袁平 梁巖 田鐳鋼
【摘要】 microRNA(miRNA)是一類(lèi)小非編碼RNA,在基因表達(dá)過(guò)程中,通過(guò)與靶基因mRNA的3非編碼區(qū)結(jié)合,從而在轉(zhuǎn)錄后調(diào)控靶基因表達(dá),miRNA可以調(diào)節(jié)多達(dá)30%的人類(lèi)基因和控制多種細(xì)胞的代謝活動(dòng)。有研究表明,miRNA在心血管疾病中有重要的調(diào)節(jié)作用,且miRNA可能成為心血管疾病的重要的生物標(biāo)記物和藥物靶點(diǎn)。急性冠脈綜合征(ACS)是心血管疾病中的常見(jiàn)病,本文就miRNA在急性冠脈綜合征中的作用做一綜述。
【關(guān)鍵詞】 miRNA; 急性冠脈綜合征; 心血管疾病
Role of microRNA in Acute Coronary Syndrome/YUAN Ping,LIANG Yan,TIAN Leigang,et al.//Medical Innovation of China,2018,15(08):144-148
【Abstract】 microRNA(miRNA) is a class of small non-coding mRNAs that exert their posttranscriptional regulatory effects by targeting 3 untranslated region(3UTR) of corresponding miRNA.It has been estimated that miRNA may regulate up to 30% of human genes and control various cellular processes.Previous studies have suggested that miRNA may play an important role during cardiovascular disease progression.Acute coronary syndrome(ACS) is a common disease in cardiovascular disease,this article described the role of miRNA in acute coronary syndrome.
【Key words】 miRNA; Acute coronary syndrome; Cardiovascular disease
First-authors address:Graduate Department,Guangdong Medical University,Zhanjiang 524000,China
doi:10.3969/j.issn.1674-4985.2018.08.036
微小RNA(microRNA)是在真核生物中發(fā)現(xiàn)的一類(lèi)內(nèi)源性的具有調(diào)控功能的非編碼RNA,長(zhǎng)度大小為20~25個(gè)核苷酸。在動(dòng)物中miRNA主要通過(guò)與mRNA的3UTR區(qū)特異性結(jié)合,從而對(duì)靶基因起作用。miRNA對(duì)機(jī)體的作用和對(duì)心血管疾病的發(fā)生、發(fā)展,現(xiàn)已得到了廣泛的研究,已經(jīng)被提出作為多種疾病的生物標(biāo)志。急性冠脈綜合征(Acute coronary syndrome,ACS)是一種常見(jiàn)疾病,早期發(fā)現(xiàn)、早期預(yù)防顯得至關(guān)重要。已有大量研究表明miRNA對(duì)ACS的發(fā)生發(fā)展有重要的調(diào)節(jié)作用,這預(yù)示著miRNA將可能成為ACS診斷、治療及愈合判斷的有效的標(biāo)記物。
1 miRNA與機(jī)體正常的生長(zhǎng)發(fā)育
miRNA在人體中起著重要作用,調(diào)節(jié)著機(jī)體正常的生長(zhǎng)發(fā)育。這些miRNA在細(xì)胞生長(zhǎng)、增殖、分化、代謝、凋亡,多器官發(fā)育,血細(xì)胞分化及胰島素分泌等過(guò)程中起著重要作用,是人體正常生長(zhǎng)發(fā)育不可缺少的調(diào)節(jié)因子[1]。有研究表明miRNA是干細(xì)胞重要的調(diào)節(jié)因子,miRNA通過(guò)直接靶向多能因子的3UTR來(lái)調(diào)節(jié)干細(xì)胞的狀態(tài)。如miR-145通過(guò)OCt4、Sox2和Kif4抑制人類(lèi)胚胎干細(xì)胞的多能性[2]。有研究顯示,miRNA-1和miRNA-133可能與心臟的發(fā)育及傳導(dǎo)系統(tǒng)相關(guān),敲除了miRNA-1-2的小鼠易出現(xiàn)心臟擴(kuò)大、肺動(dòng)脈栓塞、室間隔缺損等疾病。Liu等[3]研究了miR-1在P19細(xì)胞中對(duì)心臟發(fā)育的作用,使用逆轉(zhuǎn)錄定量聚合酶鏈反應(yīng)分析,在心肌細(xì)胞分化前后分別檢測(cè)P19細(xì)胞中的miR-1的水平,結(jié)果顯示與未分化的P19細(xì)胞相比,分化成心肌細(xì)胞的P19細(xì)胞中miR-1表達(dá)明顯降低,同時(shí)在與正常對(duì)照組比較中,發(fā)現(xiàn)miR-1的過(guò)表達(dá)使分化的P19細(xì)胞的活力增加和細(xì)胞凋亡減少,研究提示miR-1上調(diào)可能通過(guò)增加Hand2表達(dá)和抑制caspase-3的切割來(lái)減少P19分化為心肌細(xì)胞的凋亡。不同的miRNA在不同的組織中作用不同,具有組織特異性,在心血管系統(tǒng)疾病的產(chǎn)生和正常發(fā)育中有著重要的作用。
2 miRNA在ACS發(fā)生、發(fā)展的作用
ACS是一組由急性心肌缺血引起的臨床綜合征。且急性心肌梗死發(fā)生心肌細(xì)胞損傷和損失的最主要的原因是心肌細(xì)胞壞死和凋亡后發(fā)生的過(guò)度的炎癥反應(yīng)[4]?,F(xiàn)希望發(fā)現(xiàn)多種生物標(biāo)記物,從而更早期、更準(zhǔn)確地診斷ACS,并且提供精準(zhǔn)的風(fēng)險(xiǎn)分層依據(jù)。多項(xiàng)研究表明,miRNA與心血管疾病息息相關(guān),如miRNA-208和miRNA-499與心肌損傷相關(guān),在ACS患者中,miR-499的AUC值比肌鈣蛋白高,這提示與肌鈣蛋白相比miR-499敏感度可能更高,在表達(dá)時(shí)間上miR-499更加提前[5-7],這為miR-499作為ACS診斷、生物標(biāo)記物提供了有利的條件。miR-208a的表達(dá)水平在急性心肌梗死后顯著升高,且miR-208家族被推薦作為急性心肌梗死的一種生物標(biāo)記物。有研究表明在心臟內(nèi),miR-208a參與心臟的發(fā)育且和病理生理?xiàng)l件下肌球蛋白重鏈轉(zhuǎn)換的調(diào)控相關(guān),miR-208a可以誘導(dǎo)心律失常、心臟重塑并調(diào)節(jié)心肌肥大的通路和心臟傳導(dǎo)系統(tǒng)的表達(dá)[8]。在AMI患者血漿中miR-1、miR-133a、miR-499和miR-208a均顯著上調(diào)[9],可推測(cè)急性心肌梗死可能的生物標(biāo)記物包括miR-1、miR-133a/b、miR-208a、miR-499、miR-499-5p[10]。在最近的一項(xiàng)研究中,與非ACS對(duì)照組相比,ACS中發(fā)現(xiàn)了5種miRNA(miRNA-122,miRNA-140-3p,
miRNA-720,miRNA-2861和miRNA-3149)增加[11]。同時(shí)有研究表明,miRNA-106b/25簇,miRNA-17/92a簇,miRNA-21/590-5p家族,miRNA-126和miRNA-451可能被用作UA的生物標(biāo)志物。Zeller等[12]的一項(xiàng)關(guān)于不穩(wěn)定型心絞痛的生物標(biāo)記物的研究中,在不穩(wěn)定型心絞痛和健康人對(duì)照中,發(fā)現(xiàn)了25種差異表達(dá)的miRNA,其中8種miRNA(miR-19a,miR-19b,miR-132,miR-140-3p,miR-142-5p,miR-150,miR-186和miR-210)與不穩(wěn)定型心絞痛顯著相關(guān)。由此可見(jiàn),多種miRNA在ACS的發(fā)生、發(fā)展上有著重要的作用,影響著疾病的進(jìn)展。同時(shí)可能存在更多的與ACS相關(guān)的miRNA有待被發(fā)現(xiàn),作用機(jī)制被闡述。
2.1 miRNA與脂質(zhì)代謝 低密度脂蛋白膽固醇(LDL)和高密度脂蛋白膽固醇(HDL)在循環(huán)系統(tǒng)中的高低是心血管疾病發(fā)生的重要的危險(xiǎn)因素之一。ACS與血管脂質(zhì)斑塊形成、斑塊破裂、糜爛、血小板聚集及心肌細(xì)胞壞死凋亡反應(yīng)等密切相關(guān),且動(dòng)脈粥樣斑塊的形成又與血管內(nèi)皮細(xì)胞功能紊亂、脂質(zhì)沉積、炎癥反應(yīng)、泡沫細(xì)胞集聚和血管平滑肌細(xì)胞的增殖密切相關(guān),現(xiàn)有多項(xiàng)研究表明miRNA參與這些過(guò)程。研究表明miRNA在脂肪細(xì)胞的分化和脂質(zhì)代謝中有著重要作用,如miRNA-34a、miRNA-548P、miRNA-122、miRNA-208、miRNA-33等[13-15]。有研究已經(jīng)顯示miR-33通過(guò)ATP結(jié)合盒轉(zhuǎn)運(yùn)體A1(ABCA1)調(diào)節(jié)膽固醇的輸出[16],miRNA-33a與miR-33b均屬于miR-33類(lèi),均在心肌細(xì)胞中表達(dá),且與血管重構(gòu)、血管粥樣硬化密切相關(guān)。并且miR-33a/b靶向與膽固醇代謝相關(guān)的其他基因,包括膽固醇7α-羥化酶(CYP7A1),ATP酶氨基磷脂轉(zhuǎn)運(yùn)蛋白1B型成員1(ATP8B1)和ATP結(jié)合盒亞家族B成員11(ABCB11)基因[17]。由此可見(jiàn),miR-33a/b是膽固醇、脂質(zhì)代謝重要調(diào)節(jié)因子,是保持膽固醇在體內(nèi)平衡的中心點(diǎn),提高了HDL-C水平,增加巨噬細(xì)胞的膽固醇反向轉(zhuǎn)運(yùn),并且具有動(dòng)脈粥樣硬化保護(hù)作用。另外最近也有研究表明miR-33是調(diào)節(jié)脂質(zhì)代謝的重要的非編碼RNA,并且在控制心血管內(nèi)環(huán)境穩(wěn)定方面也有重要作用,但這一作用與脂質(zhì)代謝無(wú)關(guān)[18]。同時(shí)其他miRNA也是治療血脂異常
的良好候選者,包括miR-30c-5p、miR-148a-3p、
miR-128-1、miR-144、miR-27等。已經(jīng)顯示miR-30c-5p的過(guò)表達(dá)可以減少動(dòng)脈粥樣硬化小鼠模型中的斑塊形成,抑制高脂血癥和動(dòng)脈粥樣硬化斑塊形成[19]。在高脂血癥的小鼠中,miR-148a和miR-128-1同時(shí)過(guò)表達(dá)顯著減少肝臟ABCA1表達(dá)和循環(huán)HDL-C水平[20-21]。現(xiàn)有研究已經(jīng)顯示HDL通過(guò)將miR-223轉(zhuǎn)移到內(nèi)皮細(xì)胞以抑制細(xì)胞內(nèi)的黏附分子1(ICAM-1)的表達(dá)[22],同時(shí)miR-223對(duì)細(xì)胞內(nèi)膽固醇的變化很敏感,通過(guò)清道夫受體B型Ⅰ型來(lái)調(diào)節(jié)HDL的攝取,亦間接通過(guò)SP3促進(jìn)mRNA和蛋白水平ABCA1表達(dá),從而促進(jìn)細(xì)胞膽固醇的外流[23]。總之,在脂質(zhì)代謝方面,miRNA以多種方式參與調(diào)節(jié),而ACS的發(fā)生與脂質(zhì)代謝異常密切相關(guān),這將為通過(guò)干預(yù)miRNA從而為研究、治療ACS等方面提供新思路。
2.2 miRNA與細(xì)胞凋亡壞死 miRNA在細(xì)胞組織的凋亡壞死中起舉足輕重的作用。有些miRNA降低Bcl-2/BAX比例,通過(guò)調(diào)控線粒體依賴的凋亡通路從而促進(jìn)細(xì)胞凋亡。如在心臟缺血再灌注損傷中miRNA-15a和miRNA-15b顯著上調(diào),通過(guò)靶向Bcl-2和caspase信號(hào)通路參與心肌細(xì)胞的凋亡[24-25];miR-24增加梗死心肌的心血管凋亡,是內(nèi)皮細(xì)胞凋亡和血管生長(zhǎng)的關(guān)鍵調(diào)節(jié)因子,可能成為缺血性心臟并干預(yù)治療的靶點(diǎn)[26]。miR-34a也被證實(shí)是AMI重要的促凋亡因子[27]。miR-874通過(guò)在MI后增加胱天蛋白酶-8而參與H2O2誘導(dǎo)的心肌細(xì)胞死亡[28]。在大鼠心肌細(xì)胞H9C2缺氧/再氧化(H/R)模型中,發(fā)現(xiàn)miR-122高表達(dá),抑制miR-122的表達(dá)能顯著降低細(xì)胞的凋亡,GATA-4是miR-122直接的靶基因,miR-122的過(guò)表達(dá)抑制GATA-4在mRNA和蛋白質(zhì)水平的表達(dá)。miR-122的下調(diào)能明顯緩解心肌細(xì)胞的H/R損傷[29]。由此可見(jiàn),miRNA-15、miR-24、miR-34a、miR-874、miR-122可能與細(xì)胞的凋亡壞死相關(guān),當(dāng)然這需要更多的基礎(chǔ)實(shí)驗(yàn)來(lái)驗(yàn)證,同時(shí)可能還有更多的miRNA參與調(diào)節(jié)。
2.3 miRNA與炎癥反應(yīng) 過(guò)度的炎癥反應(yīng)是心肌細(xì)胞損害和死亡的重要原因。心肌缺血后心肌細(xì)胞的死亡,隨后誘導(dǎo)炎癥的級(jí)聯(lián)反應(yīng)。在這炎癥反應(yīng)中,miRNA起關(guān)鍵的作用。一項(xiàng)在小鼠的研究中,miRNA-150的過(guò)表達(dá)對(duì)單核細(xì)胞遷移和促炎因子的產(chǎn)生起關(guān)鍵作用[30-31]。在急性心肌梗死后,miRNA-155顯著增加了IL-1b、CD105和TNF-α及白細(xì)胞浸潤(rùn),且miRNA-155缺失明顯減輕了缺血再灌注損害和炎癥細(xì)胞反應(yīng)[32]。這些研究提供了依據(jù)表明miRNA參與急性心肌梗死的發(fā)生發(fā)展。ACS患者中有多種與炎癥相關(guān)的miRNA明顯增加,如有研究表明miRNA-146a和miRNA-21與急性心肌梗死成正相關(guān),并且和白細(xì)胞和C反應(yīng)蛋白的數(shù)目相一致[33-35]。miR-146參與白細(xì)胞炎癥反應(yīng),在急性心肌梗死患者中,血漿檢測(cè)miR-146明顯升高[36]。有研究表明上調(diào)的miR-138通過(guò)抑制PI3K/Akt/eNOS信號(hào)通路來(lái)緩解冠狀動(dòng)脈內(nèi)皮細(xì)胞(HCAEC)的損傷和炎癥反應(yīng)[37]。
3 miRNA在ACS的治療方面所起作用
心肌細(xì)胞壞死和凋亡隨后發(fā)生過(guò)度炎癥是AMI病理過(guò)程中心肌細(xì)胞損傷和損失的主要原因[38]。同時(shí),缺血區(qū)域的血管再生促進(jìn)心肌細(xì)胞存活[39]。最終,通過(guò)纖維化引起的梗塞性心室重塑的程度決定了心臟功能和預(yù)后。因此,抑制細(xì)胞死亡和心室纖維化,調(diào)節(jié)不良炎癥反應(yīng)并促進(jìn)AMI后血管生成的方法是改善急性心肌梗死患者預(yù)后的可能的新的希望。在AMI的小鼠模型中,miR-155的缺乏能預(yù)防AMI后缺血/再灌注損傷誘導(dǎo)的凋亡[40]。此外,艾Eisenhard等[41]發(fā)現(xiàn)miR-155通過(guò)增加細(xì)胞凋亡相關(guān)caspase-3的表達(dá)而加重AMI后凋亡??傮w而言,抑制這些miRNA可能在AMI治療方面提供新的方向。miRNA-210通過(guò)下調(diào)蛋白酪氨酸磷酸酶-1B,以激活PI3K/AKT通路,來(lái)抑制急性心肌梗死后的凋亡。miRNA-214也可抑制心肌凋亡,在大鼠模型中miRNA-214的過(guò)表達(dá)降低梗塞的面積,改善心臟功能和血液動(dòng)力學(xué)狀態(tài)及抑制左心室重塑[42]。一項(xiàng)在小鼠的研究中,用過(guò)表達(dá)miRNA-1的胚胎干細(xì)胞植入梗死的心肌中,明顯抑制了心肌細(xì)胞的凋亡和改善了心臟功能[43]。MiRNA-21通過(guò)增加Bcl-2/BAX的比例,抑制心肌細(xì)胞的凋亡;缺血缺氧減少了心肌細(xì)胞中miRNA-21的表達(dá),增加miRNA-21的表達(dá)可通過(guò)降低PDCD4的表達(dá)來(lái)減輕缺血、從而誘導(dǎo)的細(xì)胞凋亡[44],這將為ACS后心肌缺血缺氧的藥物治療提供了可能的靶點(diǎn),現(xiàn)有廣泛報(bào)道m(xù)iRNA-499也是急性心肌梗死心肌損傷的重要的生物標(biāo)記物[45-46]。雖然現(xiàn)以有許多關(guān)于miRNA對(duì)ACS的研究,但仍需要大量的基礎(chǔ)、臨床實(shí)驗(yàn)來(lái)論證。
4 展望
miRNA參與了機(jī)體大部分細(xì)胞活動(dòng),是轉(zhuǎn)錄后調(diào)控的樞紐,調(diào)控了多種心血管疾病的發(fā)生、發(fā)展,在疾病的發(fā)展、轉(zhuǎn)歸中發(fā)揮重要的作用。近年來(lái)冠心病特別是ACS相關(guān)的miRNA已成為人們研究的熱點(diǎn),人們希望通過(guò)對(duì)miRNA的研究更加深入的了解冠心病的發(fā)病機(jī)制,相關(guān)的miRNA參與冠心病的調(diào)節(jié)方式等方法來(lái)發(fā)現(xiàn)ACS的生物標(biāo)記物,從而為ACS的早期診斷和治療提供方向,并且為病情的預(yù)后給予準(zhǔn)確的判斷?,F(xiàn)國(guó)內(nèi)外大量關(guān)于miRNA對(duì)ACS的研究已稍有成果,但分子生物學(xué)機(jī)制仍為完全闡述,現(xiàn)研究成果可能仍是冰山一角,許多實(shí)驗(yàn)仍處于動(dòng)物細(xì)胞實(shí)驗(yàn)階段。由于miRNA檢測(cè)流程復(fù)雜、昂貴、檢測(cè)結(jié)果受多重因素的影響,這就得對(duì)現(xiàn)研究出的結(jié)論成果科學(xué)準(zhǔn)確性要進(jìn)行多重考量,反復(fù)驗(yàn)證。且冠心病是一類(lèi)復(fù)雜疾病,受多種基因的調(diào)控,調(diào)控方式也多種,而miRNA和靶基因的關(guān)系也是多對(duì)多的關(guān)系,一種miRNA可能靶向多個(gè)基因,一個(gè)基因也可以受多個(gè)miRNA的聯(lián)合調(diào)控,這使得miRNA在臨床實(shí)踐中的應(yīng)用受到局限。在今后的研究中,完善miRNA標(biāo)準(zhǔn)化的檢測(cè)流程、加強(qiáng)臨床中的可用性、積極用于冠心病臨床診治、預(yù)后判斷、研究藥物作用靶點(diǎn)應(yīng)為研究的重點(diǎn)。
參考文獻(xiàn)
[1] Bartel D P.MicroRNAs:Genomics,Biogenesis,Mechanism,and Function[J].Cell,2004,116(2):281-297.
[2] Xu N,Papagiannakopoulos T,Pan G,et al.MicroRNA-145 regulates OCT4,SOX2,and KLF4 and represses pluripotency in human embryonic stem cells[J].Cell,2009,137(4):647-658.
[3] Liu L,Yuan Y,He X,et al.MicroRNA-1 upregulation promotes myocardiocyte proliferation and suppresses apoptosis during heart development[J].Molecular Medicine Reports,2017,15(5):2837.
[4] Orogo A M,Asa B G.Cell death in the myocardium:my heart wont go on[J].IUBMB Life,2013,65(8):651-656.
[5] Liu X,F(xiàn)an Z,Zhao T,et al.Plasma miR-1,miR-208,miR-499 as potential predictive biomarkers for acute myocardial infarction:An independent study of Han population[J].Experimental Gerontology,2015,72(9):230-238.
[6] Corsten M F,Dennert R,Jochems S,et al.Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease[J].Circ Cardiovasc Genet,2010,3(6):499-506.
[7] Oliveira-Carvalho V,Carvalho V O,Bocchi E A.The emerging role of miR-208a in the heart[J].DNA Cell Biol,2013,32(1):8-12.
[8] Condorelli G,Latronico M V,Cavarretta E.microRNAs in Cardiovascular Diseases:Current Knowledge and the Road Ahead[J].Journal of the American College of Cardiology,2014,63(21):2177-2187.
[9] Romaine S P R,Tomaszewski M,Condorelli G,et al.
MicroRNAs in cardiovascular disease:an introduction for clinicians.Heart,2015,101(12):921-928.
[10] Ahlin F,Arfvidsson J,Vargas K G,et al.MicroRNAs as circulating biomarkers in acute coronary syndromes:A review[J].Vascular Pharmacology,2016,81(11):15-21.
[11] Ren J Y,Zhang J,Xu N,et al.Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease[J].PLoS One,2013,8(12):e80738.
[12] Zeller T,Keller T,Ojeda F,et al.Assessment of microRNAs in patients with unstable angina pectoris[J].Eur Heart J,2014,35(31):2106-2114.
[13] Zhao Q,Li S,Li N,et al.miR-34a targets HDAC1-regulated H3K9 acetylation on lipid accumulation induced by homocysteine in foam cells[J].J Cell Biochem,2017,118(12):4167-4627.
[14] Zhou L,Hussain M M.Human MicroRNA-548p Decreases Hepatic Apolipoprotein B Secretion and Lipid Synthesis[J].Arterioscler Thromb Vasc Biol,2017,37(5):786-793.
[15] Alrob O A,Khatib S,Naser S A.MicroRNAs 33,122,and 208:a potential novel targets in the treatment of obesity, diabetes,and heart-related diseases[J].J Physiol Biochem,2017,73(2):307-314.
[16] Chen W M,Sheu W H,Tseng P C,et al.Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins[J].PLoS One,2016,11(5):e0154672.
[17] Li T G,F(xiàn)rancl J M,Boehme S,et al.Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice[J].Hepatology,2013,58(3):1111-1121.
[18] Aryal B,Singh A K,Rotllan N,et al.MicroRNAs and lipid metabolism[J].Curr Opin Lipidol,2017,28(3):273-280.
[19] Soh J,Iqbal J,Queiroz J,et al.MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion[J].Nat Med,2013,19(7):892-900.
[20] Goedeke L,Rotllan N,Canfrán-Duque A,et al.MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels[J].Nature Medicine,2015,21(11):1280.
[21] Wagschal A,Najafi-Shoushtari S H,Wang L,et al.Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis[J].Nature Medicine,2015,21(11):1290.
[22] Tabet F,Vickers K C,Cuesta Torres L F,et al.HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells[J].Nature Communications,2014,11(5):3292.
[23] Vickers K C,Landstreet S R,Levin M G,et al.MicroRNA-223 coordinates cholesterol homeostasis[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(40):14518.
[24] Liu L F.MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury[J].J Geriatr Cardiol,2012,9(1):28-32.
[25] Liu L,Zhang G,Liang Z,et al.MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway[J].Apoptosis,2014,19(1):19-29.
[26] Fiedler J,Jazbutyte V,Kirchmaier B C,et al.MicroRNA-24 regulates vascularity after myocardial infarction[J].Circulation,2011,124(6):720-730.
[27] Iekushi K,Seeger F,Assmus B,et al.Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction[J].Circulation,2012,125(14):1765-1773,S1-7.
[28] Wang K,Liu F,Zhou L Y,et al.miR-874 regulates myocardial necrosis by targeting caspase-8[J].Cell Death & Disease,2013,4:e709.
[29] Liang W,Guo J,Li J,et al.Downregulation of miR-122 attenuates hypoxia/reoxygenation(H/R)-induced myocardial cell apoptosis by upregulating GATA-4[J].Biochem Biophys Res Commun,2016,478(3):1416-1422.
[30] Liu Z,Ye P,Wang S,et al.MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction[J].Circ Cardiovasc Genet,2015,8(1):11-20.
[31] Yao R,Ma Y,Du Y,et al.The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome[J].Cell Mol Immunol,2011,8(6):486-495.
[32] Eisenhardt S U,Weiss J B,Smolka C,et al.MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst[J].Basic Res Cardiol,2015,110(3):32.
[33] Liu X,Dong Y,Chen S,et al.Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction[J].Cardiology,2015,132(4):233-241.
[34] Ibrahim A G,Cheng K,Marban E.Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J].Stem Cell Reports,2014,2(5):606-619.
[35] Toldo S.Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice[J].Circ Cardiovasc Genet,2014,7(3):311-320.
[36] Oerlemans M I F J,Mosterd A,Dekker M S,et al.Early assessment of acute coronary syndromes in the emergency department:the potential diagnostic value of circulating microRNAs[J].Embo Molecular Medicine,2012,4(11):1176-1185.
[37] Li J B,Wang H Y,Yao Y,et al.Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway[J].Journal of Cellular & Molecular Medicine,2017,21(8):1482-1491.
[38] Orogo A M Gustafsson A B.Cell death in the myocardium: my heart wont go on[J].IUBMB Life,2013,65(8):651-656.
[39] Cochain C,Channon K M,Silvestre J S.Angiogenesis in the infarcted myocardium[J].Antioxid Redox Signal,2013,18(9):1100-1113.
[40] Li X,Zeng Z,Li Q,et al.Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy[J].Oncotarget,2015,6(22):18829-18844.
[41] Eisenhardt S U,Weiss J B,Smolka C,et al.MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst[J].Basic Res Cardiol,2015,110(3):32.
[42] Yang X,Qin Y,Shao S,et al.MicroRNA-214 Inhibits Left Ventricular Remodeling in an Acute Myocardial Infarction Rat Model by Suppressing Cellular Apoptosis via the Phosphatase and Tensin Homolog(PTEN)[J].Int Heart J,2016,57(2):247-250.
[43] Glass C,Singla D K.MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart[J].Am J Physiol Heart Circ Physiol,2011,301(5):H2038-2049.
[44] Xie Q,Zhao C,Ye Z,et al.Effects of microRNA-21 on the myocardial cell apoptosis induced by ischemia and hypoxia in rat[J].Zhonghua Shao Shang Za Zhi,2014,30(2):153-157.
[45] Li Y Q,Lu J H,Bao X M,et al.MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4[J].Oncotarget,2016,7(24):35607-35617.
[46] Chen X,Zhang L,Su T,et al.Kinetics of plasma microRNA-499 expression in acute myocardial infarction[J].J Thorac Dis,2015,7(5):890-896.
(收稿日期:2017-12-26) (本文編輯:程旭然)