a spatial sea level trend estimate was obtained for all UK coastlines including the South and West.Along the North Sea coastline around UK[13] it shows that the mode of peak residual occurrence can be found everywhere 3 to 5 hours before the nearest high water.

    The non-linear interaction between tides and surges has been studied in many other regions such as,off the east coast of Canada,northeastern United States[14],north Queensland coast of Australia[15],and Taiwan Strait[16].

    Extreme sea levels associated with storm surges and tides over the northwest Pacific are investigated[17] and it is showed that the model well reproduces tides and storm surges over the study region and the extreme total sea levels are mainly determined by tides and tropical cyclones.

    The effects of TSI on storm surge elevations along the coast of Bohai Sea,Yellow Sea,and East China Sea[18]have been identified to be very significant.

    In the north Indian Ocean around Bay of Bengal the TSI studies were started by Johns & Ali[19]with numerical modelling experiments.They used a non-linear model to determine the interaction between tides and surges.

    By using numerical modeling studies in the Meghna estuary,As-Salek & Yasuda[20] found that the cyclone which makes landfall before the arrival of the tidal peak produces a higher and shorter-duration surge than the cyclone that makes landfall after the tidal peak.

    Nearly thirty years of hourly tide-gauge data were analyzed from four stations of east coast of India and in the head of the Bay of Bengal and showed that the tide-surge interaction characteristics observed are identical to those reported in extra tropical regions,such as the North Sea[21].

    The tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[10] was identified as significant in recent study,and it is showed that the nonlinear bottom friction is the main contributor to tide-surge interaction,while the contribution of the nonlinear advective effect can be neglected.

    There is no research has been published about the tide-surge interactions along the Sri Lankan coastal region to the best of our knowledge.Accordingly,this study is based on the Princeton Ocean Model and the characteristics of tide-surge interaction around Sri Lanka in northern Indian Ocean during the selected tropical cyclone 2008 case occurred within the selected model domain.The purpose of this work is to investigate the characteristics of tide-surge interaction and to improve the forecasting skills of storm surges by identifying the tide-surge interaction.

    The rest of this paper is organized as follows.In section 2 the data,the POM used in this study and model setup and forcing and the experimental set up are briefly introduced.Section 3 presents the results and corresponding analysis.Discussion and conclusion are given in section 4,section 5 respectively.

    2 Methods

    2.1 Data

    The oceanographic data used to analyze the TSI in this study are 2008 November month hourly observed sea levels from Trincomalee station of Sri Lanka.The observational data of Colombo station and Trincomalee station were provided by Oceanography and Hydrography unit of National Aquatic Resources Research and Development Agency (NARA),Sri Lanka.

    The tidal elevations and non-tidal residuals (NTR) of the observed sea levels were obtained using a harmonic analysis package,T-TIDE[22].The resultant tidal elevations and NTR of the observed sea levels were used to analyze the tide-surge interaction and assess the model performances[10].

    2.2 The Princeton Ocean Model setup and forcing

    The Princeton Ocean Model (POM) 2002 version (referred to as pom2k) is used for the forward prediction model in this study.The POM is a three-dimensional,primitive equation ocean model[23-24].

    The bathymetry data,which were interpolated onto the model grid (Fig.1) were obtained from the General Bathymetric Chart of the Oceans (GEBCO) 1 arc-minute global bathymetric dataset.(http:∥www.gebco.net/data-and-products/gridded-bathymetry-data/).

    1)Only Wind Run (exp-OW):The model in this experiment is driven by wind forcing and atmospheric pressure fields,and the insertion of a vortex associated with a cyclone based on Hollands hurricane model.

    2)With Tide and Wind Run (exp-TW):Both forcing functions including Tidal forcing and Wind forcing are included in this experiment.

    3)Only Tide Run (exp-OT):Only the Tidal forcing is included in this experiment.

    The POM was implemented in the above three experiments for the selected 2008 case study.These model results were used in the discussion section.

    2.3 Experimental setup

    In this study the model domain (Fig.1) is set to cover an area of 2-15°N,75-93°E with a horizontal resolution of 1/60°×1/60° and four vertical levels.

    The cyclonic storm Nisha (2008) was chosen for the numerical experiments in this study (Figs.2a,b).This cyclonic storm (IMD designation:BOB 07,JTWC designation:06B) was the ninth tropical cyclone of the 2008 north Indian Ocean cyclone season,and the seventh tropical cyclone in the Bay of Bengal 2008 year.

    Nisha (2008) is formed as a deep depression over Sri Lanka in southwest Bay of Bengal at 0006 UTC 24 Nov 2008.And then this deep depression is intensified into a cyclonic storm at 0000 UTC 26 Nov 2008.The India Meteorological Department named it as Nisha which moved northwest towards India.This cyclonic storm was weakened into a depression at 0000 UTC 28 Nov 2008.

    The north Indian Ocean best track data and central pressure data of Nisha (2008) case were obtained from Joint Typhoon Warning Centre (JTWC) of US Navy(http:∥www.usno.navy.mil/NOOC/nmfcph/RSS/jtwc/best-tracks/ioindex.php).

    The 6-hour interval data was interpolated into hourly data.These interpolated hourly Minimum Sea Level Pressure (MSLP) data with longitudes and latitudes data were used with POM for analysis.

    Before perform the three numerical experiments,a 6 h spin-up of POM started at 0600 UTC 24 December 2008 was carried out.A 48 h forward model run starting at 1200 UTC 24 December 2008 was performed.

    3 Results

    The spatial distribution of water level variations during Nisha (2008) cyclone for the three numerical experiments exp-OW (Fig.3),exp-TW,exp-OT were done for 48 h forward model which runs starting at 1200 UTC 24 December 2008 case.

    obtained for 48 hours and it can be seen that the high storm surge occurs along the storm track.This experiment includes the difference between the all forcing and only tide forcing which gives the surge variation.In this figure the maximum surge is about 2 m and the minimum surge is about -2 m.Similar to the result of exp-OW,the maximum surge can be observed significantly along the northwest coast of Sri Lanka,while the minimum surge can be observed along the southeast coast of India.

    is greater than zero,tide-surge interaction makes surges produced by exp-TW larger than surges produced by exp-OW,and vice versa[10].In this figure the maximum positive TSI (0.6 m) can be observed at hour 42 around the north coast(9.5°N,80.5°E).And the minimum negative TSI (maximum absolute value) (-0.6 m) can be observed at hour 30 along northwest coast (9.2°N,80.2°E).

    At the maximum positive TSI of 0.6 m,the TC track (Fig.2a) is located at 0600 UTC 26th November 2008 around 10.6°N,80.7°E with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.At the maximum negative TSI of -0.6 m,the TC track is located (Fig.2a) at 1800 UTC 25th November 2008 around (9.9°N,80.5°E) with 35 m/s maximum sustained wind speed (Fig.2b) and 996 hPa minimum SLP.

    In order to further examine the impact of tide-surge interaction on maximum surge region,time series of surge water levels variation(Fig.7) at the selected northwest point were presented for surge with tidal effect and surge variations for exp-OW and surge induced by TSI for 48 hours.This figure shows that at around hour 30 the surge reduced and then at around hour 42 the surge increased,similar to the results shown in Figure 4 in this northwest region.According to Figure 5 the TSI reaches the maximum positive TSI at hour 42 and gets the maximum negative TSI at hour 30 at this selected location of northwest region.In addition,the TSI has a similar period to the semi-diurnal tide but the amplitude is varying along with the total surge.

    The magnitudes and directions of surge-tide interaction on current (UTSI) at hour 30 are shown in Figure 8.At hour 30 the maximum magnitude of UTSI about 0.2 m/s can be observed and the direction of UTSI represented with red arrows in Figure 8 indicates that the water currents flow out off the northwestern coast of Sri Lanka,resulting in the maximum negative surge-tide interaction.Moreover,the pattern of the UTSImagnitudes shows that the energy of UTSI propagates in the form of tidal wave.During the whole TC cycle,strong surge-tide interaction occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in this region.

    4 Discussion

    In this study the characteristics of tide-surge interaction along the north coast of Sri Lanka during the selected tropical cyclone case of Nisha (2008) was examined based on the POM.Model performance was assessed by comparing the simulated and observed hourly sea water levels.It is found that the model reproduces reasonably well the tides,surges and total sea water levels over the study region,with some discrepancy due to model grid resolution,inaccurate topography data and simplified cyclone structure.

    The difference between the three numerical experiments (exp-TW),(exp-OT) and (exp-OW) during cyclone Nisha (2008) produced by the model were used to study the tide-surge interaction in this selected region.The tide-surge interaction is a function of storm strength,storm track and topography[10].Although this Nisha (2008) was a fairly weak tropical cyclone,it still caused some notable damage in the north coast of Sri Lanka.The most significant tide-surge interaction was observed in the northwest coast of Sri Lanka,which reaches around 0.6 m.

    For the maximum of tide-surge interaction intensity (maximum absolute value of ηTSI

    during the cyclone event),the differences are shown to be associated with the strength and track of the cyclone.The impact of tide-surge interaction on the surge maximum can be investigated by focusing on the ηTSI

    when the surge reaches its maximum values.

    Tide-surge interaction makes destructive/constructive contribution to the maximum surge depending on the tidal phase (high tide/low tide) during the cyclone.In addition,the tide-surge interaction increases the duration of storm surge event while reduces the maximum surge,and vice versa[10].

    According to our results the maximum surge (2 m) was observed along the northwest coast of Sri Lanka and the minimum surge (-2 m) was observed along the southeast coast of India.In addition,the maximum positive TSI and negative TSI both occurred (about 0.6 m and -0.6 m) within this northwest region of Sri Lanka.Maximum positive TSI occurred at hour 42(0600 UTC 26th November 2008) and at the same time the TC track tended towards the northwest of India.

    At hour 42 when the maximum positive TSI occurred,the TC track strength increased with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.The TC track tended towards northwest direction(Fig.2a).At hour 30 when the maximum negative TSI occurred,the maximum sustained wind speed was 35 m/s(Fig.2b) and minimum SLP was 996 hPa which showed the TC track was weakened.Maximum negative TSI occurred at hour 30 which represents the 1800 UTC 25th November 2008.At this hour the TC track tended towards northeast direction(Fig.2a).The magnitude of UTSI (Fig.8) about 0.2 m/s and the direction of interaction current were observed significantly pointed out along the northwestern coast.In addition,the energy of UTSI propagates in the form of tidal wave and has similar period to the semi-diurnal tide in this region.

    All these results identified that the maximum of tide-surge interaction intensity is associated with the strength and track of the cyclone,and mainly occurs in the northwestern coast of Sri Lanka and the opposite coast of India.

    More work is needed to improve the accuracy of simulated storm surge,storm tide and tide-surge interaction in this region.Studies are needed to analyze different cyclone events to get a comparative examination of tide-surge interaction characteristics.

    The only national agency which provides observed sea level data for Sri Lanka is National Aquatic Resources Research and Development Agency (NARA).But it only provides observed sea level data for two stations (Colombo and Trincomalee) and these data are limited to 2007 to present time.The main reason for the lack of observed data in northern Sri Lanka could be the ethnic war period of Sri Lanka.

    The observed data are of limited quality,both in terms of time period and spatial coverage.It would be favorable if more data would be made accessible for scientific analysis in future by increasing tide gauge stations around Sri Lanka.And also it is showed in this study that the most significant tide-surge interaction was observed in the northwest coast of Sri Lanka.So it is important to locate a tide gauge station to observe sea level in northwest coast of Sri Lanka.

    The observed sea level data are needed to be analyzed further with statistical approach to find the significance of tide surge interaction and to validate the model results.This is successfully done in North Sea[13],the English Channel[26],the Bay of Bengal[21] and the China Sea[10,27].

    In addition,further investigations are needed to be done on the impacts of the nonlinear advective and the nonlinear bottom friction on the temporal variation of tide-surge interaction.To better understand the response of tide-surge interaction to different storm strengths and tracks,more case studies should be carried out for different number of specific cyclone events within this region in further analysis.

    5 Conclusion

    The present study shows that the observed characteristics of tide-surge interactions are significant along the northwest coast of Sri Lanka.The model reproduces reasonably well the tides,surges and total sea water levels.The maximum of the tide-surge interaction (TSI) intensity is associated with the strength and track of the cyclone.In this study the maximum positive TSI (0.6 m) was observed at hour 42 when the TC track was strengthened.The maximum negative TSI (-0.6 m) was observed at hour 30 when the TC track was weakened.The magnitude of interaction current (UTSI) (0.2 m/s) and the direction of red arrows were observed significantly pointed along the northwestern coast.This positive and negative maximum TSI intensified water levels were observed along the northwest coast of Sri Lanka.Further studies are needed to examine and quantify the impact of tide-surge interaction on sea levels in this selected region,and to carry out a comparative analysis it is needed to study on different cyclones.

    Acknowledgements:This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA19060503,XDA11010304 and XDA13030103),National Natural Science Foundation of China (Grants Nos.41776028,41676016,41376021,and 41521005),the MOST of China (Grant No.2014CB953904),Science and Technology Program of Guangzhou,China (Grant No.201607020043),and supported by Science and Technology Planning Project of Guangdong Province,China (Grant No.20150217),F(xiàn)unding of China Scholarship Council (Grant No.201704910146).The authors gratefully acknowledge the joint program of China Sri Lanka Research and Education Center (CSL-CER) and the use of the HPCC for all numeric simulations at the South China Sea Institute of Oceanology,Chinese Academy of Sciences.We also thank the National Aquatic Resources Research and Development Agency (NARA),Sri Lanka for providing the hourly observed sea level data.

    References

    [1] Li Y N,Peng S Q,Yan J,et al.On improving storm surge forecasting using an adjoint optimal technique[J].Ocean Model,2013,72(12):185-197

    [2] Resio D,Westerink J J.Modelling the physics of storm surges[J].Phys Today,2008,61(9):33-38

    [3] Xie L,Pietrafesa L,Peng M C.Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model[J].J Coastal Res,2004,20(4):1209-1223

    [4] Peng S Q,Xie L.Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J].Ocean Model,2006,14(1/2):1-18

    [5] Lakshmi D D,Murty P L N.Bhaskaran K P,et al.Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones[J].Ocean Eng,2017,131:135-148

    [6] Zhang A,Wei E,Parker B B.Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J].Cont Shelf Res,2003,23:1055-1070

    [7] Dube S K,Jain I,Rao A D,et al.Storm surge modelling for the Bay of Bengal and Arabian Sea[J].Natural Hazards,2009,51(1):3-27

    [8] Wijetunge J.Disaster risk assessment and mitigation strategy for tropical cyclone induced storm surge hazard and coastal impacts of climate change in Sri Lanka.[C]∥11th International Conference on Hydroinformatics,2014

    [9] Wijetunge J.Multi-scenario analysis of the storm surge hazard for Sri Lanka[C]∥35th IAHR World Congress,2013

    [10] Zhang H,Cheng W C,Qiu X X,et al.Tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[J].Cont Shelf Res,2017,142:32-49

    [11] Peng S Q,Li Y N.A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J].Sci Rep,2015,5:15496

    [12] Dixon M J,Tawn J A.Estimates of extreme sea conditions:spatial analyses for the UK Coast[R].Proudman Oceanographic Laboratory,1997:112-217

    [13] Horsburgh K J,Wilson C.Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J].J Geophys Res,2007,112(C8),DOI:10.1029/2006JC004033

    [14] Bernier N B,Thompson K R.Tide-surge interaction off the east coast of Canada and northeastern United States[J].J Geophys Res,2007,112(C6),DOI:10.1029/2006JC003793

    [15] Tang Y M,Grimshaw R,Sanderson B,et al.A numerical study of storm surges and tides with application to the North Queensland coast[J].J Phys Oceanogr,1996,26(12):2700-2711

    [16] Zhang W Z,Shi F Y,Hong H S,et al.Tide-surge interaction intensified by the Taiwan Strait[J].J Geophys Res,2010,115(C6),DOI:10.1029/2009JC005762

    [17] Zhang H,Sheng J Y.Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean[J].Cont Shelf Res,2015,93(1):81-97

    [18] Xu J L,Zhang Y H,Cao A Z,et al.Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea,Yellow Sea,and East China Sea[J].Science China Earth Sciences,2016,59(6):1308-1316

    [19] Johns B,Ali M A.The numerical modelling of storm surges in the Bay of Bengal[J].Quarterly Journal of the Royal Meteorological Society,1980,106(447):1-18

    [20] As-Salek J A,Yasuda T.Tide-surge interaction in the Meghna Estuary:most severe conditions[J].J Phys Oceanogr,2001,31(10):3059-3072

    [21] Antony C,Unnikrishnan A S.Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J].Estuar Coast Shelf Sci,2013,131(6):6-11

    [22] Pawlowicz R,Beardsley B,Lentz S.Classical tidal harmonic analysis including error estimates in Matlab using T-TIDE[J].Computers & Geosciences,2002,28(8):929-937

    [23] Mellor G L.Users guide for a three-dimensional,primitive equation,numerical ocean model June 2003 version[M].Princeton,NJ:Program in Atmospheric Ocean Science,2003:5

    [24] Blumberg A F,Mellor G L.A description of a three dimensional coastal ocean circulation model[M]∥Heaps N S.Three-Dimensional Coastal Ocean Models.Washing D C:America Geophysical Union,1987:1-16

    [25] Holland G J.An analytic model of the wind and pressure profiles in hurricanes[J].Mon Wea Rev,1980,108(8):1212-1218

    [26] Haigh I,Nicholls R,Wells N.Assessing changes in extreme sea levels:application to the English Channel,1900-2006[J].Cont Shelf Res,2010,30(9):1042-1055

    [27] Feng X B,Tsimplis M N.Sea level extremes at the coasts of China[J].J Geophys Res,2014,119(3):1593-1608

    猜你喜歡
    風(fēng)暴潮潮汐斯里蘭卡
    潮汐與戰(zhàn)爭(zhēng)(上)
    2012年“蘇拉”和“達(dá)維”雙臺(tái)風(fēng)影響的近海風(fēng)暴潮過(guò)程
    防范未來(lái)風(fēng)暴潮災(zāi)害的綠色海堤藍(lán)圖
    科學(xué)(2020年4期)2020-11-26 08:27:00
    基于多變量LSTM神經(jīng)網(wǎng)絡(luò)模型的風(fēng)暴潮臨近預(yù)報(bào)
    絕美海灘
    斯里蘭卡的高蹺海釣
    斯里蘭卡·鄉(xiāng)愁·舊時(shí)光
    基于HYCOM的斯里蘭卡南部海域溫、鹽、流場(chǎng)統(tǒng)計(jì)分析
    潮汐式灌溉控制系統(tǒng)的設(shè)計(jì)及應(yīng)用
    電子制作(2017年9期)2017-04-17 03:00:56
    干法紙的潮汐
    生活用紙(2016年6期)2017-01-19 07:36:25
    中文字幕人妻熟人妻熟丝袜美| 国内揄拍国产精品人妻在线| 精品国产三级普通话版| 日韩欧美免费精品| 超碰av人人做人人爽久久| 国产亚洲精品久久久com| 听说在线观看完整版免费高清| 插阴视频在线观看视频| 国产精品一区www在线观看| 乱系列少妇在线播放| 国产精品永久免费网站| 欧美人与善性xxx| 我的老师免费观看完整版| 最新中文字幕久久久久| 亚洲av一区综合| 禁无遮挡网站| 午夜久久久久精精品| 一个人看视频在线观看www免费| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 欧美在线一区亚洲| 如何舔出高潮| 内射极品少妇av片p| 身体一侧抽搐| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 成熟少妇高潮喷水视频| 久久久久久久亚洲中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产高潮美女av| 国产高清激情床上av| 美女xxoo啪啪120秒动态图| 中国国产av一级| 亚洲va在线va天堂va国产| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 国产午夜精品论理片| 日韩欧美 国产精品| 亚洲美女视频黄频| av卡一久久| 成人鲁丝片一二三区免费| 三级毛片av免费| 午夜久久久久精精品| 久久久久国产精品人妻aⅴ院| 12—13女人毛片做爰片一| 国产伦精品一区二区三区视频9| 久久综合国产亚洲精品| 最新在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 久久精品国产亚洲av涩爱 | 日韩欧美 国产精品| 久久久久久久久大av| 免费观看人在逋| 一本久久中文字幕| 国产乱人偷精品视频| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 日韩强制内射视频| 免费在线观看成人毛片| 中文资源天堂在线| 亚洲av中文av极速乱| 男人舔奶头视频| 国产精品免费一区二区三区在线| 成人特级av手机在线观看| 中国国产av一级| 男人和女人高潮做爰伦理| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 久久韩国三级中文字幕| 直男gayav资源| 日韩精品中文字幕看吧| 精品国产三级普通话版| 男女视频在线观看网站免费| 国产亚洲欧美98| 波多野结衣巨乳人妻| 麻豆久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 黄色配什么色好看| 成人国产麻豆网| 一夜夜www| 久久99热6这里只有精品| 看片在线看免费视频| 麻豆久久精品国产亚洲av| 日韩三级伦理在线观看| 久久久国产成人免费| 久久久a久久爽久久v久久| 亚洲专区国产一区二区| 99久久中文字幕三级久久日本| 亚洲五月天丁香| 在线看三级毛片| 国产精品野战在线观看| 亚洲色图av天堂| 人人妻,人人澡人人爽秒播| 亚洲自偷自拍三级| 麻豆国产av国片精品| 丝袜喷水一区| 亚洲一区二区三区色噜噜| 国产精品一及| 在现免费观看毛片| 亚洲丝袜综合中文字幕| 日产精品乱码卡一卡2卡三| a级毛片a级免费在线| 国产片特级美女逼逼视频| 高清毛片免费看| 欧美不卡视频在线免费观看| 日本 av在线| 欧美在线一区亚洲| 亚洲国产精品国产精品| 悠悠久久av| 一卡2卡三卡四卡精品乱码亚洲| 欧美中文日本在线观看视频| 91狼人影院| av在线观看视频网站免费| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色| 国产午夜精品论理片| 亚洲乱码一区二区免费版| 91久久精品国产一区二区三区| 国产真实乱freesex| 中文字幕久久专区| 三级国产精品欧美在线观看| 色综合站精品国产| 女人被狂操c到高潮| 色5月婷婷丁香| 最好的美女福利视频网| 99九九线精品视频在线观看视频| 国产亚洲欧美98| 人人妻人人看人人澡| av在线蜜桃| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 久久韩国三级中文字幕| 亚洲欧美日韩高清在线视频| av在线观看视频网站免费| 日韩欧美免费精品| 色av中文字幕| 国语自产精品视频在线第100页| 午夜a级毛片| 欧美在线一区亚洲| 久久人妻av系列| 成人亚洲欧美一区二区av| 国产私拍福利视频在线观看| 国产精品一区www在线观看| 成人一区二区视频在线观看| 亚洲精品在线观看二区| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 麻豆成人午夜福利视频| 看片在线看免费视频| 国产av在哪里看| 免费大片18禁| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久电影| 国产精品三级大全| 日本黄色片子视频| 国产精品1区2区在线观看.| avwww免费| 久久午夜福利片| 中文字幕人妻熟人妻熟丝袜美| 国产极品精品免费视频能看的| 变态另类丝袜制服| 女人被狂操c到高潮| 久久精品国产亚洲av涩爱 | 深爱激情五月婷婷| 欧美高清性xxxxhd video| 欧美日韩综合久久久久久| 一进一出好大好爽视频| 在线免费观看的www视频| 嫩草影院新地址| 高清毛片免费看| 国产精品久久久久久久电影| 最近视频中文字幕2019在线8| 欧美丝袜亚洲另类| 国产熟女欧美一区二区| 露出奶头的视频| 国产精品伦人一区二区| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 国产精品久久久久久久久免| 亚洲中文字幕一区二区三区有码在线看| 变态另类丝袜制服| 午夜福利成人在线免费观看| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 高清毛片免费看| 日本-黄色视频高清免费观看| 有码 亚洲区| 国产日本99.免费观看| 少妇熟女aⅴ在线视频| 久久这里只有精品中国| 亚洲成人久久爱视频| 亚洲性久久影院| 久久精品久久久久久噜噜老黄 | 日本爱情动作片www.在线观看 | 国产一区二区在线av高清观看| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 久久精品国产清高在天天线| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| www.色视频.com| 日本熟妇午夜| 黄色日韩在线| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| www日本黄色视频网| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| av在线天堂中文字幕| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 黄色视频,在线免费观看| 国产亚洲欧美98| 色5月婷婷丁香| 国产精品福利在线免费观看| 一级毛片我不卡| 人妻丰满熟妇av一区二区三区| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 两个人视频免费观看高清| 亚洲av不卡在线观看| 日韩精品中文字幕看吧| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 久久精品91蜜桃| 国产久久久一区二区三区| 精品久久久久久久人妻蜜臀av| 午夜福利18| 免费搜索国产男女视频| 真实男女啪啪啪动态图| 免费看a级黄色片| 国模一区二区三区四区视频| 在线播放无遮挡| 一级a爱片免费观看的视频| 97热精品久久久久久| 真实男女啪啪啪动态图| 日本与韩国留学比较| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 亚洲七黄色美女视频| 精品久久久久久久久久久久久| 三级国产精品欧美在线观看| 成人漫画全彩无遮挡| 久久久久久久久久久丰满| 国产午夜福利久久久久久| 九九热线精品视视频播放| 欧美中文日本在线观看视频| 女同久久另类99精品国产91| 噜噜噜噜噜久久久久久91| 99久国产av精品| 身体一侧抽搐| 一个人免费在线观看电影| 高清毛片免费看| 亚洲电影在线观看av| 深夜精品福利| 免费看日本二区| 在线观看免费视频日本深夜| 国产高清有码在线观看视频| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 精品乱码久久久久久99久播| 一级黄片播放器| 中国美白少妇内射xxxbb| 少妇丰满av| 欧美xxxx黑人xx丫x性爽| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 久久精品综合一区二区三区| 国产精品久久电影中文字幕| 亚洲电影在线观看av| 色哟哟·www| 99热这里只有是精品在线观看| 亚洲欧美日韩东京热| 99热只有精品国产| 午夜爱爱视频在线播放| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 久久精品夜色国产| 看黄色毛片网站| 婷婷精品国产亚洲av在线| 69人妻影院| 国产又黄又爽又无遮挡在线| 日韩一本色道免费dvd| av视频在线观看入口| 国内精品久久久久精免费| 国产午夜精品久久久久久一区二区三区 | 日本爱情动作片www.在线观看 | 亚洲熟妇熟女久久| 国产精品永久免费网站| 国产av在哪里看| 亚洲精品影视一区二区三区av| 精品久久久噜噜| 国产精品无大码| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 亚洲国产欧洲综合997久久,| 99久国产av精品| 人妻夜夜爽99麻豆av| 日本a在线网址| 久久久久久久亚洲中文字幕| 国产 一区精品| 国产成人a∨麻豆精品| 麻豆一二三区av精品| 亚洲精品一区av在线观看| 禁无遮挡网站| 婷婷精品国产亚洲av| 免费高清视频大片| 亚洲久久久久久中文字幕| 国产三级中文精品| 成人无遮挡网站| 久久久久免费精品人妻一区二区| 国产国拍精品亚洲av在线观看| 精品日产1卡2卡| 身体一侧抽搐| 一区二区三区四区激情视频 | 老熟妇乱子伦视频在线观看| 床上黄色一级片| 麻豆乱淫一区二区| 亚洲国产高清在线一区二区三| 色综合站精品国产| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 日韩一区二区视频免费看| 深夜a级毛片| 一区二区三区免费毛片| 看黄色毛片网站| 99久久精品热视频| 极品教师在线视频| 日本五十路高清| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看| 亚洲av美国av| 国产在视频线在精品| av中文乱码字幕在线| 亚洲精品影视一区二区三区av| 在线播放无遮挡| 国产亚洲91精品色在线| 国产大屁股一区二区在线视频| 婷婷色综合大香蕉| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 狂野欧美激情性xxxx在线观看| 天堂影院成人在线观看| 在线观看一区二区三区| 夜夜夜夜夜久久久久| 人妻夜夜爽99麻豆av| 亚洲aⅴ乱码一区二区在线播放| 欧美潮喷喷水| 美女黄网站色视频| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 国产精品美女特级片免费视频播放器| av天堂中文字幕网| 校园人妻丝袜中文字幕| 国产伦精品一区二区三区四那| 国产精品,欧美在线| 免费黄网站久久成人精品| 老熟妇仑乱视频hdxx| 一级毛片我不卡| 黄色一级大片看看| 成人漫画全彩无遮挡| 99热精品在线国产| 久久精品国产清高在天天线| 直男gayav资源| 婷婷精品国产亚洲av在线| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 嫩草影院精品99| 真实男女啪啪啪动态图| 美女免费视频网站| 人妻少妇偷人精品九色| 婷婷亚洲欧美| 97在线视频观看| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 久久国内精品自在自线图片| 伦理电影大哥的女人| 国产一区二区在线av高清观看| 日本三级黄在线观看| 午夜福利在线在线| 韩国av在线不卡| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 十八禁国产超污无遮挡网站| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 亚洲精品国产av成人精品 | 欧美xxxx黑人xx丫x性爽| 国产成人freesex在线 | 黄色日韩在线| 日日干狠狠操夜夜爽| 真人做人爱边吃奶动态| 日韩三级伦理在线观看| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 久久久午夜欧美精品| 简卡轻食公司| 你懂的网址亚洲精品在线观看 | 麻豆国产97在线/欧美| 中文在线观看免费www的网站| 国产一区二区三区av在线 | 成人美女网站在线观看视频| 久久精品国产亚洲av香蕉五月| 久久99热6这里只有精品| 99视频精品全部免费 在线| 成人特级av手机在线观看| 国产人妻一区二区三区在| 99热精品在线国产| 欧美三级亚洲精品| 久久精品综合一区二区三区| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添小说| 亚洲激情五月婷婷啪啪| 免费大片18禁| 亚洲久久久久久中文字幕| 变态另类成人亚洲欧美熟女| 我的女老师完整版在线观看| 亚洲四区av| 国产精品野战在线观看| 亚洲真实伦在线观看| 男女之事视频高清在线观看| 国产在视频线在精品| 日本黄大片高清| 亚洲性夜色夜夜综合| 桃色一区二区三区在线观看| 波多野结衣高清无吗| www.色视频.com| 国产精品一区www在线观看| 午夜激情欧美在线| 日韩强制内射视频| 国产美女午夜福利| 又黄又爽又免费观看的视频| av免费在线看不卡| 精品久久久久久久末码| 日韩欧美在线乱码| 国产高清视频在线观看网站| 老司机福利观看| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 黄色一级大片看看| 床上黄色一级片| 国产精品永久免费网站| 国产三级中文精品| 69人妻影院| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩无卡精品| 国内精品宾馆在线| 国产精品人妻久久久久久| 日日撸夜夜添| 91精品国产九色| 久久精品91蜜桃| 九九久久精品国产亚洲av麻豆| 午夜激情福利司机影院| 婷婷亚洲欧美| 久久久精品94久久精品| av黄色大香蕉| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 中文字幕av在线有码专区| 久久精品久久久久久噜噜老黄 | 精品不卡国产一区二区三区| 在线免费观看的www视频| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 久久这里只有精品中国| 乱系列少妇在线播放| 国内精品一区二区在线观看| 久久久久久久午夜电影| 一本精品99久久精品77| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 我要看日韩黄色一级片| 级片在线观看| 国产蜜桃级精品一区二区三区| 麻豆精品久久久久久蜜桃| 成人特级黄色片久久久久久久| 一级毛片久久久久久久久女| 国产精品电影一区二区三区| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 全区人妻精品视频| 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看| 国产真实乱freesex| 婷婷精品国产亚洲av| 欧美日韩乱码在线| 欧美最黄视频在线播放免费| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 国产白丝娇喘喷水9色精品| 床上黄色一级片| 夜夜夜夜夜久久久久| h日本视频在线播放| 日本免费a在线| 午夜视频国产福利| 亚洲av免费在线观看| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 六月丁香七月| 精品少妇黑人巨大在线播放 | 美女被艹到高潮喷水动态| 美女免费视频网站| 美女 人体艺术 gogo| 少妇高潮的动态图| 激情 狠狠 欧美| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 麻豆乱淫一区二区| 精品福利观看| 久久久久久大精品| 国产成人a区在线观看| 亚洲精品日韩在线中文字幕 | 俺也久久电影网| 国产精品国产高清国产av| 黑人高潮一二区| 成人亚洲精品av一区二区| 日韩精品青青久久久久久| 成人午夜高清在线视频| 赤兔流量卡办理| 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 国产精品综合久久久久久久免费| 99热这里只有是精品在线观看| 久久久午夜欧美精品| 女人被狂操c到高潮| 国内揄拍国产精品人妻在线| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 国产色婷婷99| 哪里可以看免费的av片| 欧美潮喷喷水| 亚洲无线在线观看| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 不卡视频在线观看欧美| 69人妻影院| 网址你懂的国产日韩在线| 国产一区二区三区在线臀色熟女| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区 | 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 内射极品少妇av片p| 99久久精品一区二区三区| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 禁无遮挡网站| 色综合色国产| 日韩成人av中文字幕在线观看 | 亚洲精品粉嫩美女一区| 精品人妻一区二区三区麻豆 | 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 99热这里只有精品一区| 99国产极品粉嫩在线观看| 久久久国产成人免费| 亚洲av二区三区四区| 欧美日韩乱码在线| 男女那种视频在线观看| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看电影| 青春草视频在线免费观看| 亚洲av.av天堂| 国产亚洲精品久久久com| 亚洲av五月六月丁香网| 免费看美女性在线毛片视频| 成人美女网站在线观看视频| 日日撸夜夜添| 直男gayav资源| 国产午夜精品久久久久久一区二区三区 | 乱人视频在线观看| 国产 一区 欧美 日韩| 日韩中字成人| 国产精品一区www在线观看| 特级一级黄色大片| 18禁在线播放成人免费| 少妇的逼水好多| 麻豆国产97在线/欧美| 国产精品电影一区二区三区| 久久99热这里只有精品18| 蜜桃久久精品国产亚洲av|