• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature?

    2021-10-28 07:02:06MengyangQu屈孟楊BoZhou周波andChunleiWang王春雷
    Chinese Physics B 2021年10期
    關(guān)鍵詞:周波春雷

    Mengyang Qu(屈孟楊) Bo Zhou(周波) and Chunlei Wang(王春雷)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Electronic Engineering,Chengdu Technological University,Chengdu 611730,China

    4Zhangjiang Laboratory,Interdisplinary Research Center,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    Keywords: wetting,work of adhesion,contact angle,water

    1. Introduction

    The wettability of materials by liquid water is fundamental to physics,chemistry,biology,and nanotechnologies.[1–13]Over the recent decades, with the development of the computer simulation[14–17]and experimental technologies,[18,19]it is possible to obtain the atomic level pictures of the water structure and hydrogen bond network near the interfaces.Utilizing these technologies, it has been revealed that water structures may show appealing ordered structures depending on the surface morphology.[20–23]Based on molecular dynamics (MD) simulations, we have predicted that water droplets coexist with the ordered water monolayer at room temperature on model surfaces, which can be termed an “ordered water monolayer that does not completely wet water”.[24,25]Similar phenomena has also been observed on surfaces of metals(such as Pd, Pt, and Al),[26–28]oxides (such as Al2O3and SiO2),[29]and talc.[30]Although the hydrogen bond number saturation of the water molecules within the water monolayer can explain this phenomenon,whether the Young equation still holds under this unconventional wetting framework is still not answered.

    From the macroscopic standpoint, the contact angle formed by a water droplet on surfaces is the manifestation of the interaction between water and surfaces. The force balance discussed by Young to describe the shape of a droplet in equilibrium on a given surface takes the following form:[31]

    whereθis the contact angle,γLVis the liquid-vapor surface tension,γSLis the solid–liquid interfacial tension, andγSVis the solid–vapor surface tension. The wetting behavior of a given solid–liquid system may also be quantified through the work of adhesionWadh, which is defined by the work of reversibly removing a given liquid in equilibrium with its vapor from a given solid through

    The combination of Eqs.(2)and(1)yields the Young–Dupr′e equation that connects the contact angle and the work of adhesion:

    Equation(3)shows a linear relationship betweenWadhand the cosine value ofθunder conditions whereγLVremains constant, indicating that the wetability of surfaces can be quantitatively predicted by the value ofWadh. By definition,Wadhequals the change in free energy per unit area during the reversible removal process, which can be accessed by calculation of the free energy through the phantom-wall[32–34]and dry-surface methods.[35–38]

    In this study, using an extended phantom-wall approach,we have calculated theWadhbetween liquid water and ordered water monolayer on different solid surfaces. For each interface,there is a linear relationship betweenWadhand the cosine values of the contact angle of droplets formed on the ordered water monolayer,which can be well fitted by Eq.(3). The results show that the Young–Dupr′e equation is also applicable for the interface of liquid water and ordered water monolayer,which gives a quantitative description of the unexpected phenomenon of “water that does not wet a water monolayer” at room temperature.

    2. Methods

    Three types of model surfaces were employed in this study. The first two types of model surfaces have a planar hexagonal structure of neighboring bond lengths of 0.142 nm consistent with that in Ref. [25]. We will refer to these types of surfaces as Hexa surfaces. For the type-1 Hexa surfaces, the Lennard–Jones parameters of atoms were set asσ= 0.3343 nm andε= 0.4393 kJ/mol. Positive and negative charges of the same magnitudeqwere assigned to the atoms located diagonally in neighboring hexagons as shown in Fig. 1(a). Hexa surfaces with different charges,q=1.0 e for Hexa-1,q=0.8 e for Hexa-2 andq=0.6 e for Hexa-3,were used, as shown in Table 1. As for the type-2 Hexa surfaces,the atoms were set as uncharged as shown in Fig.1(b),and the Lennard–Jones parameters of the atoms were set asσ= 0.3549 nm andε= 0.1595 kJ/mol for Hexa-4,ε=0.2363 kJ/mol for Hexa-5 andε=0.3426 kJ/mol for Hexa-6,as shown in Table 1. The type-3 model surfaces have a Fcc lattice with the (100) plane exposed to the liquid as shown in Fig. 1(c). We will refer to this type of surfaces as Fcc surfaces. The atoms of the Fcc-surface were modeled as uncharged Lennard–Jones particles,and the lattice constants and Lennard–Jones parameters are shown in Table 2.

    Fig. 1. (a) Geometry of the type-1 surfaces. Blue and red spheres represent the atoms of the solid with positive and negative charges,respectively, while the cyan spheres represent neutral solid atoms. (b) Geometry of the type-2 surfaces. The atoms of the solid were set as uncharged. (c)Geometry of the type-3 surfaces.

    Table 1. List of the lattice constants and Lennard–Jones parameters of Hexa surfaces.

    Table 2. List of the lattice constants and Lennard–Jones parameters of Fcc surfaces.

    For each surface,we performed two series of simulations.To calculate the contact angles of water droplets,we employed cylindrical droplet equilibrium systems to avoid the line tension problem.[34,39]Initially, the size of surfaces were set as 3.44 nm×10.22 nm for Hexa surfaces,3.89 nm×11.67 nm for Fcc-1,and 3.92 nm×11.76 nm for Fcc-2 with a rectangle water droplet containing 2000 water molecules on the surfaces.The periodic boundary conditions were set in thexandydirections and the mirror boundary condition was employed in thezdirection. The height of the simulation box was set to 20 nm. To calculate theWadh, the sizes of surfaces were set as 3.44 nm×3.41 nm for Hexa surfaces, 3.89 nm×3.89 nm for Fcc-1,and 3.92 nm×3.92 nm for Fcc-2,with a water film thickness of about 10 nm next to the surfaces. Periodic boundary conditions were applied in all directions and the height of the simulation box was set to 50 nm.

    The MD simulations were performed at constant volume and constant temperature(NVT)using the Gromacs 5.0.7 package.[40]The temperature was maintained at 300 K by Vrescale method with a coupling coefficient of 0.1 ps. All of the surface structures were kept fixed during the simulation.The rigid extended simple point charge (SPC/E) model[41]was used to describe the water molecules. The particle-mesh Ewald method[42]with a real space cutoff of 1 nm was used to treat long-range electrostatic interactions and 1 nm cutoff was applied to the van der Waals interactions. Specifically, our model specified a hydrogen bond between water molecules if the O–O distance was less than 3.5 °A and simultaneously the angle H–O...O was less than 30°.

    3. Results and discussion

    We have performed MD simulations to study the wetting behaviors of liquid water on different surfaces.Initially,a rectangle water droplet was placed on each surface. After 20-ns simulation, all of the systems for Hexa-1–3 and Fcc surfaces exhibit a cylindrical water droplet coexisting with the spread water monolayer on the surface, as shown in Figs. 2(a) and 2(b). This has been termed as room temperature“ordered water monolayer that does not completely wet water”. In contrast, there are cylindrical water droplets directly contacting with the surfaces in the systems of Hexa-4,Hexa-5,and Hexa-6 surfaces as shown in Fig.2(c).

    To obtain the contact angles,the density distribution profiles of the droplets are firstly calculated. The regions with half bulk water density (0.45 g/cm3–0.55 g/cm3) are defined as the edges of the droplets. The edges are then fitted with circular shapes. The contact anglesθare measured from where the fitted circular arcs meet the water monolayer or surfaces.We determine the thickness of the water monolayer based on the water density profiles near the surfaces. The water density profiles as a function of the distance normal to the surfaces are shown in Fig.2(d),where profiles exhibiting prominent peaks,indicating the dense water monolayer near the surfaces. We thus determine the thickness of the water monolayer on different surfaces based on the location of the first valley of the density profiles, where the thicknessδ=0.4 nm for Fcc surfaces and Hexa-1,andδ=0.5 nm for Hexa-2 and Hexa-3.

    Fig.2.Side view of droplet coexist with the spread ordered water monolayer on (a) Hexa-1 to Hexa-3 and (b) Fcc surfaces. (c) Side view of droplet on Hexa-4 to Hexa-6 surfaces without the ordered water monolayer. (d)Water density distributions on Hexa-1 to Hexa-3 and Fcc surfaces, ?Z means the vertical distance to the surface.

    Previous studies[24,25]attributed this unexpected phenomenon to the ordered structure of the water monolayer,which greatly enhances the numbers of H-bonds inside the monolayer and reduces the numbers of H-bonds between the water molecules inside the monolayer and other molecules.Thus,the fewer H-bonds number between the water molecules inside the monolayer and other molecules, the larger contact angles. Here,we have calculated the hydrogen bonds number between the water molecules inside the monolayer and other molecules. Here, the contact angle of the water droplets is inconsistent with the number of H-bonds between the monolayer and the droplet. As shown in Fig. 3, the number of Hbond per water molecule in the monolayer formed with the water molecules in the droplet on Fcc-1 and Fcc-2 surfaces are lower than that on Hexa-1 surface, nevertheless, the contact angle of droplet on Hexa-1 surface is larger than that on Fcc-1 and Fcc-2 surfaces.

    Fig.3. Cosine values of contact angles θ of droplets versus H-bond numbers per water molecule in the monolayer formed with the water molecules in the droplet on Hexa-1 to Hexa-3 and Fcc-1 to Fcc-2 surfaces.

    Fig.4. Schematic representation of the phantom-wall method.

    We then calculate the work of adhesionWadhby employing an extended phantom-wall method. Details of the phantom-wall method can be found in the previous works[32,34]and are only briefly described here. In the phantom-wall method,a phantom-wall,which only has repulsive interactions with the water molecules is progressively displaced in the direction normal to the surface,while there is no interaction between the phantom wall and surface atoms. To control the position of the phantom-wall,a harmonic spring is attached in the direction normal to the surface, between each phantom-wall and the bottom of the simulation box. At the beginning, the phantom wall is controlled below the surface,where it cannot interact with water molecules since the distance between it and the water molecules is beyond the cutoff distance of the repulsive potential. The phantom wall is then slowly pushed up, by increasing the equilibrium length of the harmonic spring, such that it brings water molecules beyond the range of interaction of the surface, as shown in Fig. 4. The free-energy difference between the initial and final states,which equals to adhesion workWadhbetween water and the surface, can be calculated by numerically integrating the spring force over the equilibrium spring length along a reversible path.

    Fig.5. Snapshots of steps to separate the liquid water away from the surfaces(a)with and(b)without ordered water monolayer by increasing the equilibrium spring length in the extended phantom-wall method. The calculated spring force〈f〉as a function of the increased equilibrium spring length Z0 for surfaces(c)with and(d)without ordered water monolayer.

    However,this approach cannot be applied to calculate theWadhbetween liquid water and ordered water monolayer,since the water monolayer may also be brought away from the surface by the phantom-wall. We have extended the phantomwall method to calculate theWadhbetween liquid water and ordered water monolayer. In the extended method,we directly control the position of the mass center of the water by attaching a harmonic spring between the mass center and the bottom of the simulation box using the pull code of Gromacs 5.0.7 package,[40]instead of utilizing a phantom-wall. The equilibrium length of the harmonic spring is increased step by step,as a result, the water molecules above the water monolayer was gradually separated from the surface, while the water monolayer remained on the surface due to the strong interaction between the first adsorbed water monolayer and surfaces. Each step is equilibrated for 8 ns to get the reversible path. Therefore, the free-energy difference between the initial and final states in this process exactly equals to theWadhbetween liquid water and the water monolayer.The simulation conditions and interaction parameters of the Hexa-4 to Hexa-6 surfaces and water molecules were set consistent with those in Ref. [37].TheWadhcalculated by the extended phantom-wall method is 50.234 mJ/m2for Hexa-4, 67.345 mJ/m2for Hexa-5, and 82.645 mJ/m2for Hexa-6,respectively,which is very close to the results,53 mJ/m2,63 mJ/m2,85 mJ/m2using dry-surface approach provided in Ref.[37],thus proved the correctness of the extended phantom-wall method.

    To give a quantitative description of this unexpected wetting phenomenon of “ordered water monolayer that does not completely wet water” at room temperature, we have calculated theWadhof interfaces with or without ordered water monolayer by the extended phantom-wall method.We took 25 steps for each surface to separate the liquid water away from the monolayer or surfaces, increasing the equilibrium spring length every 0.05 nm. Each step is equilibrated for 8 ns. Snapshots of steps on separating the liquid water away from the monolayer are shown in Fig.5(a).As we can see,for interfaces with ordered water monolayer(Hexa-1 to Hexa-3 and Fcc surfaces)the liquid water was firstly partly separated and finally separated from the surfaces by the harmonic spring,while the position of the ordered water monolayer keeps unchanged due to the strong interaction between the surfaces and the monolayer. Different from Hexa-1 to Hexa-3 and Fcc surfaces, for the interfaces without ordered water monolayer (Hexa-4 to Hexa-6 surfaces), all of the water molecules above the surface, even the first adsorbed water layer was separated from the surfaces due to the weak interactions between the surfaces and water molecules above the surfaces as shown in Fig.5(b).TheWadhwas calculated by numerically integrating the spring force(f)over the increased equilibrium spring length(Z0)

    where the〈···〉stands for a statistical average. The calculated〈f〉as a function ofZ0was shown in Figs.5(c)and 5(d). All of the spring forces increase first but then decreased and reach to zero finally, indicating the completely separating of liquid water from the monolayer or surfaces without any interaction.

    Figure 6 plots the cosine values of contact anglesθ versustheWadhfor both interfaces with or without ordered water monolayer. There is a linear relation between theWadhand the cosine values of contact angles, which can be well fitted by Young–Dupr′e equation as Eq. (3). Here, we adopt the value ofγLV≈60 mJ/m2for SPC/E water model given by Vegaet al.[43]This means that the Young–Dupr′e equation holds for interfaces with or without ordered water monolayer. TheWadhbetween liquid water and ordered water monolayer can quantitatively predict the wettability of the ordered water monolayer even on different types of surfaces,consistent with the solid–liquid interfaces. These results give a quantitative description of the unexpected phenomenon of “ordered water monolayer that does not completely wet water”.

    Fig. 6. Cosine values of contact angles θ of droplets versus the work of adhesion Wadh for interfaces with or without ordered water monolayer.

    4. Conclusions

    Based on an extended phantom-wall method,we have calculated the work of adhesion for interfaces with or without ordered water monolayer. The results show that the Young–Dupr′e equation holds on the solid surface with the ordered water monolayer, and give a quantitative description of the unexpected phenomenon of “ordered water monolayer that does not completely wet water” at room temperature. This study indicates that we should treat the water monolayer as part of the solid surface when we consider the Young equation in those novel wetting systems. The present study deepens the physical mechanism behind the wetting behavior, which would have implications in the actual fabrication of novel material for water treatment, surface catalysis and self-cleaning of surfaces.[44,45]

    Acknowledgment

    The MD simulations were performed with the Deepcomp7000 and ScGrid of the Supercomputing Center, the Computer Network Information Center of the Chinese Academy of Sciences,and the Shanghai Supercomputer Center of China.

    猜你喜歡
    周波春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    A Note on the Distance Signless Laplacian Spectral Radius
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    豐 碑
    太空種植基地
    春雷
    春雷乍響活驚蟄
    間諧波對(duì)全周波傅里葉算法影響研究
    磚頭砸進(jìn)窨井里
    故事會(huì)(2015年2期)2015-02-26 01:10:34
    你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 久久精品久久精品一区二区三区| 婷婷色综合www| 天堂俺去俺来也www色官网| 久久久久久久亚洲中文字幕| 亚洲av日韩在线播放| 国产精品无大码| 777米奇影视久久| 9191精品国产免费久久| 国产在线一区二区三区精| 免费在线观看完整版高清| a级毛片在线看网站| 精品午夜福利在线看| 精品国产国语对白av| 妹子高潮喷水视频| 不卡视频在线观看欧美| 最黄视频免费看| 视频中文字幕在线观看| 久久99热6这里只有精品| 久久久精品免费免费高清| 久久人妻熟女aⅴ| 美女国产视频在线观看| 一本大道久久a久久精品| 亚洲图色成人| 免费观看av网站的网址| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 丝瓜视频免费看黄片| 九草在线视频观看| 亚洲国产精品专区欧美| 欧美人与性动交α欧美软件 | 黄片无遮挡物在线观看| 日本av手机在线免费观看| 国产日韩欧美视频二区| 久久毛片免费看一区二区三区| 母亲3免费完整高清在线观看 | 伦理电影免费视频| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 大香蕉久久成人网| av在线播放精品| 国产一级毛片在线| videosex国产| 最近最新中文字幕免费大全7| 亚洲婷婷狠狠爱综合网| 久久久久久久亚洲中文字幕| 男女边摸边吃奶| 男女高潮啪啪啪动态图| 亚洲精品中文字幕在线视频| 国产精品.久久久| 最新中文字幕久久久久| 性色avwww在线观看| 久久精品国产a三级三级三级| 性高湖久久久久久久久免费观看| av片东京热男人的天堂| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 观看美女的网站| 欧美3d第一页| 亚洲中文av在线| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成av片中文字幕在线观看 | 亚洲国产av影院在线观看| 久久韩国三级中文字幕| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 精品国产一区二区久久| 老司机影院成人| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 久久久久人妻精品一区果冻| 欧美成人精品欧美一级黄| 国产一区二区三区综合在线观看 | av在线老鸭窝| 久久99一区二区三区| 少妇的逼好多水| 熟女人妻精品中文字幕| 国产毛片在线视频| 国产 一区精品| 亚洲色图综合在线观看| 男女午夜视频在线观看 | a级毛色黄片| 深夜精品福利| 亚洲伊人久久精品综合| 下体分泌物呈黄色| 尾随美女入室| 国产麻豆69| av国产久精品久网站免费入址| videos熟女内射| 亚洲第一区二区三区不卡| 亚洲综合色网址| 九色亚洲精品在线播放| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 热99久久久久精品小说推荐| 久久99精品国语久久久| 亚洲成人手机| 日韩一区二区视频免费看| 男女边摸边吃奶| 在线观看美女被高潮喷水网站| 成人二区视频| 精品国产一区二区三区久久久樱花| 精品午夜福利在线看| 国产黄色视频一区二区在线观看| 亚洲成av片中文字幕在线观看 | 高清av免费在线| 欧美xxxx性猛交bbbb| 国产不卡av网站在线观看| 亚洲少妇的诱惑av| 日本黄大片高清| 国产片内射在线| 久久久精品区二区三区| 女人久久www免费人成看片| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 这个男人来自地球电影免费观看 | √禁漫天堂资源中文www| 99热全是精品| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 黄网站色视频无遮挡免费观看| 国产在线视频一区二区| 日本wwww免费看| 欧美人与性动交α欧美软件 | 中国国产av一级| 女的被弄到高潮叫床怎么办| 满18在线观看网站| 中国国产av一级| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 免费观看性生交大片5| 18禁观看日本| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99| 亚洲成国产人片在线观看| 9热在线视频观看99| 欧美激情 高清一区二区三区| 日本午夜av视频| 9191精品国产免费久久| 热99久久久久精品小说推荐| 一区二区av电影网| 老司机影院成人| 亚洲三级黄色毛片| 大香蕉久久成人网| 99久久精品国产国产毛片| 久久精品aⅴ一区二区三区四区 | 久久人人爽人人爽人人片va| 美女视频免费永久观看网站| 亚洲欧美一区二区三区黑人 | 建设人人有责人人尽责人人享有的| 欧美激情极品国产一区二区三区 | 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 97超碰精品成人国产| av福利片在线| www日本在线高清视频| 97超碰精品成人国产| 又大又黄又爽视频免费| 99热全是精品| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 丝袜喷水一区| 最黄视频免费看| 欧美 亚洲 国产 日韩一| 亚洲欧美成人精品一区二区| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| av天堂久久9| 国产深夜福利视频在线观看| 超色免费av| 91精品国产国语对白视频| 亚洲第一av免费看| 美女主播在线视频| 最近的中文字幕免费完整| 久久久久国产网址| 激情五月婷婷亚洲| 九九爱精品视频在线观看| 亚洲国产精品一区二区三区在线| 久久97久久精品| 日韩视频在线欧美| 亚洲国产av影院在线观看| 亚洲人与动物交配视频| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 丝袜喷水一区| 最新中文字幕久久久久| 久久99热6这里只有精品| 色网站视频免费| 搡老乐熟女国产| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 99视频精品全部免费 在线| 制服人妻中文乱码| 亚洲三级黄色毛片| 亚洲av男天堂| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 午夜91福利影院| 免费看不卡的av| www.色视频.com| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频 | 国产精品久久久久久久电影| av国产精品久久久久影院| 国产成人精品一,二区| 91国产中文字幕| 国产亚洲精品久久久com| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 18禁动态无遮挡网站| 伊人亚洲综合成人网| 日日爽夜夜爽网站| 国产精品不卡视频一区二区| 亚洲综合色网址| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看 | 天美传媒精品一区二区| 赤兔流量卡办理| 亚洲综合色惰| 啦啦啦啦在线视频资源| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 日韩在线高清观看一区二区三区| 中文精品一卡2卡3卡4更新| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 精品少妇内射三级| 国产在线视频一区二区| 欧美性感艳星| 国产精品国产av在线观看| 99热网站在线观看| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 人妻人人澡人人爽人人| 大香蕉久久网| 国产精品女同一区二区软件| 考比视频在线观看| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 男女免费视频国产| 亚洲欧美清纯卡通| videosex国产| 日日摸夜夜添夜夜爱| 久热这里只有精品99| 美女国产视频在线观看| 九九爱精品视频在线观看| av在线观看视频网站免费| 中文字幕精品免费在线观看视频 | 高清欧美精品videossex| 国产探花极品一区二区| 亚洲情色 制服丝袜| 天天影视国产精品| 一本—道久久a久久精品蜜桃钙片| 国产无遮挡羞羞视频在线观看| 一本久久精品| 亚洲经典国产精华液单| 看免费av毛片| 成人午夜精彩视频在线观看| 久久久国产一区二区| 亚洲精品一区蜜桃| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 美女福利国产在线| 18禁国产床啪视频网站| 国产精品欧美亚洲77777| 乱码一卡2卡4卡精品| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 亚洲四区av| 亚洲av电影在线进入| 精品第一国产精品| 两个人免费观看高清视频| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 制服诱惑二区| 欧美丝袜亚洲另类| 一区二区三区精品91| 久久久久网色| 久久人妻熟女aⅴ| 丝袜美足系列| 亚洲精品美女久久久久99蜜臀 | 亚洲性久久影院| 色哟哟·www| videos熟女内射| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网| 22中文网久久字幕| 欧美日韩av久久| 日本免费在线观看一区| 精品国产国语对白av| 在线天堂中文资源库| 亚洲av电影在线观看一区二区三区| 亚洲三级黄色毛片| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 国产精品人妻久久久影院| 高清毛片免费看| 哪个播放器可以免费观看大片| 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看 | 青春草国产在线视频| av网站免费在线观看视频| 春色校园在线视频观看| 99国产综合亚洲精品| 男男h啪啪无遮挡| 国产精品人妻久久久久久| 一区二区av电影网| 国产 精品1| 国产成人欧美| 久久97久久精品| 午夜福利乱码中文字幕| 欧美精品人与动牲交sv欧美| 视频中文字幕在线观看| 纯流量卡能插随身wifi吗| 久久国产精品大桥未久av| 欧美性感艳星| 午夜福利视频在线观看免费| 国产精品一国产av| 我要看黄色一级片免费的| 久久99热6这里只有精品| 国产av码专区亚洲av| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美丝袜亚洲另类| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 最后的刺客免费高清国语| 日韩成人伦理影院| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 成人亚洲欧美一区二区av| 久久这里只有精品19| 五月天丁香电影| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 久热久热在线精品观看| 国产av码专区亚洲av| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线| 国产乱来视频区| 边亲边吃奶的免费视频| 少妇猛男粗大的猛烈进出视频| 国产又色又爽无遮挡免| freevideosex欧美| 王馨瑶露胸无遮挡在线观看| 捣出白浆h1v1| 97在线视频观看| 狠狠精品人妻久久久久久综合| 国产永久视频网站| 欧美日韩国产mv在线观看视频| 考比视频在线观看| 成人国产av品久久久| 久久久久视频综合| 激情视频va一区二区三区| 精品国产露脸久久av麻豆| 黄色怎么调成土黄色| 精品国产一区二区三区四区第35| 日本午夜av视频| 国产精品一区www在线观看| 欧美激情极品国产一区二区三区 | 免费人成在线观看视频色| 日韩伦理黄色片| 亚洲五月色婷婷综合| 插逼视频在线观看| 两个人看的免费小视频| 日韩电影二区| 99热国产这里只有精品6| 51国产日韩欧美| 精品酒店卫生间| 91久久精品国产一区二区三区| 久久久国产欧美日韩av| 日本色播在线视频| 国产精品久久久久久精品电影小说| 久久久国产精品麻豆| 国产男女内射视频| 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 亚洲精品国产av成人精品| 18禁国产床啪视频网站| 七月丁香在线播放| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 伊人久久国产一区二区| 欧美人与性动交α欧美精品济南到 | 国产av精品麻豆| 黑人欧美特级aaaaaa片| 午夜视频国产福利| av又黄又爽大尺度在线免费看| 伊人久久国产一区二区| 最新的欧美精品一区二区| 高清欧美精品videossex| 国产一区二区激情短视频 | 日韩在线高清观看一区二区三区| 搡老乐熟女国产| 欧美 日韩 精品 国产| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 日本欧美视频一区| 中文字幕人妻熟女乱码| 三级国产精品片| 边亲边吃奶的免费视频| 免费观看无遮挡的男女| 深夜精品福利| 亚洲综合色网址| 久久久久久久国产电影| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 亚洲国产精品一区三区| 岛国毛片在线播放| 国产在视频线精品| 一级,二级,三级黄色视频| 啦啦啦啦在线视频资源| 中文欧美无线码| 中文字幕免费在线视频6| 国产麻豆69| 久久久久久久亚洲中文字幕| 午夜久久久在线观看| 国产成人精品一,二区| 国国产精品蜜臀av免费| 免费在线观看完整版高清| 久久精品久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的| 中文字幕人妻熟女乱码| tube8黄色片| 黑人猛操日本美女一级片| 蜜桃在线观看..| 久久精品久久精品一区二区三区| 国产精品.久久久| 我要看黄色一级片免费的| 国产精品 国内视频| 国国产精品蜜臀av免费| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 国产精品.久久久| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 黄色怎么调成土黄色| 亚洲国产精品999| 制服人妻中文乱码| 成人午夜精彩视频在线观看| 国产男女内射视频| 亚洲第一av免费看| 免费不卡的大黄色大毛片视频在线观看| 丝瓜视频免费看黄片| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 免费看av在线观看网站| 免费人妻精品一区二区三区视频| 国产精品99久久99久久久不卡 | 免费看av在线观看网站| 亚洲精品自拍成人| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站| 嫩草影院入口| 九草在线视频观看| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 又粗又硬又长又爽又黄的视频| 在线观看人妻少妇| 女人精品久久久久毛片| 精品人妻一区二区三区麻豆| www.色视频.com| 精品人妻一区二区三区麻豆| 亚洲av成人精品一二三区| 在线观看国产h片| 亚洲av综合色区一区| 香蕉国产在线看| 丰满饥渴人妻一区二区三| 日产精品乱码卡一卡2卡三| 国产日韩欧美视频二区| 18在线观看网站| 国产日韩欧美视频二区| 国产黄频视频在线观看| 涩涩av久久男人的天堂| 制服人妻中文乱码| 大陆偷拍与自拍| 久久久久国产精品人妻一区二区| 国产一区二区在线观看日韩| 美女中出高潮动态图| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃| 欧美成人午夜精品| 草草在线视频免费看| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 成年美女黄网站色视频大全免费| 啦啦啦啦在线视频资源| 黑人高潮一二区| 中国美白少妇内射xxxbb| 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 亚洲精品一区蜜桃| 久久久久人妻精品一区果冻| 美女脱内裤让男人舔精品视频| 韩国av在线不卡| 99热网站在线观看| 熟女av电影| av电影中文网址| 91国产中文字幕| 一个人免费看片子| 午夜免费鲁丝| 亚洲av日韩在线播放| 亚洲国产欧美日韩在线播放| 又粗又硬又长又爽又黄的视频| 国产在线视频一区二区| 亚洲国产色片| 又大又黄又爽视频免费| 赤兔流量卡办理| 9191精品国产免费久久| 超色免费av| 丝袜喷水一区| 亚洲精品久久午夜乱码| 亚洲精品aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 亚洲综合色网址| www.av在线官网国产| 久久久久网色| 国产国语露脸激情在线看| 在线观看免费视频网站a站| 久久97久久精品| 天天操日日干夜夜撸| 内地一区二区视频在线| 亚洲欧洲精品一区二区精品久久久 | 91精品伊人久久大香线蕉| 一级,二级,三级黄色视频| 亚洲国产精品国产精品| 搡老乐熟女国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品中文字幕在线视频| 久久人人爽人人爽人人片va| 国产精品.久久久| 亚洲精品第二区| 女人精品久久久久毛片| 99国产精品免费福利视频| www日本在线高清视频| 免费在线观看黄色视频的| h视频一区二区三区| 久久精品久久精品一区二区三区| 欧美精品人与动牲交sv欧美| av线在线观看网站| 美女xxoo啪啪120秒动态图| 制服丝袜香蕉在线| 男人舔女人的私密视频| 男女国产视频网站| 你懂的网址亚洲精品在线观看| 亚洲精品456在线播放app| 国产精品免费大片| 国产精品一区二区在线观看99| 黄网站色视频无遮挡免费观看| 国产一区亚洲一区在线观看| 亚洲,欧美精品.| 色婷婷久久久亚洲欧美| 欧美bdsm另类| 亚洲三级黄色毛片| 亚洲高清免费不卡视频| 免费人妻精品一区二区三区视频| 老熟女久久久| 在线观看美女被高潮喷水网站| 大话2 男鬼变身卡| 高清毛片免费看| 黑人欧美特级aaaaaa片| 国产女主播在线喷水免费视频网站| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻熟女毛片av久久网站| 精品久久久精品久久久| 免费观看a级毛片全部| 日本欧美视频一区| 男男h啪啪无遮挡| 91国产中文字幕| 成年动漫av网址| 咕卡用的链子| 婷婷色综合大香蕉| 18+在线观看网站| 在现免费观看毛片| 国产精品秋霞免费鲁丝片| 久久久久久久久久成人| 亚洲国产精品成人久久小说| 99热网站在线观看|