• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    斯里蘭卡近岸風(fēng)暴潮模擬中風(fēng)暴潮—潮汐相互作用特征分析:一個(gè)個(gè)例研究

    2018-05-30 12:50:50R.K.K.A.S.N.KODITHUWAKKU李毅能彭世球朱宇航李少鈿TilakP.D.GAMAGE付莉莉
    關(guān)鍵詞:風(fēng)暴潮潮汐斯里蘭卡

    R.K.K.A.S.N.KODITHUWAKKU 李毅能 彭世球 朱宇航 李少鈿 Tilak P.D.GAMAGE 付莉莉

    摘要利用三維普林斯頓海洋模型(POM)以及逐時(shí)水位觀測(cè)數(shù)據(jù),研究印度洋北部斯里蘭卡北部海岸風(fēng)暴潮-潮汐相互作用特征.選擇了2008年的“Nisha”臺(tái)風(fēng)作為臺(tái)風(fēng)風(fēng)暴潮個(gè)例進(jìn)行研究,并進(jìn)行了3個(gè)數(shù)值敏感性試驗(yàn).經(jīng)驗(yàn)證,該風(fēng)暴潮模型可以很好地再現(xiàn)該臺(tái)風(fēng)期間研究區(qū)域內(nèi)的潮汐和總海水水位.試驗(yàn)結(jié)果表明,沿斯里蘭卡西北海岸的風(fēng)暴潮-潮汐相互作用顯著,其強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m)和從印度洋外海向斯里蘭卡西北部淺灘流入的最大相互作用流場(chǎng).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和向南流出西北部淺水區(qū)域的較弱的相互作用流場(chǎng).在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域.

    關(guān)鍵詞普林斯頓海洋模型(POM);潮汐-風(fēng)暴潮相互作用;風(fēng)暴潮;斯里蘭卡

    中圖分類號(hào)P731.23

    文獻(xiàn)標(biāo)志碼A

    0 導(dǎo)讀

    本文原文為英文,希望感興趣的讀者進(jìn)一步關(guān)注原文.

    本研究利用一個(gè)三維普林斯頓海洋模型(POM)(2002版)以及觀測(cè)到的逐時(shí)水位數(shù)據(jù)研究北印度洋斯里蘭卡北海岸風(fēng)暴潮和潮汐模擬及其相互作用.以2008年的 “Nisha”作為個(gè)例,并進(jìn)行了3個(gè)數(shù)值試驗(yàn)來(lái)評(píng)估所選模式區(qū)域內(nèi)的風(fēng)暴潮-潮汐相互作用.Trincomalee站的每小時(shí)觀測(cè)水位數(shù)據(jù)由斯里蘭卡國(guó)家水產(chǎn)資源研究與發(fā)展機(jī)構(gòu)(NARA)提供.使用潮汐諧波分析軟件包T-TIDE獲得觀測(cè)海平面的潮汐升高和非潮汐殘差(NTR).Nisha(2008)的最佳臺(tái)風(fēng)路徑數(shù)據(jù)和中心壓力數(shù)據(jù)來(lái)自美國(guó)海軍聯(lián)合臺(tái)風(fēng)警報(bào)中心(JTWC).

    POM是一個(gè)三維的原始方程式海洋模型,被廣泛用于近岸和海盆尺度的海洋過(guò)程研究中.用于本研究的海底地形數(shù)據(jù)采用歐洲的海洋一般測(cè)深圖(GEBCO)的全球測(cè)深數(shù)據(jù)集,數(shù)據(jù)經(jīng)過(guò)插值得到模式網(wǎng)格點(diǎn)上的地形數(shù)據(jù).對(duì)于海表風(fēng)場(chǎng)的數(shù)據(jù),我們?cè)贘TWC最佳臺(tái)風(fēng)路徑和強(qiáng)度數(shù)據(jù)的基礎(chǔ)上采用經(jīng)驗(yàn)Holland模型計(jì)算臺(tái)風(fēng)的10 m風(fēng)速.本研究中的風(fēng)暴潮模型由潮汐強(qiáng)迫和大氣強(qiáng)迫驅(qū)動(dòng).為了評(píng)估風(fēng)暴潮-潮汐相互作用,我們進(jìn)行了3個(gè)同驅(qū)動(dòng)力組合的數(shù)值試驗(yàn).

    結(jié)果表明,沿斯里蘭卡西北海岸得到的風(fēng)暴潮-潮汐相互作用非常顯著.Nisha(2008)是一個(gè)中等強(qiáng)度的熱帶氣旋,但仍在斯里蘭卡北部海岸造成了一些顯著的風(fēng)暴潮災(zāi)害.該模型很好地再現(xiàn)了潮汐水位、總水位以及潮汐相互作用水位變化過(guò)程.數(shù)值結(jié)果表明:沿斯里蘭卡西北海岸得到的最大風(fēng)暴潮增水最顯著(達(dá)到2 m);沿印度東南海岸得到風(fēng)暴潮減水的最大值(-2 m).風(fēng)暴潮-潮汐相互作用(TSI)強(qiáng)度與臺(tái)風(fēng)的強(qiáng)度和軌跡相關(guān).在該臺(tái)風(fēng)風(fēng)暴潮過(guò)程中,當(dāng)TC在42 h達(dá)到較大強(qiáng)度時(shí),可以得到風(fēng)暴潮-潮汐相互作用導(dǎo)致的最大增水值TSI(0.6 m).在TC強(qiáng)度較弱的第30小時(shí),得到最大負(fù)TSI(-0.6 m)和強(qiáng)度達(dá)到0.2 m/s的TSI流場(chǎng)流出斯里蘭卡西北部淺水區(qū)域.在整個(gè)臺(tái)風(fēng)期間,強(qiáng)TSI都是發(fā)生在斯里蘭卡西北部海灘到對(duì)岸的印度洋近岸區(qū)域,說(shuō)明風(fēng)暴潮-潮汐相互作用在這些區(qū)域的風(fēng)暴潮研究中不能被忽略.

    后續(xù)需要進(jìn)一步的研究來(lái)檢驗(yàn)和量化風(fēng)暴潮-潮汐相互作用對(duì)該地區(qū)海平面的影響,并進(jìn)行多個(gè)臺(tái)風(fēng)個(gè)例比較和統(tǒng)計(jì)分析.

    Abstract A three-dimensional Princeton Ocean Model (POM) along with the observed hourly sea level data are used in this study to investigate the characteristics of the Tide-Surge Interaction (TSI) along the north coast of Sri Lanka in north Indian Ocean.In this study,the cyclone ‘Nisha 2008 case was selected and three numerical experiments were performed.The model reproduces reasonably well the tides,surges and total sea water levels and TSI water levels over the study region during this cyclone.The results show that the characteristics of the TSI are significantly shown along the northwestern coast of Sri Lanka.The maximum TSI intensity is associated with the strength and track of the cyclone.In this study,the maximum positive TSI reaches 0.6 m at hour 42 when the TC was strong.At hour 30 when the TC track was relatively weak,the maximum negative TSI reaches about -0.6 m.The magnitude of the interaction current (UTSI) (0.2 m/s) and the direction of the UTSI were observed significantly to flow out the northwestern coast.During the whole TC cycle,strong TSI occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in the storm surge simulation in this region.

    Key words Princeton Ocean Model(POM);Tide-Surge Interaction (TSI);storm surge;Sri Lanka

    1 Introduction

    The global warming has caused the increase in the intensity of Tropical Cyclones (TCs) which severely affect the TC-induced storm surges on coastal regions with dense population and large economic community[1].Most of the largest cities in the world are located on the coast and most of the worlds population lives within 150 km of the ocean.Coastal regions are often low lying and susceptible to an increase in sea surface elevation[2].

    During the past half century,enormous progress has been made in numerical prediction of storm surge[3-4].Storm surge is a phenomenon related to abnormal rise in near shore water levels above the regular astronomical tides.Forcing mechanisms for storm surge are maximum sustained wind speed,waves,and reduced atmospheric pressure[5].

    A meteorologically forced (strong wind stress and atmospheric pressure depression) long wave motion,and the extremely sustained storm surge increases the water surface elevations above the astronomical tide,causing inundation in low-lying coastal areas[6].

    Storm surges are an extremely serious hazard along the east coast of India,Bangladesh,Myanmar,and Sri Lanka.Although Sri Lanka is affected only occasionally by the storm surge,tropical cyclones of November 1964 and November 1978,and cyclone of November 1992 have caused extensive loss of lives and property damage in the region[7].

    Sri Lanka,an island nation located off the southern tip of India,is vulnerable to cyclones generated mostly in southern part of Bay of Bengal,and to a lesser extent,those in southeast of Arabian Sea[8].However,unfortunately very rare analysis and assessment of the storm surge hazard has been carried out for the coastline of Sri Lanka[9].Therefore,the real-time monitoring and warning of storm surges is of great interest.

    A three-dimensional Princeton Ocean Model along with the observed hourly sea level data are used in this study to investigate the characteristics of the TSI around Sri Lanka in north Indian Ocean.

    The selected tropical cyclone case of Cyclone Nisha hit northern Sri Lanka on November 25,2008,causing heavy rains and flooding that reportedly displaced 70 000 people in Vanni and 20 000 people in Jaffna district.Jaffna recorded the highest weekly cumulative rainfall since 1918.

    Many previous studies were made to improve the storm surge forecasting skills.These studies have identified that the accuracy of storm surge forecasting can be improved by investigating the TSI[10] and by optimizing the wind drag coefficient[1,11].

    Most of the previous studies have analyzed the mechanism of TSI using various approaches.Along the UK coastline[12] this is well studied and a spatial sea level trend estimate was obtained for all UK coastlines including the South and West.Along the North Sea coastline around UK[13] it shows that the mode of peak residual occurrence can be found everywhere 3 to 5 hours before the nearest high water.

    The non-linear interaction between tides and surges has been studied in many other regions such as,off the east coast of Canada,northeastern United States[14],north Queensland coast of Australia[15],and Taiwan Strait[16].

    Extreme sea levels associated with storm surges and tides over the northwest Pacific are investigated[17] and it is showed that the model well reproduces tides and storm surges over the study region and the extreme total sea levels are mainly determined by tides and tropical cyclones.

    The effects of TSI on storm surge elevations along the coast of Bohai Sea,Yellow Sea,and East China Sea[18]have been identified to be very significant.

    In the north Indian Ocean around Bay of Bengal the TSI studies were started by Johns & Ali[19]with numerical modelling experiments.They used a non-linear model to determine the interaction between tides and surges.

    By using numerical modeling studies in the Meghna estuary,As-Salek & Yasuda[20] found that the cyclone which makes landfall before the arrival of the tidal peak produces a higher and shorter-duration surge than the cyclone that makes landfall after the tidal peak.

    Nearly thirty years of hourly tide-gauge data were analyzed from four stations of east coast of India and in the head of the Bay of Bengal and showed that the tide-surge interaction characteristics observed are identical to those reported in extra tropical regions,such as the North Sea[21].

    The tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[10] was identified as significant in recent study,and it is showed that the nonlinear bottom friction is the main contributor to tide-surge interaction,while the contribution of the nonlinear advective effect can be neglected.

    There is no research has been published about the tide-surge interactions along the Sri Lankan coastal region to the best of our knowledge.Accordingly,this study is based on the Princeton Ocean Model and the characteristics of tide-surge interaction around Sri Lanka in northern Indian Ocean during the selected tropical cyclone 2008 case occurred within the selected model domain.The purpose of this work is to investigate the characteristics of tide-surge interaction and to improve the forecasting skills of storm surges by identifying the tide-surge interaction.

    The rest of this paper is organized as follows.In section 2 the data,the POM used in this study and model setup and forcing and the experimental set up are briefly introduced.Section 3 presents the results and corresponding analysis.Discussion and conclusion are given in section 4,section 5 respectively.

    2 Methods

    2.1 Data

    The oceanographic data used to analyze the TSI in this study are 2008 November month hourly observed sea levels from Trincomalee station of Sri Lanka.The observational data of Colombo station and Trincomalee station were provided by Oceanography and Hydrography unit of National Aquatic Resources Research and Development Agency (NARA),Sri Lanka.

    The tidal elevations and non-tidal residuals (NTR) of the observed sea levels were obtained using a harmonic analysis package,T-TIDE[22].The resultant tidal elevations and NTR of the observed sea levels were used to analyze the tide-surge interaction and assess the model performances[10].

    2.2 The Princeton Ocean Model setup and forcing

    The Princeton Ocean Model (POM) 2002 version (referred to as pom2k) is used for the forward prediction model in this study.The POM is a three-dimensional,primitive equation ocean model[23-24].

    The bathymetry data,which were interpolated onto the model grid (Fig.1) were obtained from the General Bathymetric Chart of the Oceans (GEBCO) 1 arc-minute global bathymetric dataset.(http:∥www.gebco.net/data-and-products/gridded-bathymetry-data/).

    1)Only Wind Run (exp-OW):The model in this experiment is driven by wind forcing and atmospheric pressure fields,and the insertion of a vortex associated with a cyclone based on Hollands hurricane model.

    2)With Tide and Wind Run (exp-TW):Both forcing functions including Tidal forcing and Wind forcing are included in this experiment.

    3)Only Tide Run (exp-OT):Only the Tidal forcing is included in this experiment.

    The POM was implemented in the above three experiments for the selected 2008 case study.These model results were used in the discussion section.

    2.3 Experimental setup

    In this study the model domain (Fig.1) is set to cover an area of 2-15°N,75-93°E with a horizontal resolution of 1/60°×1/60° and four vertical levels.

    The cyclonic storm Nisha (2008) was chosen for the numerical experiments in this study (Figs.2a,b).This cyclonic storm (IMD designation:BOB 07,JTWC designation:06B) was the ninth tropical cyclone of the 2008 north Indian Ocean cyclone season,and the seventh tropical cyclone in the Bay of Bengal 2008 year.

    Nisha (2008) is formed as a deep depression over Sri Lanka in southwest Bay of Bengal at 0006 UTC 24 Nov 2008.And then this deep depression is intensified into a cyclonic storm at 0000 UTC 26 Nov 2008.The India Meteorological Department named it as Nisha which moved northwest towards India.This cyclonic storm was weakened into a depression at 0000 UTC 28 Nov 2008.

    The north Indian Ocean best track data and central pressure data of Nisha (2008) case were obtained from Joint Typhoon Warning Centre (JTWC) of US Navy(http:∥www.usno.navy.mil/NOOC/nmfcph/RSS/jtwc/best-tracks/ioindex.php).

    The 6-hour interval data was interpolated into hourly data.These interpolated hourly Minimum Sea Level Pressure (MSLP) data with longitudes and latitudes data were used with POM for analysis.

    Before perform the three numerical experiments,a 6 h spin-up of POM started at 0600 UTC 24 December 2008 was carried out.A 48 h forward model run starting at 1200 UTC 24 December 2008 was performed.

    3 Results

    The spatial distribution of water level variations during Nisha (2008) cyclone for the three numerical experiments exp-OW (Fig.3),exp-TW,exp-OT were done for 48 h forward model which runs starting at 1200 UTC 24 December 2008 case.

    obtained for 48 hours and it can be seen that the high storm surge occurs along the storm track.This experiment includes the difference between the all forcing and only tide forcing which gives the surge variation.In this figure the maximum surge is about 2 m and the minimum surge is about -2 m.Similar to the result of exp-OW,the maximum surge can be observed significantly along the northwest coast of Sri Lanka,while the minimum surge can be observed along the southeast coast of India.

    is greater than zero,tide-surge interaction makes surges produced by exp-TW larger than surges produced by exp-OW,and vice versa[10].In this figure the maximum positive TSI (0.6 m) can be observed at hour 42 around the north coast(9.5°N,80.5°E).And the minimum negative TSI (maximum absolute value) (-0.6 m) can be observed at hour 30 along northwest coast (9.2°N,80.2°E).

    At the maximum positive TSI of 0.6 m,the TC track (Fig.2a) is located at 0600 UTC 26th November 2008 around 10.6°N,80.7°E with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.At the maximum negative TSI of -0.6 m,the TC track is located (Fig.2a) at 1800 UTC 25th November 2008 around (9.9°N,80.5°E) with 35 m/s maximum sustained wind speed (Fig.2b) and 996 hPa minimum SLP.

    In order to further examine the impact of tide-surge interaction on maximum surge region,time series of surge water levels variation(Fig.7) at the selected northwest point were presented for surge with tidal effect and surge variations for exp-OW and surge induced by TSI for 48 hours.This figure shows that at around hour 30 the surge reduced and then at around hour 42 the surge increased,similar to the results shown in Figure 4 in this northwest region.According to Figure 5 the TSI reaches the maximum positive TSI at hour 42 and gets the maximum negative TSI at hour 30 at this selected location of northwest region.In addition,the TSI has a similar period to the semi-diurnal tide but the amplitude is varying along with the total surge.

    The magnitudes and directions of surge-tide interaction on current (UTSI) at hour 30 are shown in Figure 8.At hour 30 the maximum magnitude of UTSI about 0.2 m/s can be observed and the direction of UTSI represented with red arrows in Figure 8 indicates that the water currents flow out off the northwestern coast of Sri Lanka,resulting in the maximum negative surge-tide interaction.Moreover,the pattern of the UTSImagnitudes shows that the energy of UTSI propagates in the form of tidal wave.During the whole TC cycle,strong surge-tide interaction occurs in the northwestern coast of Sri Lanka and the opposite coast of India,which indicates that the tidal effect cannot be ignored in this region.

    4 Discussion

    In this study the characteristics of tide-surge interaction along the north coast of Sri Lanka during the selected tropical cyclone case of Nisha (2008) was examined based on the POM.Model performance was assessed by comparing the simulated and observed hourly sea water levels.It is found that the model reproduces reasonably well the tides,surges and total sea water levels over the study region,with some discrepancy due to model grid resolution,inaccurate topography data and simplified cyclone structure.

    The difference between the three numerical experiments (exp-TW),(exp-OT) and (exp-OW) during cyclone Nisha (2008) produced by the model were used to study the tide-surge interaction in this selected region.The tide-surge interaction is a function of storm strength,storm track and topography[10].Although this Nisha (2008) was a fairly weak tropical cyclone,it still caused some notable damage in the north coast of Sri Lanka.The most significant tide-surge interaction was observed in the northwest coast of Sri Lanka,which reaches around 0.6 m.

    For the maximum of tide-surge interaction intensity (maximum absolute value of ηTSI

    during the cyclone event),the differences are shown to be associated with the strength and track of the cyclone.The impact of tide-surge interaction on the surge maximum can be investigated by focusing on the ηTSI

    when the surge reaches its maximum values.

    Tide-surge interaction makes destructive/constructive contribution to the maximum surge depending on the tidal phase (high tide/low tide) during the cyclone.In addition,the tide-surge interaction increases the duration of storm surge event while reduces the maximum surge,and vice versa[10].

    According to our results the maximum surge (2 m) was observed along the northwest coast of Sri Lanka and the minimum surge (-2 m) was observed along the southeast coast of India.In addition,the maximum positive TSI and negative TSI both occurred (about 0.6 m and -0.6 m) within this northwest region of Sri Lanka.Maximum positive TSI occurred at hour 42(0600 UTC 26th November 2008) and at the same time the TC track tended towards the northwest of India.

    At hour 42 when the maximum positive TSI occurred,the TC track strength increased with 50 m/s maximum sustained wind speed (Fig.2b) and 985 hPa minimum SLP.The TC track tended towards northwest direction(Fig.2a).At hour 30 when the maximum negative TSI occurred,the maximum sustained wind speed was 35 m/s(Fig.2b) and minimum SLP was 996 hPa which showed the TC track was weakened.Maximum negative TSI occurred at hour 30 which represents the 1800 UTC 25th November 2008.At this hour the TC track tended towards northeast direction(Fig.2a).The magnitude of UTSI (Fig.8) about 0.2 m/s and the direction of interaction current were observed significantly pointed out along the northwestern coast.In addition,the energy of UTSI propagates in the form of tidal wave and has similar period to the semi-diurnal tide in this region.

    All these results identified that the maximum of tide-surge interaction intensity is associated with the strength and track of the cyclone,and mainly occurs in the northwestern coast of Sri Lanka and the opposite coast of India.

    More work is needed to improve the accuracy of simulated storm surge,storm tide and tide-surge interaction in this region.Studies are needed to analyze different cyclone events to get a comparative examination of tide-surge interaction characteristics.

    The only national agency which provides observed sea level data for Sri Lanka is National Aquatic Resources Research and Development Agency (NARA).But it only provides observed sea level data for two stations (Colombo and Trincomalee) and these data are limited to 2007 to present time.The main reason for the lack of observed data in northern Sri Lanka could be the ethnic war period of Sri Lanka.

    The observed data are of limited quality,both in terms of time period and spatial coverage.It would be favorable if more data would be made accessible for scientific analysis in future by increasing tide gauge stations around Sri Lanka.And also it is showed in this study that the most significant tide-surge interaction was observed in the northwest coast of Sri Lanka.So it is important to locate a tide gauge station to observe sea level in northwest coast of Sri Lanka.

    The observed sea level data are needed to be analyzed further with statistical approach to find the significance of tide surge interaction and to validate the model results.This is successfully done in North Sea[13],the English Channel[26],the Bay of Bengal[21] and the China Sea[10,27].

    In addition,further investigations are needed to be done on the impacts of the nonlinear advective and the nonlinear bottom friction on the temporal variation of tide-surge interaction.To better understand the response of tide-surge interaction to different storm strengths and tracks,more case studies should be carried out for different number of specific cyclone events within this region in further analysis.

    5 Conclusion

    The present study shows that the observed characteristics of tide-surge interactions are significant along the northwest coast of Sri Lanka.The model reproduces reasonably well the tides,surges and total sea water levels.The maximum of the tide-surge interaction (TSI) intensity is associated with the strength and track of the cyclone.In this study the maximum positive TSI (0.6 m) was observed at hour 42 when the TC track was strengthened.The maximum negative TSI (-0.6 m) was observed at hour 30 when the TC track was weakened.The magnitude of interaction current (UTSI) (0.2 m/s) and the direction of red arrows were observed significantly pointed along the northwestern coast.This positive and negative maximum TSI intensified water levels were observed along the northwest coast of Sri Lanka.Further studies are needed to examine and quantify the impact of tide-surge interaction on sea levels in this selected region,and to carry out a comparative analysis it is needed to study on different cyclones.

    Acknowledgements:This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA19060503,XDA11010304 and XDA13030103),National Natural Science Foundation of China (Grants Nos.41776028,41676016,41376021,and 41521005),the MOST of China (Grant No.2014CB953904),Science and Technology Program of Guangzhou,China (Grant No.201607020043),and supported by Science and Technology Planning Project of Guangdong Province,China (Grant No.20150217),F(xiàn)unding of China Scholarship Council (Grant No.201704910146).The authors gratefully acknowledge the joint program of China Sri Lanka Research and Education Center (CSL-CER) and the use of the HPCC for all numeric simulations at the South China Sea Institute of Oceanology,Chinese Academy of Sciences.We also thank the National Aquatic Resources Research and Development Agency (NARA),Sri Lanka for providing the hourly observed sea level data.

    References

    [1] Li Y N,Peng S Q,Yan J,et al.On improving storm surge forecasting using an adjoint optimal technique[J].Ocean Model,2013,72(12):185-197

    [2] Resio D,Westerink J J.Modelling the physics of storm surges[J].Phys Today,2008,61(9):33-38

    [3] Xie L,Pietrafesa L,Peng M C.Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model[J].J Coastal Res,2004,20(4):1209-1223

    [4] Peng S Q,Xie L.Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J].Ocean Model,2006,14(1/2):1-18

    [5] Lakshmi D D,Murty P L N.Bhaskaran K P,et al.Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones[J].Ocean Eng,2017,131:135-148

    [6] Zhang A,Wei E,Parker B B.Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J].Cont Shelf Res,2003,23:1055-1070

    [7] Dube S K,Jain I,Rao A D,et al.Storm surge modelling for the Bay of Bengal and Arabian Sea[J].Natural Hazards,2009,51(1):3-27

    [8] Wijetunge J.Disaster risk assessment and mitigation strategy for tropical cyclone induced storm surge hazard and coastal impacts of climate change in Sri Lanka.[C]∥11th International Conference on Hydroinformatics,2014

    [9] Wijetunge J.Multi-scenario analysis of the storm surge hazard for Sri Lanka[C]∥35th IAHR World Congress,2013

    [10] Zhang H,Cheng W C,Qiu X X,et al.Tide-surge interaction along the east coast of the Leizhou Peninsula,South China Sea[J].Cont Shelf Res,2017,142:32-49

    [11] Peng S Q,Li Y N.A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J].Sci Rep,2015,5:15496

    [12] Dixon M J,Tawn J A.Estimates of extreme sea conditions:spatial analyses for the UK Coast[R].Proudman Oceanographic Laboratory,1997:112-217

    [13] Horsburgh K J,Wilson C.Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J].J Geophys Res,2007,112(C8),DOI:10.1029/2006JC004033

    [14] Bernier N B,Thompson K R.Tide-surge interaction off the east coast of Canada and northeastern United States[J].J Geophys Res,2007,112(C6),DOI:10.1029/2006JC003793

    [15] Tang Y M,Grimshaw R,Sanderson B,et al.A numerical study of storm surges and tides with application to the North Queensland coast[J].J Phys Oceanogr,1996,26(12):2700-2711

    [16] Zhang W Z,Shi F Y,Hong H S,et al.Tide-surge interaction intensified by the Taiwan Strait[J].J Geophys Res,2010,115(C6),DOI:10.1029/2009JC005762

    [17] Zhang H,Sheng J Y.Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean[J].Cont Shelf Res,2015,93(1):81-97

    [18] Xu J L,Zhang Y H,Cao A Z,et al.Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea,Yellow Sea,and East China Sea[J].Science China Earth Sciences,2016,59(6):1308-1316

    [19] Johns B,Ali M A.The numerical modelling of storm surges in the Bay of Bengal[J].Quarterly Journal of the Royal Meteorological Society,1980,106(447):1-18

    [20] As-Salek J A,Yasuda T.Tide-surge interaction in the Meghna Estuary:most severe conditions[J].J Phys Oceanogr,2001,31(10):3059-3072

    [21] Antony C,Unnikrishnan A S.Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J].Estuar Coast Shelf Sci,2013,131(6):6-11

    [22] Pawlowicz R,Beardsley B,Lentz S.Classical tidal harmonic analysis including error estimates in Matlab using T-TIDE[J].Computers & Geosciences,2002,28(8):929-937

    [23] Mellor G L.Users guide for a three-dimensional,primitive equation,numerical ocean model June 2003 version[M].Princeton,NJ:Program in Atmospheric Ocean Science,2003:5

    [24] Blumberg A F,Mellor G L.A description of a three dimensional coastal ocean circulation model[M]∥Heaps N S.Three-Dimensional Coastal Ocean Models.Washing D C:America Geophysical Union,1987:1-16

    [25] Holland G J.An analytic model of the wind and pressure profiles in hurricanes[J].Mon Wea Rev,1980,108(8):1212-1218

    [26] Haigh I,Nicholls R,Wells N.Assessing changes in extreme sea levels:application to the English Channel,1900-2006[J].Cont Shelf Res,2010,30(9):1042-1055

    [27] Feng X B,Tsimplis M N.Sea level extremes at the coasts of China[J].J Geophys Res,2014,119(3):1593-1608

    猜你喜歡
    風(fēng)暴潮潮汐斯里蘭卡
    潮汐與戰(zhàn)爭(zhēng)(上)
    2012年“蘇拉”和“達(dá)維”雙臺(tái)風(fēng)影響的近海風(fēng)暴潮過(guò)程
    防范未來(lái)風(fēng)暴潮災(zāi)害的綠色海堤藍(lán)圖
    科學(xué)(2020年4期)2020-11-26 08:27:00
    基于多變量LSTM神經(jīng)網(wǎng)絡(luò)模型的風(fēng)暴潮臨近預(yù)報(bào)
    絕美海灘
    斯里蘭卡的高蹺海釣
    斯里蘭卡·鄉(xiāng)愁·舊時(shí)光
    基于HYCOM的斯里蘭卡南部海域溫、鹽、流場(chǎng)統(tǒng)計(jì)分析
    潮汐式灌溉控制系統(tǒng)的設(shè)計(jì)及應(yīng)用
    電子制作(2017年9期)2017-04-17 03:00:56
    干法紙的潮汐
    生活用紙(2016年6期)2017-01-19 07:36:25
    成人三级黄色视频| 日韩大尺度精品在线看网址| 久久性视频一级片| 日本精品一区二区三区蜜桃| 每晚都被弄得嗷嗷叫到高潮| 国产免费男女视频| 熟女少妇亚洲综合色aaa.| www.www免费av| 日韩三级视频一区二区三区| 精品电影一区二区在线| 在线十欧美十亚洲十日本专区| 国产片内射在线| 在线观看免费午夜福利视频| 男人操女人黄网站| 国内精品久久久久久久电影| 色播亚洲综合网| 国产一卡二卡三卡精品| 伊人久久大香线蕉亚洲五| 久久精品亚洲精品国产色婷小说| 午夜老司机福利片| 免费高清视频大片| 精品久久久久久,| 夜夜看夜夜爽夜夜摸| 午夜激情av网站| 日韩欧美国产在线观看| 99在线视频只有这里精品首页| 91成年电影在线观看| 一a级毛片在线观看| 999精品在线视频| 亚洲国产日韩欧美精品在线观看 | 精品免费久久久久久久清纯| 国产又色又爽无遮挡免费看| 精品国产亚洲在线| 99久久99久久久精品蜜桃| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3 | 久久久国产成人精品二区| 给我免费播放毛片高清在线观看| 18禁美女被吸乳视频| 亚洲成av片中文字幕在线观看| 亚洲精品在线观看二区| 熟女电影av网| 在线国产一区二区在线| 午夜久久久久精精品| 两人在一起打扑克的视频| 丝袜人妻中文字幕| 天堂动漫精品| 午夜福利欧美成人| 欧美+亚洲+日韩+国产| 亚洲色图av天堂| 国产激情偷乱视频一区二区| 亚洲国产精品久久男人天堂| tocl精华| 51午夜福利影视在线观看| 亚洲精品国产精品久久久不卡| 亚洲精品久久成人aⅴ小说| 老司机靠b影院| 久久久久国产精品人妻aⅴ院| 免费观看精品视频网站| 女人被狂操c到高潮| 好男人在线观看高清免费视频 | 日本撒尿小便嘘嘘汇集6| 成人手机av| 满18在线观看网站| 久久精品国产亚洲av香蕉五月| 国产精品影院久久| 亚洲人成网站在线播放欧美日韩| 搡老熟女国产l中国老女人| 久久国产精品人妻蜜桃| 性欧美人与动物交配| 大香蕉久久成人网| 成人免费观看视频高清| 草草在线视频免费看| 婷婷精品国产亚洲av在线| 欧美三级亚洲精品| 老司机深夜福利视频在线观看| 一区二区三区国产精品乱码| 特大巨黑吊av在线直播 | 亚洲自偷自拍图片 自拍| 久久热在线av| 国产视频内射| 制服诱惑二区| 一级片免费观看大全| 亚洲九九香蕉| АⅤ资源中文在线天堂| 国产主播在线观看一区二区| 久久国产乱子伦精品免费另类| 色哟哟哟哟哟哟| 亚洲五月色婷婷综合| 国产熟女xx| 国产激情偷乱视频一区二区| 午夜成年电影在线免费观看| aaaaa片日本免费| 99精品久久久久人妻精品| 1024视频免费在线观看| 香蕉丝袜av| 色综合站精品国产| 久久久久久久久久黄片| 少妇被粗大的猛进出69影院| 亚洲国产看品久久| 无遮挡黄片免费观看| 成人国产一区最新在线观看| 999精品在线视频| 伊人久久大香线蕉亚洲五| 亚洲五月色婷婷综合| 色av中文字幕| 久9热在线精品视频| 日韩高清综合在线| 制服诱惑二区| 黄色片一级片一级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一电影网av| 午夜成年电影在线免费观看| 国产精品 欧美亚洲| 亚洲欧洲精品一区二区精品久久久| 日本撒尿小便嘘嘘汇集6| 亚洲成a人片在线一区二区| 99热6这里只有精品| 黄色片一级片一级黄色片| 免费在线观看黄色视频的| 麻豆成人午夜福利视频| 成人手机av| 午夜精品久久久久久毛片777| 亚洲色图 男人天堂 中文字幕| 久久这里只有精品19| 国产区一区二久久| 在线av久久热| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 婷婷丁香在线五月| 国产亚洲欧美98| 免费在线观看亚洲国产| 亚洲免费av在线视频| 首页视频小说图片口味搜索| 久久久久国产一级毛片高清牌| 性欧美人与动物交配| 精品久久久久久成人av| 色尼玛亚洲综合影院| 淫妇啪啪啪对白视频| 在线国产一区二区在线| 国产成+人综合+亚洲专区| 曰老女人黄片| 久久久久国产精品人妻aⅴ院| 精品国产超薄肉色丝袜足j| 日本成人三级电影网站| 午夜激情av网站| 亚洲真实伦在线观看| 国产精品影院久久| 亚洲精品在线观看二区| 精品久久久久久,| 久久精品国产清高在天天线| 日韩欧美免费精品| av超薄肉色丝袜交足视频| 久久午夜亚洲精品久久| 香蕉国产在线看| 国产真实乱freesex| 欧美色欧美亚洲另类二区| 色综合欧美亚洲国产小说| xxx96com| 国产亚洲精品综合一区在线观看 | √禁漫天堂资源中文www| 亚洲国产中文字幕在线视频| 国产高清videossex| 男女那种视频在线观看| 久久国产亚洲av麻豆专区| av电影中文网址| 色婷婷久久久亚洲欧美| 99国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 日本成人三级电影网站| 免费在线观看影片大全网站| 神马国产精品三级电影在线观看 | 久久久久久免费高清国产稀缺| 免费在线观看影片大全网站| 国产精品综合久久久久久久免费| 女人高潮潮喷娇喘18禁视频| 一区福利在线观看| 国产精品,欧美在线| 99精品欧美一区二区三区四区| 久久精品影院6| 搡老妇女老女人老熟妇| 亚洲黑人精品在线| 人成视频在线观看免费观看| 亚洲色图 男人天堂 中文字幕| 操出白浆在线播放| 午夜福利成人在线免费观看| xxx96com| 中文资源天堂在线| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 午夜视频精品福利| 搡老岳熟女国产| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 俄罗斯特黄特色一大片| 1024视频免费在线观看| 亚洲五月婷婷丁香| 精品无人区乱码1区二区| 欧美成人免费av一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 精品久久蜜臀av无| 黄色丝袜av网址大全| 真人做人爱边吃奶动态| 无限看片的www在线观看| 午夜两性在线视频| 亚洲专区中文字幕在线| 美女免费视频网站| 亚洲av成人av| 国产野战对白在线观看| 国产不卡一卡二| 精品乱码久久久久久99久播| 成人免费观看视频高清| 大型av网站在线播放| 久久久国产成人免费| 国产单亲对白刺激| 国产精品永久免费网站| 麻豆一二三区av精品| 黑人巨大精品欧美一区二区mp4| 悠悠久久av| 久久天堂一区二区三区四区| 久久中文字幕一级| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 啦啦啦观看免费观看视频高清| 天天一区二区日本电影三级| 亚洲熟女毛片儿| 无遮挡黄片免费观看| 欧美黄色片欧美黄色片| 一个人免费在线观看的高清视频| 99久久无色码亚洲精品果冻| 两性夫妻黄色片| 亚洲欧美精品综合久久99| 人妻丰满熟妇av一区二区三区| 国产亚洲精品综合一区在线观看 | 丁香六月欧美| 亚洲专区国产一区二区| 亚洲真实伦在线观看| 国产精品免费一区二区三区在线| 亚洲人成77777在线视频| 最近最新免费中文字幕在线| 桃色一区二区三区在线观看| 级片在线观看| 国产伦在线观看视频一区| 999久久久精品免费观看国产| av中文乱码字幕在线| 十八禁网站免费在线| 99国产精品一区二区蜜桃av| 国产熟女午夜一区二区三区| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲| 国产爱豆传媒在线观看 | 麻豆久久精品国产亚洲av| 国产精品香港三级国产av潘金莲| 亚洲av日韩精品久久久久久密| 人成视频在线观看免费观看| 国产熟女午夜一区二区三区| 国产精品永久免费网站| 亚洲va日本ⅴa欧美va伊人久久| 国产爱豆传媒在线观看 | av在线播放免费不卡| 女性生殖器流出的白浆| 麻豆av在线久日| 国产单亲对白刺激| 波多野结衣巨乳人妻| 亚洲国产高清在线一区二区三 | 黄色视频不卡| 成人午夜高清在线视频 | 精品一区二区三区视频在线观看免费| 国产av在哪里看| 亚洲精品美女久久av网站| 在线观看午夜福利视频| 中出人妻视频一区二区| 啦啦啦观看免费观看视频高清| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 国产成年人精品一区二区| av超薄肉色丝袜交足视频| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 黑丝袜美女国产一区| 精品熟女少妇八av免费久了| 国产又黄又爽又无遮挡在线| 欧美不卡视频在线免费观看 | 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 久久九九热精品免费| 午夜福利成人在线免费观看| 看黄色毛片网站| 男人舔奶头视频| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 欧美一级毛片孕妇| 99久久99久久久精品蜜桃| 老汉色∧v一级毛片| 久久精品国产清高在天天线| 最近最新中文字幕大全免费视频| 97超级碰碰碰精品色视频在线观看| 怎么达到女性高潮| www日本在线高清视频| 91成人精品电影| 一个人免费在线观看的高清视频| 亚洲人成电影免费在线| 中文字幕久久专区| 欧美三级亚洲精品| 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 看片在线看免费视频| 国产精品综合久久久久久久免费| 国产蜜桃级精品一区二区三区| 亚洲精品中文字幕一二三四区| 成人国语在线视频| 黑人操中国人逼视频| 成人国产一区最新在线观看| av有码第一页| 亚洲人成电影免费在线| 成人精品一区二区免费| www日本黄色视频网| 久久精品国产亚洲av香蕉五月| 成人午夜高清在线视频 | 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 国产亚洲精品久久久久5区| 精品久久蜜臀av无| 国产视频一区二区在线看| 天堂√8在线中文| 十八禁人妻一区二区| 老司机福利观看| 无限看片的www在线观看| 日韩欧美国产一区二区入口| 午夜福利免费观看在线| 好男人在线观看高清免费视频 | 精品人妻1区二区| 亚洲中文av在线| 国产欧美日韩一区二区精品| 亚洲人成网站高清观看| 国产精品亚洲一级av第二区| 宅男免费午夜| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 一本大道久久a久久精品| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 欧美中文综合在线视频| 欧美日韩精品网址| 在线观看一区二区三区| 午夜福利在线观看吧| 午夜久久久久精精品| 亚洲熟女毛片儿| 亚洲激情在线av| 18美女黄网站色大片免费观看| 亚洲avbb在线观看| 少妇 在线观看| 亚洲av美国av| 欧美色视频一区免费| 99国产精品99久久久久| 日韩欧美国产一区二区入口| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 又黄又爽又免费观看的视频| 亚洲欧美日韩无卡精品| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 国产精品国产高清国产av| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| 国产片内射在线| 一级黄色大片毛片| 1024香蕉在线观看| 欧美乱妇无乱码| 欧美一级a爱片免费观看看 | 香蕉久久夜色| 精品国产一区二区三区四区第35| 最近最新中文字幕大全免费视频| 成年女人毛片免费观看观看9| 一级a爱视频在线免费观看| 亚洲国产欧洲综合997久久, | av免费在线观看网站| 亚洲激情在线av| 麻豆成人午夜福利视频| 91九色精品人成在线观看| 国产野战对白在线观看| 免费看美女性在线毛片视频| 免费看日本二区| 欧美国产精品va在线观看不卡| avwww免费| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 午夜免费成人在线视频| 亚洲av第一区精品v没综合| 亚洲精品国产一区二区精华液| 侵犯人妻中文字幕一二三四区| 天堂动漫精品| 桃色一区二区三区在线观看| 美女国产高潮福利片在线看| 国产私拍福利视频在线观看| 久9热在线精品视频| 亚洲国产日韩欧美精品在线观看 | 亚洲成人免费电影在线观看| 哪里可以看免费的av片| 国产精品美女特级片免费视频播放器 | 桃色一区二区三区在线观看| 在线观看舔阴道视频| 美女午夜性视频免费| 午夜福利在线观看吧| 高潮久久久久久久久久久不卡| 欧美+亚洲+日韩+国产| 制服丝袜大香蕉在线| 亚洲第一电影网av| 欧美日韩黄片免| 成在线人永久免费视频| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 1024香蕉在线观看| 人人妻人人澡人人看| 亚洲av五月六月丁香网| 88av欧美| 97超级碰碰碰精品色视频在线观看| 国产黄片美女视频| 亚洲熟妇中文字幕五十中出| 99久久综合精品五月天人人| 国产一级毛片七仙女欲春2 | 国产视频内射| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区久久 | 国产高清videossex| 精品电影一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 欧美性猛交黑人性爽| 国产精品综合久久久久久久免费| 免费在线观看影片大全网站| a级毛片a级免费在线| 美女扒开内裤让男人捅视频| 成人av一区二区三区在线看| 黄频高清免费视频| 黄片播放在线免费| 日韩成人在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片 | 国语自产精品视频在线第100页| 久久久水蜜桃国产精品网| 校园春色视频在线观看| 在线观看www视频免费| 欧美性猛交╳xxx乱大交人| 久久伊人香网站| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 无遮挡黄片免费观看| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 国产精品乱码一区二三区的特点| 免费电影在线观看免费观看| 首页视频小说图片口味搜索| 国产午夜福利久久久久久| 亚洲av熟女| 热re99久久国产66热| 他把我摸到了高潮在线观看| bbb黄色大片| 黑人巨大精品欧美一区二区mp4| av在线天堂中文字幕| 一本精品99久久精品77| 午夜福利18| 中文字幕人妻熟女乱码| 国产乱人伦免费视频| 国产亚洲精品久久久久5区| 精品国产乱子伦一区二区三区| www日本黄色视频网| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| 精华霜和精华液先用哪个| 日本 欧美在线| 亚洲av成人一区二区三| 亚洲av成人av| 国产成人欧美在线观看| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 中文字幕高清在线视频| 香蕉av资源在线| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 成人国语在线视频| 国产一区二区三区视频了| 成人午夜高清在线视频 | 亚洲精品美女久久久久99蜜臀| 中出人妻视频一区二区| 男人舔女人的私密视频| 黄片大片在线免费观看| 女性被躁到高潮视频| 欧美日韩中文字幕国产精品一区二区三区| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 亚洲国产欧美日韩在线播放| 中亚洲国语对白在线视频| 国产精品亚洲美女久久久| 国产三级黄色录像| 怎么达到女性高潮| 亚洲精品色激情综合| 色av中文字幕| 99国产极品粉嫩在线观看| 1024手机看黄色片| 曰老女人黄片| 国内毛片毛片毛片毛片毛片| 成人欧美大片| 免费高清视频大片| 91大片在线观看| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 悠悠久久av| 91国产中文字幕| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 一级毛片高清免费大全| 亚洲男人天堂网一区| www.精华液| 久久久久亚洲av毛片大全| 最近在线观看免费完整版| 在线观看66精品国产| 午夜亚洲福利在线播放| 男男h啪啪无遮挡| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 在线视频色国产色| 中文字幕精品亚洲无线码一区 | 人人妻人人澡欧美一区二区| 好男人在线观看高清免费视频 | 成人午夜高清在线视频 | 国产一区二区激情短视频| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 国产成人av教育| 久久久久久人人人人人| 一区二区三区精品91| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 岛国在线观看网站| 亚洲欧美一区二区三区黑人| 91九色精品人成在线观看| 久久久久久大精品| 真人做人爱边吃奶动态| 天堂动漫精品| 黄色a级毛片大全视频| 欧美激情 高清一区二区三区| 婷婷丁香在线五月| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 久热爱精品视频在线9| 日韩av在线大香蕉| 色婷婷久久久亚洲欧美| 少妇裸体淫交视频免费看高清 | 真人一进一出gif抽搐免费| 欧美成人午夜精品| 久久久久国内视频| 国产黄片美女视频| 母亲3免费完整高清在线观看| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 色综合站精品国产| 黄色毛片三级朝国网站| 女生性感内裤真人,穿戴方法视频| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 精品第一国产精品| 亚洲av美国av| 欧美一级a爱片免费观看看 | 白带黄色成豆腐渣| 51午夜福利影视在线观看| 亚洲色图av天堂| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 精品欧美国产一区二区三| 麻豆久久精品国产亚洲av| 国产真实乱freesex| 午夜视频精品福利| 国产成人av教育| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 国内揄拍国产精品人妻在线 | 精品卡一卡二卡四卡免费| 亚洲九九香蕉| 婷婷亚洲欧美| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 麻豆成人午夜福利视频| 91字幕亚洲| 成人国语在线视频| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 亚洲精品美女久久av网站| 在线国产一区二区在线|