• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF CONCAVE-CONVEX ELLIPTIC EQUATIONS WITH CRITICAL GROWTH?

    2018-05-05 07:09:08JiafengLIAO廖家鋒YangPU蒲洋
    關鍵詞:春雷

    Jiafeng LIAO(廖家鋒)Yang PU(蒲洋)

    School of Mathematics and Statistics,Southwest University,Chongqing 400715,China School of Mathematics and Information,China West Normal University,Nanchong 637002,China

    E-mail:liaojiafeng@163.com;172431794@qq.com

    Chunlei TANG(唐春雷)?

    School of Mathematics and Statistics,Southwest University,Chongqing 400715,China

    E-mail:tangcl@swu.edu.cn

    1 Introduction and Main Result

    In this article,we study the following concave-convex elliptic equations involving critical Sobolev exponent

    where ??RN(N≥3)is an open bounded domain with smooth boundary,1<q<2,λ>0.is the critical Sobolev exponent for the embedding ofinto Lp(?)for everywhereis a Sobolev space equipped with the normThe coefficient function f ∈ Lr(?)is nonzero and nonnegative,whereAnd g ∈ C(?)is a positive function.

    More precisely,we say that a functionis called a weak solution of problem(1.1),if for allthere holds

    where u+=max{u,0}.

    It is well known that the pioneer work is Brézis and Nirenberg[4],that is,the existence of positive solutions of semilinear elliptic equations involving critical exponent is related to the dimension of space.After that,semilinear elliptic problems with critical exponent were extensively considered(see[1,2,5,7–30,33,35–37,39–42]).Particularly,Ambrosetti,Brézis,and Cerami[2]studied the following problem

    where 0<q<1< p≤ 2??1.They obtained the classic results by the sub-supersolution method and variational method,that is,there exists λ0> 0 such that problem(1.3)has at least two positive solutions for λ ∈ (0,λ0),a positive solution for λ = λ0,and no positive solution for λ > λ0.After that,many authors considered the concave-convex-type elliptic problems(see[1,9,14,20,21,24–28,35,40]).Particularly,Korman in[22]considered the exact number of positive solutions for problem(1.3)in the unit ball B?RN(N≥3).By the bifurcation theory,it is obtained that there exists a critical number>0 such that problem(1.3)has two positive solutions for λ ∈(0,),exactly one positive solution for λ=,and no positive solution for λ>.As any positive solution to problem(1.3)in the unit ball B is radial,Tang in[35]proved this result of[22]by an ordinary differential equation method.In[1],Ambrosetti,Azorer,and Peral studied problem(1.3)in RN(N≥3),that is,

    where 0< q< 1,h ∈ L1(RN)∩L∞(RN).When h ≥ 0,h/≡ 0,and λ > 0 small enough,they obtained two positive solutions.Moreover,[9,14]and[20]considered the multiplicity of positive solutions for concave-convex p-Laplacian problems with critical Sobolev exponent.

    Recently,Lin considered problem(1.1)under the following conditions in[28].

    (h1)

    (h2)There exist k points a1,a2,···,akin ? such that

    and for some σ > N such that g(x)?g(ai)=O(|x? ai|σ)as x → aiuniformly in i.(h3)Choosing r0>0 such thatwhereThere exists a positive number d0such that f(x)≥d0>0 for any

    For the convenience of the reader,we repeat the main results of[28]as follows.

    Theorem 1.1Assume thatand(h1)–(h3)hold,then problem(1.1)has k+1 positive solutions for λ>0 small enough.Moreover,one of the solutions is a ground state solution.

    Moreover,Cao and Chabrowski in[7]considered problem(1.1)with q=1 and obtained the multiplicity of positive solutions.Very recently,we studied problem(1.1)with 2≤ q< 2?and obtained some existence and multiplicity results by the variational method;see[27].

    In this article,an interesting question is whether there exist k+1 positive solutions for problem(1.1)without constraining conditions of<q<2 and N >4.We are interested in the existence of k+1 positive solutions for problem(1.1)with 1<q<2 and N≥3.Wefind the reason of restricting<q<2 and N >4 in[28]is that the author obtained k positive solutions from the prolongation of the origin.Now,we try to get rid of the constraining conditions of<q<2 and N>4 via obtaining k positive solutions from the prolongation of the first solution.In fact,the first solution is a positive ground state solution of problem(1.1).

    We denote by|·|pthe usual Lp-norm.Let S be the best Sobolev constant and Λ be a constant,respectively,

    As well known,the function

    is an extremal function for the minimization problem(1.4),that is,it is a positive solution of the following problem

    From the result in[31],one knows that the functional Iλis of class C1on(?).As well known that there exists a one to one correspondence between the nonnegative solutions of problem(1.1)and the critical points of Iλon(?).

    In this article,assume that the coefficient functions f,g satisfy the following conditions:

    (f)f ∈ Lr(?)with f ≥ 0 and f/≡ 0,where

    (g)g is continuous on ? and g> 0.

    (h′2)There exist k points a1,a2,···,akin ? satisfying

    Notice that u is a weak solution of problem(1.1),then u satisfies the following equation

    So,if such a solution exists,then it must lie in Nehari manifold N,which is defined by

    To obtain the multiplicity of positive solutions,we split N=N+∪N0∪N?with N+,N0,N?defined as follows:

    When λ ∈ (0,Λ),we will prove that N±/= ? and N0={0}in Section 2.

    Here is our main result.

    Theorem 1.2Assume that 1 < q < 2,N ≥ 3,and f,g satisfy(f),(g)andthen there exists Λ?> 0 such that for λ ∈ (0,Λ?),problem(1.1)has at least k+1 positive solutions.Moreover,there exists one solution uλwhich is a ground state solution with Iλ(uλ) → 0 and‖uλ‖ → 0 as λ → 0+.

    Remark 1.3To our best knowledge,our results are up to date.Our results complement the case of 1<q≤in[28],and we also obtain the same results but without restricting N >4.It is worth noticing that the growth condition inthat is,as x→aiuniformly in i∈N+and 1≤i≤k,which is more general than the corresponding condition of(h2)in[28].Moreover,we get rid of the condition(h3)which is important for estimating the level value of functional Iλin Lemma 4.2 of[28].

    This article is organized as follows.In Section 2,we give some preliminaries.We give the proof of existence of a positive ground state solution of problem(1.1)in Section 3.In Section 4,we give the proof of Theorem 1.2.

    2 Some Preliminary Results

    In this section,we give some lemmas about properties of the functional Iλon N,which are valuable preparation for the proof of our main result.

    Lemma 2.1For eachsuch thatwe have the followings:

    Furthermore,N0={0}and N?is a closed set for all 0<λ<Λ.

    ProofAccording to(g),there existssuch thatFor eachsuch thatFor all t≥0,we define k:R+→R by

    Clearly,we obtain k(0)=0 and k(t)→?∞ as t→∞.Because

    then k′(tmax)=0,k′(t)> 0 for 0 < t< tmax,and k′(t)< 0 for t> tmax,where

    Thus,k(t)achieves its maximum at tmax.Moreover,by the Sobolev embedding theorem,one has

    Then,we have

    and

    which implies that t?u∈N?.It follows that

    there exist unique t+and t?such that

    for 0<t+<tmax<t?.We have t+u∈N+,t?u∈N?and

    for each t∈ [t+,t?],and Iλ(t+u)≤ Iλ(tu)for each t∈ [0,t+].Thus,

    Next,we prove that N0={0}for all 0<λ<Λ.By contradiction,suppose that there exists u0∈N0with u0/=0.Obviously,u0∈N,it follows that

    and

    Consequently,

    Then,according to(2.3),(2.4),(2.6),and(2.7),for all 0<λ<Λ,one has

    which is a contradiction.Thus,N0={0}for all 0<λ<Λ.

    Finally,we prove that N?is a closed set for all 0<λ<Λ.Assume that{un}?N?such that un→u inas n→+∞,then we need prove that u∈N?.As un∈N?,from the definition of N?,one has

    Consequently,as un→u inas n→+∞,it follows from(2.8)that

    thus u∈N?∪N0.If u∈N0,because N0={0}for all λ ∈(0,Λ),one has u=0.However,from(2.8),byand(1.4),one has

    which contradicts u=0.Thus,u∈N?for all λ ∈(0,Λ).Therefore,N?is a closed set infor all λ ∈ (0,Λ).This completes the proof of Lemma 2.1.

    Lemma 2.2Iλis coercive and bounded from below on N.

    ProofBy the H?lder and Sobolev inequalities,one has

    Consequently,for all u∈N,it follows from(2.9)that

    because 1< q< 2< 2?,which implies that Iλis coercive and bounded from below on N.Then,the proof of Lemma 2.2 is completed.

    For 0<λ<Λ,by Lemma 2.1,one has N=N+∪N?∪{0}.Consequently,from Lemma 2.2,the following definitions are well defined

    Lemma 2.3(i) α ≤ α+<0 for all λ ∈(0,Λ);

    (ii)there exists a positive constant c0depending on λ,N,S,and|f|r,such that α?≥ c0> 0 for all

    Proof(i)For all u∈N+,we have

    consequently,because of 1<q<2 and u/=0,it follows that

    which implies that α+<0.Thus,α ≤ α+<0.

    (ii)For u ∈ N?,byand the Sobolev embedding theorem,one has

    this implies that

    Consequently,from(2.10)and(2.11),we obtain

    According to Theorem 2.3 in[6],we have the following lemma.

    Lemma 2.4Suppose that u0is a local minimizer of Iλon N and 0< λ < Λ,then

    ProofSuppose that u0is a local minimizer of Iλon N,then u0is a solution of the optimization problem

    where

    Furthermore,by the theory of Lagrange multipliers,there exists θ∈R such thatAs u0∈N,we get

    As 0< λ < Λ,from Lemma 2.3,one has u0/∈N0.Consequently,θ=0 andinThis completes the proof of Lemma 2.4.

    3 Existence of a Positive Ground State Solution

    According to[28]or[38],we show the existence of a(PS)α-sequence and a(PS)α?-sequence in

    Lemma 3.1(i)For all λ ∈ (0,Λ),there exists a(PS)α-sequence{un} ? N infor Iλ.

    The proof of Lemma 3.1 is similar to the proof of Proposition 9 in[38];the reader can refer to[38].Now,we have the following proposition.

    Proposition 3.2Let λ ∈ (0,Λ),then there exists uλ∈ N+such that

    (i)Iλ(uλ)= α = α+;

    (ii)uλis a positive ground state solution of problem(1.1).Moreover,one has Iλ(uλ)→ 0 and‖uλ‖ → 0 as λ → 0+.

    ProofBy Lemma 3.1,there exists a minimizing sequence{un}?N such that

    From Lemma 2.1,then Iλis coercive on N.It follows that{un}is bounded onGoing if necessary to a subsequence,still denoted by{un},there existssuch that

    which implies that uλis a solution of problem(1.1).Particularly,choosing ? =uλin(3.3),one has uλ∈N.Because{un}?N,one has

    Letting n→∞in(3.4),with(3.1),(3.2),and the fact α<0,we obtain

    Therefore,uλ∈N is a nontrivial solution of problem(1.1).

    Next,we prove that un→ uλstrongly inas n → ∞ and Iλ(uλ)= α.By Vitali’s theorem(see[32]pp:133),we claim that

    Indeed,we only need to prove thatis equi-absolutely-continuous.Noting that{un}is bounded,by the Sobolev embedding theorem,so there exists a constant C1> 0 such that|un|2? ≤ C1< ∞.By the H?lder inequality,for every ε> 0,setting δ> 0,when E?? with mesE<δ,we have

    where the last inequality is from the absolutely-continuity ofRThus,our claim is proved to be true.Because of uλ∈N,by the Fatou Lemma,it follows from(3.5)that

    which implies that Iλ(uλ)= α andCombining with(3.2),un? uλas n → ∞ init shows that un→ uλstrongly inMoreover,we can claim that uλ∈ N+.Indeed,if uλ∈ N?,by Lemma 2.1,there exist uniqueandsuch thatBecause of

    which is contradiction.Thus,according to Lemma 2.3(i),Iλ(uλ)= α,and uλ∈ N+,one has Iλ(uλ)= α = α+.

    Finally,we prove that uλis a positive solution of problem(1.1).In fact,we choosein(3.3),one hasthis implies that=0,so uλ≥ 0.Consequently,as uλ0,by Lemma 2.4 and the strong maximum principle,then uλis a positive solution of problem(1.1).Therefore,uλis a positive ground state solution of problem(1.1).Moreover,from(2.10)and Lemma 2.4,we obtain

    which implies that Iλ(uλ)= α → 0 as λ → 0+.As uλ∈ N+,from(2.9),one has

    4 Proof of Theorem 1.2

    In this part,we want to obtain k positive solutions of problem(1.1).To get rid of the constraining conditions of<q<2 and N >4 in[28],we try to obtain k positive solutions from the prolongation of the first solution uλin N?.Before proving Theorem 1.2,we give some important lemmas.

    Lemma 4.1For allIλsatisfies the(PS)c-condition in

    ProofLet{un}?be a(PS)c-sequence satisfying Iλ(un)=c+o(1)and=o(1).We claim that{un}is bounded inIn fact,for n large enough,one has

    which implies that{un}is bounded inSo,our claim is true.Therefore,‖un‖ is bounded.Set vn=un? u?.By Brézis-Lieb’s Lemma,we have

    consequently,from(3.5),one has

    and

    Now,we can assume that

    as n→∞.Applying the Sobolev inequality,one obtains

    Then,l≥Sl22?,which implies that either l=0 or l≥ SN2.If l≥ SN2,by(4.4)and(4.5),we have

    which is contradicts the definition of c.Therefore,l=0 and un→ u?strongly inThis completes the proof of Lemma 4.1.

    We consider the following critical exponent problem

    Associated with(4.6),we consider the energy functional I∞inthat is

    Now,following the methods of[5],let ηi∈be a radially symmetric function such that 0 ≤ ηi≤ 1,|?ηi|≤ C and for 1 ≤ i≤ k,we define

    and

    where U(x)is defined as(1.6).

    Lemma 4.2Suppose that(f),(g),andhold,then

    where 1≤i≤k.

    ProofAccording to[4]or[16],we can easy to obtain the following classical results

    Moreover,one has

    where Cl>0(l=2,3,4,5,6,7)are positive constants.As uλis a positive solution of problem(1.1),one has

    Moreover,by a standard method,we get uλ∈ C1(?,R+)and there exists a positive constant C8(C8independent of x)such that uλ< C8.Now,we give the following two elementary inequalities:

    For any m>2,there exists a positive constant C9=C9(m)such that

    where M>0 is a positive constant.

    Then,combining with(4.10),(4.12)and(4.11),we easily obtain

    Notice that Φε(0)=0,uniformly for all ε.On the one hand,whenone hasThus,we have

    uniformly in i.On the other hand,whenthenand it attains for some tε>0.So,there exist two constantssuch that T0<tε<T0.In fact,fromuniformly for all ε,we choosethen there exists T0>0 such that

    According to the monotonicity of Φεnear t=0,we have tε> T0.Similarly,we can obtainLet

    Then,we have

    In fact,for all ε> 0,it follows that

    When ε> 0 small enough,for δ> ε12,it follows from(4.14),(g),andthat

    where cN=[N(N?2)]N2,and C,C′> 0 are constants.Consequently,one has

    which implies that

    Then,from the arbitrariness of η,we obtain(4.13).Combining with(4.7)and(4.13),one has

    Consequently,from(4.8),it follows that

    thus

    and from(4.9),one obtains

    Consequently,it follows thatTherefore,

    where C13>0 is a constant and 1≤i≤k.

    This completes the proof of Lemma 4.2.

    According to[36],we have the following lemma.

    Lemma 4.3For any 1≤i≤k,there existssuch thatN?for all λ ∈(0,Λ).Moreover,

    ProofAccording to Lemma 2.1,there exists u∈ H10(?){0},consequently,there exists unique t?(u)> 0 such that t?(u)u ∈ N?.Set

    and

    for ε > 0 small.Indeed,from(4.10),(4.8),and(4.9),one has

    This completes the proof of Lemma 4.3.

    where χ:RN→RN

    Lemma 4.4For any 1≤i≤k,thenMoreover,there exists ε0>0 such that for all 0< ε< ε0,thenfor each 1≤i≤k.

    ProofAccording to the definition of φ,we have

    as ε→0+.This implies that there exists ε0>0 such thatfor any 0< ε< ε0and each 1≤ i≤k.Then,the proof of Lemma 4.4 is completed.

    For each 1≤i≤k,we define

    Lemma 4.5For all cIλsatisfies the(PS)c-condition in

    ProofAssuming the contrary,we can suppose that there exists a sequence{un}?N0such thatand

    Then,I∞has a(PS)-sequence{un}in(see[24]).It follows from Lemma 2.2 that there exist a subsequence{un}and u0∈such that un? u0weakly in H10(?).Because? is a bounded domain,is not achieved.Applying the Palais-Smale Decomposition Lemma(see Theorem 3.1 in Struwe[34]),there exist two sequences{zn}? ?,{Rn}?R+,z0∈?,and a positive solution v0∈H1(RN)of the critical problem(1.6)with I∞(v0)=1NSN2such that zn→z0,Rn→∞as n→∞and

    Lemma 4.6There existssuch that if 0<λ<Λ?and u∈N?withis given in Lemma 4.5),then we have φ(u) ∈

    ProofSimilar to Lemma 2.1,then there is a unique positive number

    such that tuu∈N0.Now,we want to prove that tu<C14for some constant C14>0(independent of u and λ).From(2.11),if u ∈ N?,then

    Thus,tu<C14for some constant C14>0.Thus,we have

    From the above inequality,we deduce that

    for 0< λ < Λ?.Consequently,by Lemma 4.5,it follows that

    for any 0< λ < Λ?.The proof of Lemma 4.6 is completed.

    From the above lemma,one has

    By Lemma 4.3,we have

    Lemma 4.7For u∈,then there exist τ>0 and a differentiable functionalsuch that ζ(0)=1,ζ(v)(u?v)∈for any v∈B(0;τ),and

    ProofThe proof is almost the same as in[10]or[38].For each u∈,define a function Fu:R×→R,given by

    Then,Fu(1,0)=〉=0 and

    According to the implicit function theorem,there exist τ> 0 and a differentiable functionsuch that ζ(0)=1,

    and

    which is equivalent to

    Lemma 4.8For each 1 ≤ i≤ k,λ ∈ (0,Λ?),there is ainfor Iλ.

    ProofFor each 1≤i≤k,by(4.15)and(4.16),we obtain

    From(4.17),we may assume thatfor sufficiently large n.By Lemma 4.7,there exist a> 0 and a differentiable functionalsuch that=1,for anyLet vσ=σv with‖v‖=1 andThen,andFrom(4.18)and by the mean value theorem,as σ → 0,we obtain

    where t0∈ (0,1)is a constant and

    as σ →0.Hence,

    where o(1)→ 0 as σ → 0.From Lemma 4.7,then there exists a positive constant M0such thatfor all n and i.Then,strongly inas n→∞.This completes the proof of Lemma 4.8.

    Proof of Theorem 1.2By Lemma 4.8,there exists a(PS)βλi-sequence{un}?infor Iλand each 1 ≤ i≤ k.As Iλsatisfies the(PS)β-condition forfrom(4.16),then Iλhas at least k critical points in N?for 0< λ < Λ?.It follows that problem(1.1)has k nonnegative solutions inApplying the strong maximum principle,problem(1.1)has at least k positive solutions.Combining with Proposition 3.2,we complete the proof of Theorem 1.2.

    [1]Ambrosetti A,Azorero J G,Peral I.Elliptic variational problems in RNwith critical growth.J DiffEqu,2000,168:10–32.

    [2]Ambrosetti A,Brézis H,Cerami G.Combined effects of concave and convex nonlinearities in some elliptic problems.J Funct Anal,1994,122:519–543

    [3]Bahri A,Li Y Y.On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN.Rev Mat Iberoam,1990,6:1–15

    [4]Brézis H,Nirenberg L.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm Pure Appl Math,1983,36:437–477

    [5]Brézis H,Nirenberg L.A minimization problem with critical exponent and nonzero data//Symmetry in Nature.Scuola Normale Superiore Pisa,1989,I:129–140

    [6]Brown K J,Zhang Y P.The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function.J DiffEqu,2003,193:481–499

    [7]Cao D M,Chabrowski J.Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity.DiffInteg Equ,1997,10:797–814

    [8]Cao D M,Li G B,Zhou H S.Multiple solution for nonhomogeneous elliptic with critical sobolev exponent.Proc Roy Soc Edinburgh Sect A,1994,124:1177–1191

    [9]Cao D M,Peng S J,Yan S S.In finitely many solutions for p-Laplacian equation involving critical Sobolev growth.J Funct Anal,2012,262:2861–2902

    [10]Cao D M,Zhou H S.Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN.Proc Roy Soc Edinburgh Sect A,1996,126:443–463

    [11]Cerami G,Zhong X X,Zou W M.On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem.Calc Var Partial DiffEqu,2015,54:1793–1829

    [12]Chen Y P,Chen J Q.Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity.Nonlinear Anal,2016,130:121–137

    [13]Clapp M,del Pino M,Musso M.Multiple solutions for a non-homogeneous elliptic equation at the critical exponent.Proc Roy Soc Edinburgh Sect A,2004,134:69–87

    [14]Drábek P,Huang Y X.Multiplicity of positive solutions for some quasilinear elliptic equation in RNwith critical Sobolev exponent.J DiffEqu,1997,140:106–132

    [15]Du Y H,Guo Z M.Finite Morse index solutions of weighted elliptic equations and the critical exponents.Calc Var Partial DiffEqu,2015,54:3161–3181

    [16]Ghoussoub N,Yuan C.Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents.Trans Amer Math Soc,2000,352:5703–5743

    [17]Guo Z Y.Ground states for a nonlinear elliptic equation involving multiple Hardy-Sobolev rritical exponents.Adv Nonlinear Stud,2016,16:333–344

    [18]Hirano N,Kim W S.Multiple existence of solutions for a nonhomogeneous elliptic problem with critical exponent on RN.J DiffEqu,2010,249:1799–1816

    [19]Hirano N,Micheletti A M,Pistoia A.Multiple exitence of solutions for a nonhomogeneous elliptic problem with critical exponent on RN.Nonlinear Anal,2006,65:501–513

    [20]Huang Y S.Multiple positive solutions of nonhomogeneous equations involving the p-Laplacian.Nonlinear Anal,2001,43:905–922

    [21]Hsu T S,Lin H L.Three positive solutions for semilinear elliptic problems involving concave and convex nonlinearities.Proc Roy Soc Edinburgh Sect A,2012,142:115–135

    [22]Korman P.On uniqueness of positive solutions for a class of semilinear equations.Discrete Contin Dyn Syst,2002,8:865–871

    [23]Lan Y Y,Tand C L.Perturbation methods in semilinear elliptic problems involving critical Hardy-Sobolev exponent.Acta Mathematica Scientia,2014,34B:703–712

    [24]Li T X,Wu T F.Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent.J Math Anal Appl,2010,369:245–257

    [25]Liao F F,Yang M H,Tang C L.The existence a second positive solution of a class of elliptic equations with concave and convex nonlinearities with a critical exponent(Chinese).J Southwest Univ,2012,34:83–86

    [26]Liao J F,Liu J,Zhang P,Tang C L.Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent.Ann Pol Math,2016,116:273–292

    [27]Liao J F,Liu J,Zhang P,Tang C L.Existence and multiplicity of positive solutions for a class of elliptic equations involving critical Sobolev exponents.RACSAM,2016,110:483–501

    [28]Lin H L.Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent.Nonlinear Anal,2012,75:2660–2671

    [29]Liu X Q,Liu J Q,Wang Z Q.Quasilinear elliptic equations with critical growth via perturbation method.J DiffEqu,2013,254:102–124

    [30]Naito Y,Sato T.Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent.Ann Mat Pura Appl,2012,191:25–51

    [31]Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations//Regional Conference Series in Mathematics.American Mathematical Society,1986

    [32]Rudin W.Real and complex analysis.New York,London etc:McGraw-Hill,1966

    [33]Song Y Y,Wu X P,Tang C L.Multiple positive solutions for Robin problem involving critical weighted Hardy-Sobolev exponents with boundary singularities.J Math Anal Appl,2014,414:211–236

    [34]Struwe M.Variational Methods(second edition).Berlin,Heidelberg:Springer-Verlag,1996

    [35]Tang M.Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities.Proc Roy Soc Edinburgh Sect A,2003,133:705–717

    [36]Tarantello G.On nonhomogeneous elliptic equations involving critical Sobolev exponent.Ann Inst H Poincare Anal Non Lineaire,1992,9:281–304

    [37]Tarantello G.Multiplicity results for an inhomogeneous Neumann problem with critical exponent.Manuscripta Math,1993,18:57–78

    [38]Wu T F.On semilinear elliptic equation involving concave-convex nonlinearities and sign-changing weight function.J Math Anal Appl,2006,318:253–270

    [39]Wu T F.On the semilinear elliptic equation involving critical exponent and sign-changing weight function.Commun Pure Appl Anal,2008,7:383–405

    [40]Wu T F.Three positive solutions for Dirichlet problems involving critical Sobolev exponent and signchanging weight.J DiffEqu,2010,249:1549–1578

    [41]Zhang J,Ma S W.In finitely many sign-changing solutions for the Brézis-Nirenberg problem involving Hardy potential.Acta Mathematica Scientia,2016,36B:527–536

    [42]Zhang Z.On ground state solutions for quasilinear elliptic equations with a general nonlinearity in the critical growth.J Math Anal Appl,2013,401:232–241

    猜你喜歡
    春雷
    學術中堅李春雷
    西部學刊(2024年5期)2024-03-27 08:57:02
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    明 祝允明 行草書春雷札
    中國書法(2023年5期)2023-09-06 10:00:45
    A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
    THE EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR CHERN-SIMONS-SCHR ?DINGER SYSTEMS WITH A STEEP WELL POTENTIAL*
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature?
    豐 碑
    春雷
    国产一区有黄有色的免费视频| 久久久久性生活片| av在线老鸭窝| 亚洲成人av在线免费| 日日啪夜夜撸| 亚洲精品国产色婷婷电影| 欧美成人一区二区免费高清观看| 亚洲精品中文字幕在线视频 | 精品久久国产蜜桃| 在现免费观看毛片| 精品一区二区三卡| 全区人妻精品视频| 亚洲美女视频黄频| 卡戴珊不雅视频在线播放| 国产精品国产三级国产专区5o| 日韩电影二区| 国内少妇人妻偷人精品xxx网站| www.色视频.com| 男男h啪啪无遮挡| 亚洲成人一二三区av| 亚洲人成网站在线观看播放| 日日啪夜夜撸| 国产精品精品国产色婷婷| 男人爽女人下面视频在线观看| 免费黄网站久久成人精品| 高清视频免费观看一区二区| 大话2 男鬼变身卡| 日本猛色少妇xxxxx猛交久久| 最近手机中文字幕大全| 伊人久久国产一区二区| 国产av码专区亚洲av| 精品国产三级普通话版| 大片免费播放器 马上看| 美女视频免费永久观看网站| 成人免费观看视频高清| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 亚洲av不卡在线观看| 久久久久久久久久成人| 男女下面进入的视频免费午夜| 舔av片在线| 日日摸夜夜添夜夜爱| 18禁在线播放成人免费| 日韩大片免费观看网站| 亚洲自偷自拍三级| 国产精品av视频在线免费观看| 国产亚洲91精品色在线| 免费大片18禁| 一本久久精品| 美女高潮的动态| 国产大屁股一区二区在线视频| 另类亚洲欧美激情| 网址你懂的国产日韩在线| 永久免费av网站大全| eeuss影院久久| 自拍欧美九色日韩亚洲蝌蚪91 | av在线蜜桃| 亚洲精品成人久久久久久| 亚洲av免费在线观看| 久久97久久精品| 在线免费观看不下载黄p国产| 午夜精品国产一区二区电影 | 亚洲欧美精品专区久久| 亚洲成人中文字幕在线播放| 亚洲综合色惰| 久久久精品94久久精品| 国产亚洲最大av| 毛片一级片免费看久久久久| 六月丁香七月| 久久精品夜色国产| 国产欧美日韩一区二区三区在线 | 精品熟女少妇av免费看| 国产亚洲5aaaaa淫片| 免费av毛片视频| 久久久精品94久久精品| 一区二区三区乱码不卡18| 狂野欧美激情性bbbbbb| 极品少妇高潮喷水抽搐| 两个人的视频大全免费| 深爱激情五月婷婷| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 国产精品一及| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 男的添女的下面高潮视频| 国产成人福利小说| 国产视频内射| 成年版毛片免费区| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 一级毛片aaaaaa免费看小| 国产乱人视频| 亚洲,一卡二卡三卡| 国产欧美日韩一区二区三区在线 | 99热6这里只有精品| 欧美高清成人免费视频www| 久久久午夜欧美精品| 青春草亚洲视频在线观看| 美女高潮的动态| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 精品久久久精品久久久| 亚洲av中文字字幕乱码综合| 3wmmmm亚洲av在线观看| 久久国内精品自在自线图片| 国产成人午夜福利电影在线观看| 亚洲成人中文字幕在线播放| 国产精品熟女久久久久浪| 日韩电影二区| 美女主播在线视频| 国产在视频线精品| 人妻一区二区av| eeuss影院久久| videossex国产| 国产精品麻豆人妻色哟哟久久| 身体一侧抽搐| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| tube8黄色片| 香蕉精品网在线| 噜噜噜噜噜久久久久久91| 久久久精品94久久精品| av卡一久久| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线播| 中文字幕久久专区| 久久久久久久久久久免费av| 午夜福利网站1000一区二区三区| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 亚洲av一区综合| 老司机影院成人| 嘟嘟电影网在线观看| 大又大粗又爽又黄少妇毛片口| 99久久九九国产精品国产免费| 中文天堂在线官网| 亚洲精品乱久久久久久| 一二三四中文在线观看免费高清| 中文在线观看免费www的网站| 身体一侧抽搐| 69av精品久久久久久| videos熟女内射| 两个人的视频大全免费| 欧美性感艳星| 国产 一区 欧美 日韩| 我的老师免费观看完整版| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片| 色网站视频免费| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 国产精品爽爽va在线观看网站| 国产精品久久久久久精品古装| 成人亚洲欧美一区二区av| 在线观看三级黄色| 久久99热6这里只有精品| 99久久九九国产精品国产免费| 黑人高潮一二区| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 欧美少妇被猛烈插入视频| 日本黄色片子视频| 成年女人看的毛片在线观看| 国精品久久久久久国模美| 观看免费一级毛片| 久久99精品国语久久久| 国产在视频线精品| 人人妻人人看人人澡| 在线观看一区二区三区| 国产成人aa在线观看| 看免费成人av毛片| 一级毛片电影观看| 亚洲国产精品国产精品| freevideosex欧美| 丰满少妇做爰视频| 欧美日本视频| 色吧在线观看| 超碰97精品在线观看| 亚洲av二区三区四区| 九色成人免费人妻av| 热re99久久精品国产66热6| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂 | 国产精品.久久久| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 男人添女人高潮全过程视频| 少妇人妻一区二区三区视频| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 亚洲精品乱久久久久久| 中文字幕制服av| 午夜福利在线观看免费完整高清在| 精品一区在线观看国产| 国产乱人偷精品视频| 国产黄色免费在线视频| 大香蕉97超碰在线| 大香蕉久久网| av一本久久久久| 午夜精品国产一区二区电影 | 18禁裸乳无遮挡免费网站照片| 欧美变态另类bdsm刘玥| 免费av毛片视频| 人妻系列 视频| 国产男女超爽视频在线观看| 一级毛片久久久久久久久女| 日韩视频在线欧美| 精品人妻视频免费看| 久久久久九九精品影院| 日韩成人伦理影院| 啦啦啦在线观看免费高清www| 国产69精品久久久久777片| 最近中文字幕2019免费版| 91久久精品国产一区二区三区| 日本三级黄在线观看| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 国产毛片在线视频| 国产av不卡久久| 特大巨黑吊av在线直播| 国产亚洲5aaaaa淫片| 日韩免费高清中文字幕av| 国产成人一区二区在线| 精品久久久久久久久av| 涩涩av久久男人的天堂| 日本色播在线视频| 51国产日韩欧美| 三级经典国产精品| av一本久久久久| 国产大屁股一区二区在线视频| 久久99蜜桃精品久久| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 精品一区在线观看国产| 免费黄频网站在线观看国产| 亚洲精品日韩av片在线观看| 国产人妻一区二区三区在| 久热这里只有精品99| 在线观看av片永久免费下载| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 欧美精品一区二区大全| 欧美成人一区二区免费高清观看| 亚洲无线观看免费| 黑人高潮一二区| 在线亚洲精品国产二区图片欧美 | 久久久久久久国产电影| 国产一区二区三区av在线| 在线免费十八禁| av天堂中文字幕网| av国产精品久久久久影院| 久久这里有精品视频免费| 亚洲综合色惰| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| 欧美成人a在线观看| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 天堂中文最新版在线下载 | 亚洲精品一二三| 成人亚洲精品一区在线观看 | 熟女电影av网| 啦啦啦在线观看免费高清www| 丝袜脚勾引网站| av在线老鸭窝| 麻豆久久精品国产亚洲av| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 国产精品国产av在线观看| 国产女主播在线喷水免费视频网站| 国产亚洲91精品色在线| 麻豆精品久久久久久蜜桃| 不卡视频在线观看欧美| 精品久久久久久电影网| 春色校园在线视频观看| 在线观看一区二区三区激情| 永久免费av网站大全| av在线天堂中文字幕| 婷婷色av中文字幕| 国产成人freesex在线| 国产精品秋霞免费鲁丝片| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载 | 国产69精品久久久久777片| 国产精品一区二区在线观看99| 搡女人真爽免费视频火全软件| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 汤姆久久久久久久影院中文字幕| 日本爱情动作片www.在线观看| 亚洲久久久久久中文字幕| 日韩av在线免费看完整版不卡| 天天躁日日操中文字幕| 亚洲精品一二三| 五月玫瑰六月丁香| 熟妇人妻不卡中文字幕| 亚洲精品亚洲一区二区| 女人十人毛片免费观看3o分钟| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 欧美日韩精品成人综合77777| 国产高清国产精品国产三级 | 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 国产精品99久久久久久久久| 国产成年人精品一区二区| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 日韩av免费高清视频| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 亚洲自偷自拍三级| 99热这里只有是精品在线观看| 在线天堂最新版资源| av卡一久久| 大香蕉久久网| 国产精品久久久久久av不卡| av福利片在线观看| 精品久久久精品久久久| av天堂中文字幕网| 亚洲综合精品二区| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 日本免费在线观看一区| videossex国产| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 亚洲在久久综合| 在线观看国产h片| 日韩欧美一区视频在线观看 | 亚洲国产av新网站| av线在线观看网站| 色吧在线观看| 欧美一级a爱片免费观看看| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 韩国高清视频一区二区三区| 国产精品成人在线| 香蕉精品网在线| av免费观看日本| 国产v大片淫在线免费观看| 欧美日韩视频精品一区| 久久久久久久国产电影| 精品久久久久久电影网| av在线老鸭窝| 国产黄a三级三级三级人| 久久精品熟女亚洲av麻豆精品| 国产国拍精品亚洲av在线观看| 日本一本二区三区精品| 少妇的逼好多水| 成年女人在线观看亚洲视频 | 在线精品无人区一区二区三 | 91精品国产九色| 日本色播在线视频| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩| 国产欧美日韩一区二区三区在线 | 成人美女网站在线观看视频| 少妇的逼好多水| av专区在线播放| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 久久ye,这里只有精品| 午夜免费观看性视频| 有码 亚洲区| 80岁老熟妇乱子伦牲交| 一级二级三级毛片免费看| 国产成人一区二区在线| 欧美激情在线99| 九草在线视频观看| 男男h啪啪无遮挡| 老司机影院毛片| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 亚洲va在线va天堂va国产| 亚洲国产高清在线一区二区三| 免费观看的影片在线观看| 插逼视频在线观看| 国产精品久久久久久精品电影小说 | 久久精品国产a三级三级三级| av国产免费在线观看| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 国产久久久一区二区三区| 少妇人妻 视频| 欧美极品一区二区三区四区| 成人国产麻豆网| 在线亚洲精品国产二区图片欧美 | 久久久a久久爽久久v久久| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 亚洲av福利一区| 午夜免费观看性视频| 激情 狠狠 欧美| 亚洲无线观看免费| 国产av国产精品国产| 国产精品一区二区在线观看99| 一区二区三区乱码不卡18| 寂寞人妻少妇视频99o| 国产精品一区www在线观看| 久久久午夜欧美精品| 亚洲精品中文字幕在线视频 | 三级经典国产精品| 99久国产av精品国产电影| 欧美精品一区二区大全| 色视频www国产| 少妇被粗大猛烈的视频| av黄色大香蕉| 欧美三级亚洲精品| 偷拍熟女少妇极品色| av专区在线播放| 色吧在线观看| 中文字幕免费在线视频6| 蜜臀久久99精品久久宅男| 色婷婷久久久亚洲欧美| .国产精品久久| 久久6这里有精品| 日日摸夜夜添夜夜添av毛片| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 最近2019中文字幕mv第一页| 免费观看在线日韩| 国产成人免费无遮挡视频| 人妻一区二区av| 精品一区在线观看国产| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 最近的中文字幕免费完整| 人妻夜夜爽99麻豆av| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| 国产乱人偷精品视频| 人妻 亚洲 视频| 亚洲国产欧美人成| 国产一区二区三区综合在线观看 | av在线app专区| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 免费观看无遮挡的男女| 制服丝袜香蕉在线| 天堂俺去俺来也www色官网| 精品国产三级普通话版| 国产探花在线观看一区二区| 久久影院123| 日韩,欧美,国产一区二区三区| 午夜老司机福利剧场| 亚洲av欧美aⅴ国产| 亚洲成人一二三区av| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕久久专区| 亚洲av一区综合| 国产男女超爽视频在线观看| 国产精品99久久99久久久不卡 | 久久精品熟女亚洲av麻豆精品| av在线天堂中文字幕| 亚洲色图av天堂| 色婷婷久久久亚洲欧美| 亚洲自拍偷在线| 国产乱人偷精品视频| 国产男女内射视频| 十八禁网站网址无遮挡 | 久久97久久精品| 亚洲电影在线观看av| 国产精品99久久99久久久不卡 | 秋霞伦理黄片| 亚洲欧美日韩卡通动漫| 三级国产精品欧美在线观看| 人妻系列 视频| 亚洲美女视频黄频| av专区在线播放| 啦啦啦中文免费视频观看日本| 夜夜看夜夜爽夜夜摸| 国产黄色视频一区二区在线观看| 日韩中字成人| 亚洲图色成人| 草草在线视频免费看| 狂野欧美激情性bbbbbb| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 亚洲成人久久爱视频| 三级国产精品欧美在线观看| 一本一本综合久久| 成年女人看的毛片在线观看| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 国产成人a∨麻豆精品| 日本黄大片高清| 国产视频内射| 色吧在线观看| 国产成人一区二区在线| 日本一二三区视频观看| 国产精品无大码| 老女人水多毛片| 亚洲av电影在线观看一区二区三区 | 国产 一区精品| 国产大屁股一区二区在线视频| 激情 狠狠 欧美| 亚洲成人av在线免费| 亚洲精品第二区| 精品久久久久久电影网| 亚洲精华国产精华液的使用体验| videossex国产| 亚洲av国产av综合av卡| 又爽又黄a免费视频| 国产高清国产精品国产三级 | 一本色道久久久久久精品综合| 尾随美女入室| 午夜福利视频精品| 一个人看的www免费观看视频| 国模一区二区三区四区视频| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区 | 99精国产麻豆久久婷婷| 久久午夜福利片| 国内精品美女久久久久久| 香蕉精品网在线| 2018国产大陆天天弄谢| 99久久九九国产精品国产免费| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 精品一区二区三卡| 免费大片18禁| 免费大片黄手机在线观看| 天天躁日日操中文字幕| 伦理电影大哥的女人| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 久久久久久久午夜电影| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 日本一本二区三区精品| 高清av免费在线| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 亚洲无线观看免费| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 国产老妇女一区| 国产片特级美女逼逼视频| 亚洲精品日韩在线中文字幕| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 久久99热这里只频精品6学生| 国产精品.久久久| 亚洲国产最新在线播放| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 久久ye,这里只有精品| 一级毛片黄色毛片免费观看视频| 建设人人有责人人尽责人人享有的 | 一区二区三区精品91| 丝袜喷水一区| 久久97久久精品| 亚洲精品亚洲一区二区| 国产综合懂色| 亚洲av一区综合| 中文天堂在线官网| 尤物成人国产欧美一区二区三区| 一级二级三级毛片免费看| 大话2 男鬼变身卡| 欧美成人午夜免费资源| 国产精品精品国产色婷婷| 国产成人精品久久久久久| 熟妇人妻不卡中文字幕| 久久影院123| av在线蜜桃| 直男gayav资源| 免费大片18禁| 久久久久久九九精品二区国产| 高清在线视频一区二区三区| 综合色丁香网| 日韩人妻高清精品专区| 久久久a久久爽久久v久久| 久久6这里有精品| 国产精品久久久久久av不卡| 一级av片app| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 97超视频在线观看视频| 联通29元200g的流量卡| 搡老乐熟女国产| 女人久久www免费人成看片| 日本欧美国产在线视频| 国产精品成人在线| 国产日韩欧美亚洲二区| 夫妻午夜视频| 特级一级黄色大片| 亚洲高清免费不卡视频| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 亚洲国产av新网站| 秋霞伦理黄片|