• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    孟加拉灣的葉綠素a,海表溫度和風(fēng)速的趨勢

    2018-05-30 12:50:50DanushkaFERNANDO唐丹玲徐華兵
    關(guān)鍵詞:上升流孟加拉灣葉綠素

    Danushka FERNANDO 唐丹玲 徐華兵

    摘要孟加拉灣(BoB)是一個高能量活躍的地區(qū),其短期內(nèi)的動態(tài)變化將對浮游環(huán)境產(chǎn)生巨大影響.“風(fēng)泵”能夠在BoB海域?qū)е麓怪钡幕旌蠌亩绊懞1頊囟群腿~綠素濃度.本文對2006——2016年的月平均Aqua-MODIS 葉綠素a(chl-a)濃度數(shù)據(jù)和Sea WiFS月度氣候態(tài)數(shù)據(jù)進行了分析,研究了葉綠素濃度的時間/季節(jié)變化和溫度以及風(fēng)速的關(guān)系.基于季風(fēng)期間的chl-a變異與海表溫度(SST),評估了在BoB海域它們之間的關(guān)系和變化.chl-a濃度值的趨勢分析表明,該區(qū)域的垂直混合非常低,冬季最高,夏季最低.冬季最大chl-a濃度值為0.50 mg/m3,并且從2月開始下降到夏季季風(fēng)期間.與冬季季風(fēng)相比,夏季季風(fēng)期間葉綠素表現(xiàn)出較低的濃度.在夏季季風(fēng)期間,特別是在7月和8月,由于云層密集,衛(wèi)星傳感器無法準(zhǔn)確捕獲chl-a濃度值.chl-a濃度和SST之間相關(guān)系數(shù)R2值為0.218 1.

    關(guān)鍵詞葉綠素;風(fēng)泵;孟加拉灣,海表溫度;上升流

    中圖分類號P724;P71

    文獻標(biāo)志碼A

    0 導(dǎo)讀

    本文原文為英文,希望感興趣的讀者進一步關(guān)注原文.

    孟加拉灣(BoB)是一個高能量活躍的地區(qū),其短期內(nèi)的動態(tài)變化將對浮游環(huán)境產(chǎn)生巨大影響.“風(fēng)泵”是指風(fēng)力驅(qū)動的海洋上層洋流和水體運動以及隨后的生態(tài)效應(yīng)的影響,它可改變海洋中關(guān)鍵元素的運動和循環(huán),從而影響海洋生態(tài)系統(tǒng)中的初級生產(chǎn)等.本文研究了葉綠素a(chl-a)濃度的時間/季節(jié)變化及其與海表溫度(SST)和“風(fēng)泵”的關(guān)系.

    本文對于10年(2006—2016年)的月平均Aqua-MODIS chl-a數(shù)據(jù)和Sea WiFS月度氣候態(tài)數(shù)據(jù)進行了分析.基于季節(jié)的chl-a濃度變異與SST,評估了在BoB海域它們之間的關(guān)系和變化.

    chl-a濃度值的趨勢分析表明,該區(qū)域的垂直混合非常低,冬季最高,夏季最低.冬季最大chl-a濃度值為0.50 mg/m3,并且從2月開始下降到夏季季風(fēng)期間.與冬季季風(fēng)相比,夏季季風(fēng)期間葉綠素表現(xiàn)出較低的濃度. 高chl-a濃度可能是由于印度洋地區(qū)冬季水平平流增強造成的,從而影響B(tài)oB海區(qū)的生物生產(chǎn)力.觀測發(fā)現(xiàn)在2013年chl-a濃度的最大值達到0.50 mg/m3,其原因是2013年12月在BoB西南部形成的熱帶氣旋(Madhi)橫穿了BoB西部地區(qū).Ekman抽吸速率指數(shù)是理解這個時期垂直混合的重要指標(biāo).

    在9月到次年1月期間,風(fēng)引起的混合導(dǎo)致溫度的降低和chl-a濃度增加.冬季季風(fēng)期間,深層和表層水混合使表層營養(yǎng)物質(zhì)增加,溫度也降低.SST下降,解釋了BoB地區(qū)冬季季風(fēng)(12月)內(nèi)出現(xiàn)最大chl-a濃度的原因,也解釋了表層和深層水的混合導(dǎo)致營養(yǎng)物質(zhì)供應(yīng)到上層并提高表層的生產(chǎn)力的現(xiàn)象.在夏季季風(fēng)期間,特別是7月和8月,衛(wèi)星傳感器無法準(zhǔn)確捕獲chl-a濃度值,原因是夏季季風(fēng)期間云層密集.由于云量覆蓋像素問題,冬季季風(fēng)和季風(fēng)轉(zhuǎn)換期是最適合研究BoB區(qū)域的葉綠素a濃度的時間,因為這種空間驗證的像素可用性遠高于夏季季風(fēng)期間.

    本研究顯示了葉綠素a濃度與海表溫度的相關(guān)性(R2=0.218 1,p<0.05)以及風(fēng)速之間的相關(guān)性(R2=0.193 1,p<0.05).BoB海區(qū)呈現(xiàn)中度的正相關(guān),最可能的原因是海區(qū)強烈的分層,特別是夏季季風(fēng)期間.和其他印度洋海區(qū)相比,BoB的風(fēng)場類型會刺激較小的上涌,因此,隨著chl-a濃度的增加而出現(xiàn)正相關(guān).與其他海區(qū)一樣,風(fēng)速也被認(rèn)為是BoB引起垂直混合最有效的能量驅(qū)動.

    Abstract The Bay of Bengal (BoB) is a high energy active region,dynamics of BoB varies during short term with huge effect over the planktonic environment.“Wind pump” induces vertical mixing in the BoB region,which affects the sea surface temperature (SST) and chlorophyll-a (chl-a).This study demonstrates the temporal/seasonal variation of chl-a concentration and its relationship to SST and wind speed.Monthly averaged Aqua-MODIS chl-a data for a period of 10 years (2006-2016) and Sea WiFS monthly climatology data were analyzed.Based on monsoonal chl-a and SST variability,we appraised their relationship and variations over the BoB.Trend analysis of chl-a concentration values shows that vertical mixing is very low in this region with weak annual phase,which reaches its maximum in winter and minimum in summer.About 0.50 mg/m3 is observed during winter as the maximum chl-a concentration value and then decreases since February until summer monsoon period.Summer monsoon period is identified as lack of chl-a concentration,compared to winter monsoon period.In summer monsoon period,especially in July and August,satellite sensors couldnt capture chl-a concentration values accurately due to the dense cloud cover.The R2 value for relationship between chl-a concentration and SST is observed to be 0.218 1.

    Key words chlorophyll a;Wind Pump;Bay of Bengal;sea surface temperature;upwelling

    1 Introduction

    Marine plants and phytoplankton are the major photosynthetic sources in the ocean surface,which significantly influence the fluctuation of atmospheric Carbon Dioxide (CO2) (global carbon cycle) and primary productivity of the ocean systems.The major process is the synthesis of organic carbon using inorganic CO2 that varies in different climatic ambience[1-2].When validating or assessing the primary productivity in the ocean,chlorophyll-a (chl-a) concentration is a vital parameter[3].Many nutrients such as nitrite,phosphate,silicate,etc.are highly usable (within the photic zone,where phytoplankton occur in abundance) in phytoplankton environment especially upper layers of the ocean[4].Distribution and density of phytoplankton depend on the nutrient level in the ocean surface and sunlight availability,but the mixing of water,occasional fronts,ocean circulation,cyclones,and upwelling also affect the intensification of phytoplankton distribution[2,5-6].Especially,“wind pump”[7] is a major factor for phytoplankton distribution in the ocean.Defined as the impacts of wind-driven ocean currents on water transport and subsequent ecological effects,“wind pump” changes the movement and the cycling of key elements in the ocean thus affects the primary production,in marine ecosystems[6] these natural phenomena are varying according to their own time scales (annually or seasonally) and chl-a concentration fluctuates almost equally with them.But there is lack of studies and assessments of chl-a relationship with physical properties in different regions of the ocean[8].

    Upwelling and vertical mixing induced by “wind pump” are the most significant factors in surface layers of the ocean which regulate the majority of phytoplankton (chl-a) biomass[7].This biomass depends on several limiting factors that is suggested by correlations such as the relationship between wind speed and chl-a concentration,as well as wind speed and SST which are negatively correlated in the world ocean as typically[9].Fluctuations of wind speed regulate the depth of upper mixed layer and also increase vertical nutrient mixing which cools the upper layer of the ocean[10-12].Spreading of SST in the Indian Ocean is very significant because western part of the Indian Ocean is highly abundant with cooler water,although the western part of Pacific and Atlantic oceans are hot.Physical,chemical and biological properties in the Arabian Sea region and the BoB region are comparatively different as western part of the BoB receives an enormous freshwater supply which results in low salinity during monsoonal periods.Therefore,the thermocline is deeper in the western part of the BoB and upwelling is comparatively less considering other regions of the Indian Ocean[13-14].

    The BoB is a very significant and important region of the northern Indian Ocean due to the abundant existence of short term and long term seasonal cyclones and eddies formation.Therefore,upwelling is highly induced during these periods[10,14].The BoB overall chl-a is comparatively higher than that in southern Indian Ocean around the equatorial region[15].This study targets to evaluate the temporal (seasonal) variability of chl-a concentration and SST,as well as the effect of wind speed variation,further to study their interrelationship over the BoB region in the northern Indian Ocean territory using statistical methods[2,16].Satellite-derived data and reanalysis data from specific data providers will be used as major data sources.

    2 Data and methods

    The study area extends around the BoB in the northern Indian Ocean (7-16°N and 82-91°E) and the variability of chl-a and SST in this area were studied (Fig.1).The moderate-resolution imaging spectroradiometer (MODIS)_Aqua ocean color based monthly composite level-3 standard mapped image (SMI) at 9 km spatial resolution data were downloaded from National Aeronautics and Space Administration (NASA) Ocean Color (http:∥oceancolor.gsfc.nasa.gov).Time duration is July 2006-Dec 2016.“Chlorophyll concentration data are calculated with MODIS algorithm (OC3M) and averaged in global ocean region.The OC3M algorithm is:log10(CHL)=0.283-2.753R+1.457R2+0.659R3-1.403R4 where R=log10[max(Rrs(443),Rrs(488))/Rrs(551)]”[17].Chl-a values are derived from the recorded radiance using the OC2 algorithm in MODIS-Aq.Chl-a concentration[18].Over 10 mg/m3chl-a values were not evaluated for this analysis because such values are sporadic.Furthermore,Sea-viewing Wide Field-of-view Sensor (Sea WiFS) monthly climatology 1°×1° data were downloaded from University of Hawaii website (http:∥apdrc.soest.hawaii.edu).

    The 0.25°×0.25°-pixels resolution monthly averaged SST data were downloaded from WindSat monthly averaged data products,Version-7.0.1 from the University of Hawaii website (http:∥apdrc.soest.hawaii.edu) for July 2006-December 2016.Since there werent precise values for June and July of 2007,average SST value was used for these two missing values.

    Monthly averaged wind speed data were downloaded from National Centers for Environmental Prediction (NCEP) reanalysis data using University of Hawaii website (http:∥apdrc.soest.hawaii.edu).Pixels resolution is 2.5°×2.5° and time duration was the same as above.

    3 Results

    3.1 Chl-a concentration variation in the BoB

    The area-averaged chl-a concentration in the BoB area during the period of July 2006-December 2016 is showed in Figure 2.Considering this studied time period,the chl-a concentration is varied from 0.10 mg/m3 to 0.50 mg/m3.The lowest of the areal average of chl-a concentration of 0.10 mg/m3 is noted in May 2010 and the highest of 0.50 mg/m3 noted in December 2013.According to Figure 2,five major peaks are identified (0.50 mg/m3 in December 2013,0.45 mg/m3 in August 2006,0.36 mg/m3 in July 2006,0.35 mg/m3 in September 2012 and 0.35 mg/m3 in September 2016).

    3.2 Error of cloud cover pixel

    In literature review,many researchers suggested the noticeable cloud cover period during the summer monsoon period (especially June to August).Therefore,this cloud cover decreases the satellite observations and accuracy of satellite data[12,19].In this study,a lack of pixel data during July and August is also found (figures are not provided) from 2006 to 2016.Figure 3 also shows high chl-a concentrations during July and August.This observation coincides with above researchers suggestions.This problem may be due to the lack of pixel data to take accurate average value.

    3.3 SST and chl-a concentration

    In this study,SST data during 2006-2016 are also observed to clarify the variability of chl-a concentration.SST variation is in sinusoidal distribution during this time period and varied in the range of 27.9-31.4 ℃ (Fig.4).The minimum SST value (27.9 ℃) is noted during January 2007 and January 2014,and the maximum value of SST (31.4 ℃) is noted in April 2010.

    3.4 Chl-a concentration and wind speed

    Chl-a concentration and wind speed are moderately correlated in this area (R2=0.193 1,p<0.05,significant at 95%) (Fig.6).Chl-a concentration is increasing with increase of wind speed.

    4 Discussion

    4.1 Variability of chl-a concertation

    High chl-a concentration is found during September to January.This high chl-a concentration may be induced by the nutrient upwelling which is caused by the sea level anomalies and winds[12].“Wind pump” influences on water movements which changes the transport and the cycling of major elements in the ocean[6,20].Furthermore,open ocean upwelling which is also motivated by Ekman pumping increases the chl-a concentration by cyclones which are very copious during winter monsoon periods that triaged increase nutrients concentrations to upper layers in the BoB region[14].Variability of chl-a (Fig.2) for period 2006-2016 illustrates that the year 2013 has the maximum value (0.50 mg/m3) of chl-a concentration.In December 2013,category-2 tropical cyclone (“Madhi”) formed in the southwestern BoB and crossed over the western BoB area (https:∥www.nasa.gov/content/goddard/92b-northern-indian-ocean/).Ekman pumping velocity index is an important character for understanding the vertical mixing in this period[21].This could be the most appropriate reason to explain the above high chl-a value.

    Due to the cloud cover pixel error in monthly climatology,chl-a concentration in the lowest part of the study region during July 2006 and August 2006 may be poorly averaged.The resulted chl-a concentration and wind speed correlation shows positive trend (increase) and these results suggest the upwelling induced by wind energy mechanism (moderately).Kumar et al.,(2002) evaluated the less productivity in the BoB than in the Arabian sea during the summer monsoon period and mentioned that surface layer of the BoB is strongly stratified by frequent rainfall,river inputs and weak wind patterns over the BoB.Though the summer monsoon is impotent to corrode the stratified layer,which leads to the reduction in vertical mixing[22].Figure 3 shows low chl-a concentration during May to June,but during July to September chl-a concentrations are very high as earlier (during summer monsoon).It could be due to the aforementioned cloud cover pixel issue during the period from July to August.

    4.2 Monsoonal effect and SST on chl-a concentration

    Upper layer chl-a concentration is identified as lower during the years 2006-2010 compared to the other years and then increases during 2010-2013;the inconsistency of chl-a graph for 2006-2016 displays that the year 2013 has recorded the highest value (0.50 mg/m3) but it tends to decrease from 2014 to 2015,and appears to increase again after June 2016.Due to cloud cover pixel errors winter monsoon and the inter-monsoon period is most suitable to study chl-a concentration in the BoB area because the spatially validated pixel availability is much higher than that in summer monsoon season.During winter monsoon period productivity is higher in the BoB than during summer monsoon period mainly due to the stratified upper water column (excluding natural cyclones formation).Most probably the occurrence of cold eddies controls the nutrient mixing to the surface ocean during the winter monsoon.The surface cooling is increased by the net heat loss from the sea surface.Relatively heavy winds induce the wind mixing and effect on the water column which also induce a proficient nutrients supply by cold eddies.Chl-a concentration in upper layers is chiefly dependent on stratification and wind mixing.Then,the chl-a concentration in the subsurface layer of the ocean is dependent on the existence of mesoscale eddies[23-24].Importantly,surface water consists high concentration of dissolved oxygen than bottom water.As well,warm water is incapable of holding more dissolved oxygen than cold water,which may explain above results[25].But there is no strong evidence of this impact on BoB region.Overall,a minor increasing trend of chl-a concentration is identified during 2006-2016 over the study area,which is evident from the statistical values (R2=0.000 2,p<0.05).

    During the study period,SST trend is positive but not significant (Fig.4),which is opposed to interpretations over the western Indian Ocean[26].SST is a most important factor (other than wind stress) for vertical upwelling and winter mixing in the western Indian ocean.As well as the SST decline during winter monsoon (about 3 ℃) describes the occurrence of maximum chl-a within the winter monsoon (December) over the BoB region.Reducing SST levels further explain additional mixing of surface water and deep water which cause the supply of nutrients to the upper layers and enhance the productivity of surface layers[27].Kumar et al. suggested that SST be considered as a proxy for factors which induce high chl-a concentration in the central equatorial Indian Ocean[16] but R2 value is observed as 0.22 between chl-a concentration and SST in the current relationship study.Therefore,it couldnt be clearly suggested as a proxy for variables on chl-a concentration in the BoB region as in central equatorial Indian Ocean.

    4.3 “Wind pump” effects on chl-a concentration

    Wind stress is possibly the most important force effect on the upper layer of the ocean[28].Generally,many scientists suggested that wind speed and chl-a concentration shows a strong positive relationship in open ocean[12,29-30],while the BoB region showed moderately positive relationship between chl-a and wind speed.Maybe the reason for the latter is the strong stratification which forms especially during the summer monsoon.Mixing behavior of wind and chl-a does not depend on each other alone.The course of winds could induce the upwelling or downwelling[31].Wind patterns in the BoB stimulate minor upwelling considering other parts of the Indian Ocean,therefore,a positive correlation can be observed with wind and the increase in chl-a concentration.This can be considered as one of the “wind pump” effects[7].

    5 Conclusion

    During 2006-2016 the chl-a concentration illustrates moderate increasing trend in the BoB region.High chl-a concentration possibly occurs due to the enhanced horizontal advection during winter over the Indian Ocean region.This phenomenon affects biological productivity in the BoB region.The behavior of heavy winds and eddy featured cyclone formation are responsible for the nutrient uplifting to the surface areas and mixed layer enhancement through the cool thermocline water,via “wind pump” effects.

    During September to January an increase in chl-a concentration occurs by this wind mixing and moderately cooling result.During winter monsoon high chl-a concentration can be observed due to the rich nutrients which are resulted by the deep and surface water mixing led by the decline in SST.Therefore,inhibiting the comparison between winter monsoon and summer monsoon.

    This study shows both relationship between chl-a concentration and sea surface temperature (R2=0.218 1,p<0.05),and between chl-a concentration and wind speed (R2=0.193 1,p<0.05).Moderate positive relationships are shown in BoB region.Most probable reason is the strong stratification especially in summer monsoon.Wind speed is considered as the most effective energy force in the vertical mixing in the BOB like other oceanic regions.

    Acknowledgements:This study was funded by Key Project of the National Natural Sciences Foundation of China (NSFC41430968),Project of Guangdong Key Laboratory of Ocean Remote Sensing (LORS)award to DanLing Tang.Danushka Fernando was supported by UCAS scholarship (2017UCAS057).The authors thank Liu Yupeng of LORS,South China Sea Institute of Oceanology,CAS.

    References

    [1] Falkowski P G,Barber R T,Smetacek V.Biogeochemical controls and feedbacks on ocean primary production[J].Science,1998,281(5374):200-207

    [2] Behrenfeld M J,OMalley R T,Siegel D A,et al.Climate-driven trends in contemporary ocean productivity[J].Nature,2006,444(7120):752-755

    [3] Antoine D,AndréJ M,Morel A.Oceanic primary production:2.estimation at global scale from satellite (coastal zone color scanner) chlorophyll[J].Global Biogeochemical Cycles,1996,10(1):57-69

    [4] Goldman J C,McCarthy J J,Peavey D G.Growth rate influence on the chemical composition of phytoplankton in oceanic waters[J].Nature,1979,279(5710):210-215

    [5] He Q Y,Zhan H G,Cai S Q,et al.Eddy effects on surface chlorophyll in the northern South China Sea:mechanism investigation and temporal variability analysis[J].Deep Sea Research Part I:Oceanographic Research Papers,2016,112:25-36

    [6] Ye H J,Kalhoro M A,Morozov E,et al.Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies[J].International Journal of Remote Sensing,2017(2):1-16

    [7] Tang D L,Kawamura H,Hai D N,et al.Remote sensing oceanography of a harmful algal bloom off the coast of coutheastern Vietnam[J].J Geophys Res,2004,109(C3),DOI:10.1029/2003JC002045

    [8] Sugimoto T,Tadokor O K.Interannual:interdecadal variations in zooplankton biomass,chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea[J].Fisheries Oceanography,1997,6(2):74-93

    [9] Kahru M,Gille S T,Murtugudde R,et al.Global correlations between winds and ocean chlorophyll[J].J Geophys Res,2010,115(C12),DOI:10.1029/2010JC006500

    [10] Chen X Y,Pan D L,Bai Y,et al.Episodic phytoplankton bloom events in the Bay of Bengal triggered by multiple forcings[J].Deep Sea Research Part I:Oceanographic Research Papers,2013,73(3):17-30

    [11] Tseng C M,Wong G T,Lin I I,et al.A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea[J].Geophysical Research Letters,2005,32(8):487-500

    [12] Fitch D T,Moore J K.Wind speed influence on phytoplankton bloom dynamics in the southern ocean marginal ice zone[J].J Geophys Res,2007,112(C8),DOI:10.1029/2006JC004061

    [13] Vinayachandran P N,F(xiàn)rancis P A,Rao S A.Indian Ocean dipole:processes and impacts[J].Current trends in Science,2009:569-589

    [14] Vinayachandran P N,Mathew S.Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones[J].Geophysical Research Letters,2003,30(11):26-1-26-4

    [15] Narvekar J,Kumar S P.Upper ocean variability of the equatorial Indian Ocean and its relation to chlorophyll pigment concentration[C]∥Proceedings of Ocean Obs,2010

    [16] Kumar G S,Prakash S,Ravichandran M,et al.Trends and relationship between chlorophyll-a and sea surface temperature in the central equatorial Indian Ocean[J].Remote Sensing Letters,2016,7(11):1093-1101

    [17] Feng J F,Zhu L.Changing trends and relationship between global ocean chlorophyll and sea surface temperature[J].Procedia Environmental Sciences,2012,13:626-631

    [18] Oreilly John E,Maritorena S,Mitchell B G,et al.Ocean color chlorophyll algorithms for Sea WiFS[J].J Geophys Res,1998,103(C11):24937-24953

    [19] Kumar S P,Sardesai S,Ramaiah N.A decade of physical and biogeochemical measurements in the Northern Indian Ocean[J].2010

    [20] Tang D,Ni I H,Müller-Karger F,et al.Monthly variation of pigment concentrations and seasonal winds in Chinas marginal seas[J].Hydrobiologia,2004,511(1/2/3):1-15

    [21] Stewart R H.Response of the upper ocean to winds[M]∥Stewart R H.Introduction to physical oceanography.Orange Grove Text Plus,2002

    [22] Kumar S P,Muraleedharan P M,Prasad T G,et al.Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?[J].Geophysical Research Letters,2002,29(24):88-1-88-4

    [23] Kumar S P,Nuncio M,Narvekar J,et al.Seasonal cycle of physical forcing and biological response in the Bay of Bengal[J].Indian Journal of Marine Sciences,2010,39(3):388-405

    [24] Pan G,Chai F,Tang D L,et al.Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model[J].Ecological Modelling,2017,356:38-47

    [25] Mitchell P,Prepas E E.Atlas of Alberta lakes[M].Edmonton,Canada:University of Alberta,1990

    [26] Prakash P,Prakash S,Rahaman H,et al.Is the trend in chlorophyll-a in the Arabian Sea decreasing?[J].Geophysical Research Letters,2012,39(23):L23605

    [27] Prakash S,Ramesh R.Is the Arabian Sea getting more productive?[J].Current Science,2007,92(5):667-671

    [28] Huang R X.Ocean circulation:wind-driven and thermohaline processes[M].Cambridge,UK:Cambridge University Press,2010

    [29] George D G,Edwards R W.The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir[J].Journal of Applied Ecology,1976,13(3):667-690

    [30] Tang D L,Kawamura H,Hai D N,et al.Remote sensing oceanography of a harmful algal bloom (HAB) off the coast of southeastern Vietnam[J].J Geophys Res,2004,109(C3),DOI:10.1029/2003JC002045

    [31] Chen D K,Busalacchi A J,Rothstein L M.The roles of vertical mixing,solar radiation,and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean[J].J Geophys Res,1994,99(C10):20345-20359

    猜你喜歡
    上升流孟加拉灣葉綠素
    夏季舟山上升流長期遙感觀測與分析
    溫暖的墨西哥灣
    提取葉綠素
    2017年8月9日~11日林芝暴雨過程分析
    孟加拉灣春季小型暖池對熱帶氣旋的影響研究
    遼東半島頂端海域上升流長期變化特征及影響因素*
    海洋與湖沼(2020年1期)2020-02-06 06:01:38
    桃樹葉綠素含量與SPAD值呈極顯著正相關(guān)
    葉綠素家族概述
    瓊東上升流的年際變化及長期變化趨勢*
    海洋與湖沼(2016年1期)2016-01-15 03:50:49
    由松針制取三種葉綠素鈉鹽及其穩(wěn)定性的研究
    王馨瑶露胸无遮挡在线观看| 欧美激情久久久久久爽电影 | 亚洲欧美精品自产自拍| 黄频高清免费视频| 69av精品久久久久久 | 又大又爽又粗| 欧美精品一区二区免费开放| 欧美日韩视频精品一区| 精品熟女少妇八av免费久了| 老司机午夜福利在线观看视频 | 午夜精品久久久久久毛片777| 伦理电影免费视频| 久久精品亚洲熟妇少妇任你| 欧美精品高潮呻吟av久久| 成人免费观看视频高清| 日韩一卡2卡3卡4卡2021年| av在线播放精品| 精品国产超薄肉色丝袜足j| 搡老岳熟女国产| 91av网站免费观看| 中文字幕色久视频| 亚洲va日本ⅴa欧美va伊人久久 | 桃花免费在线播放| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 欧美激情高清一区二区三区| 成人三级做爰电影| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 久久99一区二区三区| 日本wwww免费看| 久久人妻熟女aⅴ| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产 | 亚洲专区中文字幕在线| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 国产一级毛片在线| 亚洲国产日韩一区二区| 久久这里只有精品19| 脱女人内裤的视频| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 制服诱惑二区| 精品少妇内射三级| 国产xxxxx性猛交| 日本a在线网址| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 老熟女久久久| 亚洲七黄色美女视频| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 欧美在线黄色| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区 | 各种免费的搞黄视频| 国产在视频线精品| 久久亚洲精品不卡| 亚洲七黄色美女视频| 人妻久久中文字幕网| 成年人午夜在线观看视频| 国产xxxxx性猛交| 69av精品久久久久久 | 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 国产片内射在线| 久久国产精品影院| 在线精品无人区一区二区三| 性少妇av在线| 下体分泌物呈黄色| 亚洲久久久国产精品| 国产av又大| 人人妻人人添人人爽欧美一区卜| 亚洲av成人不卡在线观看播放网 | 国产精品99久久99久久久不卡| 午夜福利乱码中文字幕| 免费看十八禁软件| 久久久久久久精品精品| 亚洲伊人色综图| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 欧美激情久久久久久爽电影 | 18在线观看网站| 制服人妻中文乱码| 婷婷色av中文字幕| 亚洲av电影在线进入| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频 | 国产精品av久久久久免费| 最新在线观看一区二区三区| 老司机影院成人| 成年动漫av网址| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 欧美+亚洲+日韩+国产| 日韩视频一区二区在线观看| 国产激情久久老熟女| 男人爽女人下面视频在线观看| 亚洲精品久久成人aⅴ小说| 午夜福利在线观看吧| 国产一区二区 视频在线| 婷婷成人精品国产| 国产有黄有色有爽视频| 欧美国产精品一级二级三级| 每晚都被弄得嗷嗷叫到高潮| 国产免费福利视频在线观看| 久久影院123| 不卡一级毛片| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 韩国高清视频一区二区三区| 最近中文字幕2019免费版| 亚洲伊人久久精品综合| 黄色a级毛片大全视频| 91精品伊人久久大香线蕉| 建设人人有责人人尽责人人享有的| 日本欧美视频一区| 99国产综合亚洲精品| av福利片在线| 人妻久久中文字幕网| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 国产淫语在线视频| 叶爱在线成人免费视频播放| 欧美日韩福利视频一区二区| av一本久久久久| 99久久综合免费| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区三 | 大片电影免费在线观看免费| 久久精品国产综合久久久| 国产一级毛片在线| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 日本vs欧美在线观看视频| 久久青草综合色| 亚洲熟女毛片儿| 18禁国产床啪视频网站| cao死你这个sao货| 国产精品久久久久久精品电影小说| tube8黄色片| 美女大奶头黄色视频| 久久久久久久久免费视频了| 人妻一区二区av| 最黄视频免费看| 女人爽到高潮嗷嗷叫在线视频| h视频一区二区三区| 欧美日韩成人在线一区二区| 亚洲欧美清纯卡通| 亚洲,欧美精品.| 免费在线观看黄色视频的| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 免费在线观看黄色视频的| 国产精品久久久久成人av| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 免费在线观看视频国产中文字幕亚洲 | 啪啪无遮挡十八禁网站| 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 看免费av毛片| 国产真人三级小视频在线观看| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 美女大奶头黄色视频| 成人18禁高潮啪啪吃奶动态图| 老熟妇仑乱视频hdxx| 美女脱内裤让男人舔精品视频| 国产精品免费大片| 欧美日韩黄片免| 久久国产精品大桥未久av| 欧美中文综合在线视频| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 男人爽女人下面视频在线观看| 亚洲久久久国产精品| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 最近中文字幕2019免费版| 黑人猛操日本美女一级片| 成人av一区二区三区在线看 | 一级a爱视频在线免费观看| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 亚洲精品成人av观看孕妇| 色94色欧美一区二区| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区久久| 精品少妇黑人巨大在线播放| 亚洲精品国产一区二区精华液| 免费在线观看影片大全网站| 国产免费福利视频在线观看| 亚洲国产欧美网| 久久久精品免费免费高清| bbb黄色大片| 久久久久网色| 老司机影院毛片| av一本久久久久| 国产精品影院久久| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| 国产欧美日韩精品亚洲av| 久久久久国产一级毛片高清牌| 亚洲精品国产区一区二| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 中文字幕人妻熟女乱码| av不卡在线播放| 日本91视频免费播放| 最近最新免费中文字幕在线| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 成人免费观看视频高清| 国产成人免费观看mmmm| 亚洲精品一卡2卡三卡4卡5卡 | 我的亚洲天堂| 少妇被粗大的猛进出69影院| 亚洲综合色网址| 丝袜在线中文字幕| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 欧美激情极品国产一区二区三区| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 日韩三级视频一区二区三区| 欧美在线一区亚洲| 日韩大片免费观看网站| 久久 成人 亚洲| 丝瓜视频免费看黄片| 色94色欧美一区二区| 国产区一区二久久| 欧美精品啪啪一区二区三区 | 又大又爽又粗| 亚洲欧美日韩高清在线视频 | 国产又爽黄色视频| 啪啪无遮挡十八禁网站| 久久ye,这里只有精品| 久久久久久免费高清国产稀缺| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 视频在线观看一区二区三区| 脱女人内裤的视频| 久久精品国产a三级三级三级| 色94色欧美一区二区| av天堂久久9| 亚洲国产毛片av蜜桃av| 国产成人av教育| 欧美成人午夜精品| 午夜福利在线观看吧| 中文字幕精品免费在线观看视频| 天天添夜夜摸| 日日爽夜夜爽网站| 国产欧美日韩精品亚洲av| 法律面前人人平等表现在哪些方面 | 一级,二级,三级黄色视频| 精品久久久精品久久久| 国产精品.久久久| 中文字幕最新亚洲高清| 80岁老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 99热国产这里只有精品6| 亚洲成人免费电影在线观看| 视频在线观看一区二区三区| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 午夜精品国产一区二区电影| a级毛片在线看网站| 高清欧美精品videossex| 亚洲国产日韩一区二区| 亚洲精品久久午夜乱码| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 一个人免费看片子| 极品人妻少妇av视频| 飞空精品影院首页| 亚洲熟女精品中文字幕| 美国免费a级毛片| 欧美老熟妇乱子伦牲交| 操美女的视频在线观看| 麻豆乱淫一区二区| 国产成人精品在线电影| av网站在线播放免费| 性色av一级| 一二三四社区在线视频社区8| 精品亚洲乱码少妇综合久久| 国产亚洲欧美在线一区二区| 18禁裸乳无遮挡动漫免费视频| 亚洲一区中文字幕在线| 午夜福利一区二区在线看| 美女大奶头黄色视频| 久久久久久久久免费视频了| 久久人人97超碰香蕉20202| 男女免费视频国产| 高清在线国产一区| 成人av一区二区三区在线看 | 夫妻午夜视频| 婷婷色av中文字幕| 国内毛片毛片毛片毛片毛片| 久久久国产一区二区| 国产精品久久久久久精品古装| 国内毛片毛片毛片毛片毛片| 黑人猛操日本美女一级片| 婷婷成人精品国产| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久 | 人人妻人人澡人人爽人人夜夜| 亚洲成国产人片在线观看| 九色亚洲精品在线播放| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| netflix在线观看网站| 国产淫语在线视频| 欧美精品一区二区免费开放| 亚洲av成人一区二区三| 日韩视频在线欧美| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 久久久欧美国产精品| 免费观看a级毛片全部| 人妻人人澡人人爽人人| 精品一品国产午夜福利视频| 成年人黄色毛片网站| 国产在视频线精品| 亚洲视频免费观看视频| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 极品人妻少妇av视频| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 999久久久精品免费观看国产| 69av精品久久久久久 | 又黄又粗又硬又大视频| a级片在线免费高清观看视频| 一区二区av电影网| a级毛片黄视频| 捣出白浆h1v1| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 亚洲精品国产精品久久久不卡| 爱豆传媒免费全集在线观看| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9 | 成年美女黄网站色视频大全免费| 精品一区在线观看国产| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| av国产精品久久久久影院| 亚洲伊人色综图| 国产黄色免费在线视频| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 国产色视频综合| 在线观看舔阴道视频| kizo精华| 一区二区av电影网| 精品福利观看| 性高湖久久久久久久久免费观看| 成人三级做爰电影| 悠悠久久av| 久久99一区二区三区| 两个人看的免费小视频| 国产日韩欧美亚洲二区| 一级,二级,三级黄色视频| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 99香蕉大伊视频| 老司机在亚洲福利影院| 性高湖久久久久久久久免费观看| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 天天添夜夜摸| 成人18禁高潮啪啪吃奶动态图| videos熟女内射| 久久九九热精品免费| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 99国产极品粉嫩在线观看| 满18在线观看网站| 午夜福利视频精品| 欧美在线黄色| 日韩有码中文字幕| 狂野欧美激情性bbbbbb| 国产精品自产拍在线观看55亚洲 | 女性生殖器流出的白浆| 久久久久国产一级毛片高清牌| 悠悠久久av| 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 中文欧美无线码| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 中文字幕最新亚洲高清| 国产日韩欧美亚洲二区| 国产黄频视频在线观看| www日本在线高清视频| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 香蕉国产在线看| 欧美日韩av久久| 亚洲av电影在线进入| 精品人妻在线不人妻| 在线av久久热| 亚洲精品国产av蜜桃| 久久久久国内视频| 亚洲专区字幕在线| 一二三四社区在线视频社区8| av一本久久久久| 亚洲成人免费av在线播放| 一区在线观看完整版| 国产精品99久久99久久久不卡| 亚洲av电影在线进入| 日本av手机在线免费观看| 少妇被粗大的猛进出69影院| 成在线人永久免费视频| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av高清不卡| 成年美女黄网站色视频大全免费| 精品国产乱子伦一区二区三区 | 久久久久视频综合| 嫩草影视91久久| 香蕉国产在线看| 亚洲精品第二区| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 亚洲国产精品999| 2018国产大陆天天弄谢| 亚洲精品一区蜜桃| 欧美日韩视频精品一区| 久久国产精品影院| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 国产精品二区激情视频| 黑人猛操日本美女一级片| 国产成人系列免费观看| 99久久国产精品久久久| 婷婷色av中文字幕| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区 | 午夜成年电影在线免费观看| 国产亚洲精品第一综合不卡| 如日韩欧美国产精品一区二区三区| 亚洲欧美精品综合一区二区三区| 黄频高清免费视频| 99九九在线精品视频| 岛国毛片在线播放| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 国产精品一区二区免费欧美 | 欧美精品av麻豆av| 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 久久久久网色| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区久久| 久久精品人人爽人人爽视色| 精品国产乱子伦一区二区三区 | 久久国产精品人妻蜜桃| 亚洲国产看品久久| 一本色道久久久久久精品综合| 成人av一区二区三区在线看 | 超碰97精品在线观看| 国产成人影院久久av| 亚洲五月色婷婷综合| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合一区二区三区| 狠狠婷婷综合久久久久久88av| 搡老熟女国产l中国老女人| 美女脱内裤让男人舔精品视频| 精品国产国语对白av| 五月开心婷婷网| 中文字幕高清在线视频| 亚洲av电影在线进入| 91老司机精品| 宅男免费午夜| 一级毛片电影观看| 国产免费av片在线观看野外av| 欧美国产精品一级二级三级| 成年动漫av网址| 午夜激情久久久久久久| 精品视频人人做人人爽| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看 | 91大片在线观看| 久久毛片免费看一区二区三区| 欧美中文综合在线视频| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月 | 人人妻人人澡人人爽人人夜夜| 热re99久久国产66热| av有码第一页| 99九九在线精品视频| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频| 五月天丁香电影| 国产成人精品久久二区二区91| 男人爽女人下面视频在线观看| 一级片免费观看大全| 亚洲精品第二区| 欧美日韩视频精品一区| 亚洲全国av大片| 人人妻人人澡人人看| av在线app专区| 中文精品一卡2卡3卡4更新| 国产免费av片在线观看野外av| 亚洲精品国产色婷婷电影| 亚洲av美国av| 亚洲精品av麻豆狂野| 国产成人精品在线电影| 久久99热这里只频精品6学生| 国产精品二区激情视频| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | 老熟女久久久| 大码成人一级视频| 久久精品国产亚洲av香蕉五月 | 男女免费视频国产| 手机成人av网站| 这个男人来自地球电影免费观看| 韩国高清视频一区二区三区| 超色免费av| 飞空精品影院首页| 人人妻人人澡人人看| 91成人精品电影| 久久久久国产一级毛片高清牌| 久热这里只有精品99| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精| 久久青草综合色| 亚洲av日韩精品久久久久久密| 在线观看舔阴道视频| 高清黄色对白视频在线免费看| 色播在线永久视频| 亚洲成av片中文字幕在线观看| 午夜免费鲁丝| av有码第一页| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 免费高清在线观看日韩| 国产成+人综合+亚洲专区| 男女免费视频国产| 精品少妇一区二区三区视频日本电影| 在线观看免费日韩欧美大片| 成年av动漫网址| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 亚洲欧美日韩高清在线视频 | 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 久久久久视频综合| 国产精品久久久人人做人人爽| 国产片内射在线| 亚洲精品粉嫩美女一区| 免费在线观看视频国产中文字幕亚洲 | 午夜激情久久久久久久| 国产又色又爽无遮挡免| 窝窝影院91人妻| 黄色视频,在线免费观看| 色婷婷久久久亚洲欧美| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲成人免费av在线播放| 欧美国产精品一级二级三级| 精品少妇黑人巨大在线播放| 黑人操中国人逼视频| a级毛片在线看网站|