• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM?

    2018-05-05 07:09:39LeiZHANG張磊BinLIU劉斌
    關(guān)鍵詞:劉斌張磊

    Lei ZHANG(張磊)Bin LIU(劉斌)

    School of Mathematics and Statistics,Hubei Key Laboratory of Engineering Modeling and Scientific Computing,Huazhong University of Science and Technology,Wuhan 430074,China

    E-mail:lzhang890701@163.com;binliu@mail.hust.edu.cn

    1 Introduction

    The μ-Hunter-Saxton(μHS)equation

    was first introduced by Khesin et al[34]to model the evolution of rotators in liquid crystals with self-interaction and external magnetic field,and the unknown function u(x,t)is a timedependent function on the circle S=R/Z andμ(u)=RSudx denotes its mean.With the interactions of rotators and external magnetic field,it is shown[34]that the(μHS)equation is a generalization of the rotator equation.In[34],the(μHS)equation is also constructed to describe the geodesic flow on Ds(S)with the right-invariant metric given at the identity by the following inner product

    Moreover,in[34,38],it is proved that the(μHS)equation is bi-Hamiltonian and also admits both periodic one-peakon solution and the multi-peakons.The(μHS)equation(1.1),called μ-Camassa-Holm equation[25],is closely related to the following celebrated Camassa-Holm(CH)shallow water wave equation,

    The(CH)equation was originally introduced to model the unidirectional propagation of shallow water waves over a flat bottom[6,32].Moreover,the(CH)equation is also a model for the propagation of axially symmetric waves in hyperelastic rods[11,16].It is shown that the(CH)equation is completely integrable[3,5,6,12–14]and also has a bi-Hamiltonian structure[19,39].The(CH)equation gives rise to geodesic flow of a certain invariant metric on the Bott-Virasoro group[33].Its solitary waves are peaked[7].The peaked solitons are orbital stable[10],and the explicit interaction of the peaked solitons is given in[4].Moreover,the(μHS)equation can be viewed as a generalized equation lying mid-way between the(CH)equation and the Hunter-Saxton(HS)equation given by

    The(HS)equation was first introduced for rotators in liquid crystals[28],which describes the propagation of weakly nonlinear orientation waves in a massive nematic liquid crystal.In[48],it is shown that the orientation of the molecules can also be characterized by the vectors field(cosu(x,t),sinu(x,t)).The(HS)equation can be regarded as the limit of the(CH)equation arising in a different physical context[29].Similar to the(CH)equation,the(HS)equation is also completely integrable[29]and has a bi-Hamiltonian structure[32,40].For the other article related to the(HS)equation,see for example[28,39,48]and the references therein.

    Recently,parallel to the(CH)equation and the(HS)equation mentioned above,the(μHS)equation(1.1)has been extended to the following generalized two-componentμ-Hunter-Saxton(gμHS2)system(see for example[21])

    The unknown functions u(x,t)and ρ(x,t)are time-dependent periodic functions on the unit circle S=R/Z;andμ(u)is the mean of u on S,σ∈R is the new free parameter,and D≥0.By utilizing the tri-Hamiltonian duality approach[21,40],the(gμHS2)system can be derived from the bi-Hamiltonian structures of the Ito equation[30].It is known that the(gμHS2)system has two Hamiltonians which are provided by

    It is obvious that,by taking σ =1,system(1.4)is reduced to the two-component μ-Hunter-Saxton(μHS2)system[49],which can be regarded as a μ-version of the two-component Dullin-Gottwald-Holm system[26].It is shown in[49]that the(μHS2)system is a bi-variational equation and a bi-Hamiltonian Euler equation.For the other mathematical results related to the(μHS2)system,we can refer the readers to[35–37].Generally speaking,it is difficult to avoid energy dissipation mechanisms in a real world.In this physical sense,very recently,Wang et al[47]considered the following weakly dissipative(gμHS2)system in the periodic setting,

    where S=R/Z is the unit circle,and λy(x,t)and λρ(x,t)are the weakly dissipative terms with the dissipative parameter λ > 0.It is quite interesting to investigate the effect of the dissipative parameter λ in the blow-up phenomena and the global existence of solutions.In[47],the authors investigated the wave-breaking criterion for the solutions with certain initial data and give a sufficient condition for the global solutions.

    Closely related to the previous(gμHS2)system,by taking σ =1 and D= γ =0,we then obtain the following two componentμ-Camassa-Holm system

    which can be viewed as a mid-way between the two-component Camassa-Holm(CH2)system and the two-component Hunter-Saxton(HS2)system.On the one hand,the(CH2)system was originally introduced as a bi-Hamiltonian model by Olver and Rosenau[40],which is integrable and has a Lax pair formulation as well as the(CH)equation.The(CH2)system is related to the first negative flow of the AKNS hierarchy via a reciprocal transformation,which has the peakon and multi-kink solitons and is integrable in the sense that it has Lax pair[9,18].Mathematical properties of this system have also been investigated in many works;see,for example,[8,17,22–24].On the other hand,The(HS2)system can be regarded as a special case of the Gurevich-Zybin system[27]related to the nonlinear one-dimensional dynamics of nonlinear ion-acoustic waves and dark matter.Moreover,the(HS2)system is the high-frequency limit(t,x) → (∈t,∈x)of the generalized two-component Camassa-Holm(gCH2)system[8]as∈→ 0.Using Ivanov’s modeling method,one can derive the(gCH2)system from the shallow water theory with nonzero constant vorticity;see,for example,[31].

    MotivationIn the field of in finite dimensional dynamical systems,it is very important to discuss the existence of global attractors for the semi-group of solution operator governed by some concrete partial differential equations.During the past decades,many works have been devoted to this problem,and we shall cite here some of them which are related to this article.For example,in[41,42],Tian etc.studied the existence of the global attractor for the viscosity Degasperis-Procesi equation and the viscous Fornberg-Whitham equation,where the viscous terms were given by second order differential operators.The existence of global attractor for the two-dimensional weakly damped KdV equation in belt field is studied in[43].In[1],Alarcon and Iorio obtained the existence of global attractors for a class of nonlinear dissipative evolution equations.Ding and Tian[15]obtained the existence of global attractor for a dissipative(CH)equation in H2.Tian and Xu[44,45]studied the global attractor for viscous two-component(CH)equations and viscous coupled(CH)equations,respectively.In[50],Zong obtain the global attractor for the two-component π-Camassa-Holm equations with viscous terms,which can be regarded as a generalized formulation for the(CH2)system and was first introduced by Lenells as a geodesic equation on a K?hlerian manifold.

    Being directly inspired by the literature mentioned above,it is naturally to ask that does the(gμHS2)system has also global attractor in some appropriate function space?From the mathematical point of view,answering this question is very conducive for us to understand the long time behavior of the(gμHS2)system.However,to the best known of our knowledge,it seems that this problem for the(gμHS2)system has not been studied up to now.Hence,the major contribution of this thesis is devoted to studying the previous problem.More precisely,under the period boundary conditions,we shall investigate the existence of the global attractor for the following viscous weakly dissipative(gμHS2)system,

    where

    The viscous terms in(1.7)are given by the second order differential operators ∈yxxand ∈ρxxfor ?∈> 0.And we are interested in the effect of the weakly dispersive terms λy and λρ to the viscous(gμHS2)system.In the next sections,we shall first investigate the existence of global solution to system(1.7)using the Galerkin procedure and several complex mathematical prior estimates.Then,we show that semi-group of the solution has a bounded absorbing set,and further prove that the viscous weakly dissipative(gμHS2)system has a global attractor.

    NotationLet H=L2(S)be the usual Lebesgue space with the norm|·|and inner product 〈·,·〉H.For m ∈ N+,we denote by Hm(S)the Sobolev space equipped with the norm‖u‖Hm=|?mu|,where ? is the first-order differential operator.represents the k-order differential operator,k=1,2,3,···.For convenience,if m=1,the norm in H1(S)is denoted by ‖ ·‖.Moreover,we also denote ?xu=ux,=uxx,=uxxx,and so on.The norm of the space L∞(?)is given by ‖u‖∞=esssupx∈S|u(x)|.

    The plan of the remaining sections is as follows.In Section 2,we recall some well-known definitions and lemmas and give the main results in this work.Section 3 is devoted to the proof of the existence of weak solution using the Galerkin procedure and some complex uniformly estimates.In Section 4,we prove that the solution semigroup{S(t)}t≥0has a bounded absorbing set.Finally,by the compactness method,we prove that{S(t)}t≥0has a global attractor in H2×H2.

    2 Main Results

    For the sake of completeness of the article,let us recall some definitions and results of the in finite dimensional dynamical systems.For more details,we refer the readers to[2,46].

    Definition 2.1Let B be a bounded subset of X and U a set containing B.The set B is called a absorbing set in U,if for every bounded set B0?U,there exists t0(B0)>0 such that S(t)B0? B,for?t≥ t0(B).

    Definition 2.2A compact subset A?X is called a global attractor if(i)A is invariant,that is,S(t)A=A,t≥0;(ii)A attracts every bounded subset of X,that is,for any bounded B?X,then we have

    Lemma 2.3Let X be a Banach space,{S(t)}t≥0:X→ X is a semigroup such that S(t+ τ)=S(t)·S(τ),t,τ≥ 0;S(0)=I.If the following conditions are satisfied:

    (1)For?R > 0,there exists C(R)> 0 such that‖S(t)u‖ ≤ C(R),?t≥ 0 and ‖u‖X≤ R;

    (2){S(t)}t≥0has a bounded absorbing set B0? X;

    (3)For each bounded set B?X,there exists t0(B)>0 such that the setcompact in X.Then,{S(t)}t≥0has a global attractor A in X.Moreover,

    Lemma 2.4Assume that g(t),y(t),andFor?r>0 and t≥t0,there exist constants r1,r2,r3>0 such that

    Then,we have

    The main results in this article can be stated as follows.

    Theorem 2.5Assume that(u0,ρ0)∈ H2(S)×H2(S),then system(1.7)admits a global solution in H2(S)×H2(S).

    Theorem 2.6Let{S(t)}t≥0be the semi-group of the solution operator of the system(1.7)defined by(u,ρ)=S(t)(u0,ρ0)=(S1(t)u0,S2(t)ρ0).If(u0,ρ0) ∈ H2(S)× H2(S),then the semi-group{S(t)}t≥0has a bounded absorbing set.

    Theorem 2.7Assume that(u0,ρ0)∈ H2(S)×H2(S),then the semi-group of the solution operator{S(t)}t≥0of the dynamical system possesses a global attractor in H2(S)× H2(S).

    3 Proof of Theorem 2.1

    ProofWe shall apply the Galerkin procedure to prove Theorem 1.1.Defining the operator A by Au= ?Δu,where Δ is the Laplace operator given by Δu=.As[μ(u)]x=we have[μ(u)?uxx]xx= ?A2u.System(1.7)thus can be transformed into the following in finite dimensional dynamical system:

    It is clear that the differential operator A is a linear unbounded self-adjoint operator in H,so we can define the powers Asof A for s∈R.The space D(As)is a Hilbert space endowed with the norm ‖As·‖H.Let{ωi}i∈N+be the orthogonal bases in H,which are the eigenfunctions of the operator A with the eigenvalues{λi}i∈N+such that(for example,[51,Chapter 3])

    For?m ∈ N+,let us define the ansatz space Hm=span{ω1(x),ω2(x),···,ωm(x)}and Pmthe orthogonal projection from H to Hm.The Galerkin procedure for(3.1)can be formulated as the following ordinary differential system:

    By means of the classical theory of ordinary differential equations,it can be concluded that system(3.2)admits an unique solution in a time interval[0,Tmax).In the sequel,we shall obtain a serious of uniform estimates which are independent of the time for the approximating solution,this indicates that the local solution is actually a global solution,that is,Tmax=+∞.

    Multiplying the first equation of(3.2)by umand integrating with respect to the space variable x in S,one can obtain

    In fact,it is obvious that

    Moreover,using the period boundary conditions,we have

    and

    Multiplying the second equation of(3.2)by ρm,then integrating with respect to x on the circle S,we can deduce that

    where we have utilized the fact that

    Then,it deduce from(3.3)and(3.4)that

    By means of the Poincaré inequality,it is not difficult to find that

    where κ is a positive constant.Then,we can deduce from(3.5)that

    where c1=min{2∈κ,2λ}is a positive constant.Combining the Gromwall’s inequality and the previous inequality,there exists a nonnegative constant c2such that

    For?r> 0,by integrating both sides of(3.5)on the time interval[t,t+r],we obtain

    Multiplying the first equation of(3.2)by Aumand taking the inner product in H,we obtain

    and

    And it follows from the period boundary conditions that

    Multiplying the second equation of(3.2)by Aρmand integrating on the circle S,we obtain

    Then,from(3.9)–(3.13),we can deduce that

    Utilizing the Agmon’s inequality(for example,[46,Chapter 2]),where δ is a positive constant,the inner product terms in(3.14)can be estimated as follows:

    and

    Using the Young’s inequality,it then follows from(3.14)? (3.16)that

    which indicates that

    From(3.7)and(3.8),it is clear that

    and

    By applying the uniformly Gronwall inequality(see Lemma 2.2),we obtain

    for t∈ [t0+r,∞),where c3is a nonnegative constant independent of t.Integrating both sides of(3.17)from t to t+r,we obtain

    where c4is a nonnegative constant which is independent of t.

    Multiplying the first equation of(3.2)by A2umand then taking inner product.we have

    and

    Moreover,from the boundary conditions,direct calculation shows that

    It thus transpires from(3.21)–(3.24)that

    Multiplying the second equation of(3.2)by A2ρmand integrating on the circle with respect to x,we get

    which combined with equality(3.25)yields that

    Using the Agmon’s inequality and the Sobolev embedding theorem,we estimate the inner product terms in(3.26)as follows:

    where the uniformly estimates(3.7)and(3.19)are used.Similarly,from the Poincaré inequality and the Agmon inequality,we have

    and

    Thereby,it transpires from the estimates(3.26)?(3.29)that

    Noting that for?r> 0,it follows from(3.20)that

    and

    where c5,c6≥0 are constants independent of t.By(3.30)and using the uniformly Gronwall inequality,we get

    for t∈ [t0+r,∞)and c7is a nonnegative constant independent of t.Integrating the both sides of(3.30)from t to t+r,we obtain

    where c8is a nonnegative constant which is also independent of t.By using the similar method as we used above,we can also get the uniformly estimate|A2um(t)|2+|?Aρm(t)|2≤ c9,where c9is a nonnegative constant.Hence,from the above analysis and the Poincaré inequality,it is clear that the following bounds hold:

    Noting that y=u ? uxx,it follows from(3.33)that|ym|,‖ym‖,|Aym|and|ρm|,‖ρm‖,|Aρm|are all uniformly bounded.Thus,we can deduce from equations(3.2)that the sequences{d(um)/dt}m∈N+and{d(ρm)/dt}m∈N+are also uniformly bounded.

    In the sequel,we shall pass to the limit as m→∞to prove the existence of solution.Indeed,by using the Aubin-Lions compactness theorem(for example,[51,Theorem 3.1.1 of Chapter 3]),there exist subsequences of{um}m∈N+,{ym}m∈N+,and{ρm}m∈N+,still denoted by themselves for convenience,such that um→u,ym→y,and ρm→ρ,as m→∞.Hence,it just remains to verify that the functions u,y,and ρ are solutions to system(1.7).Indeed,for?? ∈ D(A),it follows from the first ordinary differential equation of(3.2)that

    On the one hand,it is clear that Pm?→ ? and PmA?→A? strongly in H as m → ∞.By(3.33),it is not difficult to verify that

    On the other hand,we have

    By the similar argument,we can also deduce that

    Thereby,by passing to the limit as m→∞in(3.34),we get

    Next,from the second ordinary differential equation of(3.2),for?? ∈ D(A),we obtain

    Hence,by passing to the limit as m→∞in(3.36),we get

    From the all analysis above,we can conclude the existence of the global solution to the system(1.7),and this completes the proof of Theorem 2.1.

    4 Proof of Theorem 2.2

    ProofThanks to the conclusion of Theorem 2.1,we can define the semi-group of the solution operator{S(t)}t≥0:H2× H2→ H2× H2such that S(t+ τ)=S(t)·S(τ),S(0)=I,t,τ> 0,and(u,ρ)=S(t)(u0,ρ0)=(S1(t)u0,S2(t)ρ0).Now,we are in a position to prove Theorem 2.2,that is,the semigroup{S(t)}t≥0has a bounded absorbing set.

    Multiplying the first equation of(3.1)by u and integrating on the circle S,we obtain

    where we have used the fact that

    And from the period boundary conditions,we have

    and

    Multiplying the second equation by ρ and integrating with respect to x on the circle S,we get

    Note that

    It then follows from(4.1)–(4.3)that

    By means of the Gronwall inequality,we deduce from(4.4)that

    Here and throughout the proof of Theorem 2.2,we shall denote by ki,i=1,2,···some nonnegative constants which are independent of t.Then,integrating the both sides of(4.4)on the time interval[t,t+r]yields that

    Multiplying the first equation of(3.1)by Au and integrating on the circle S,we obtain

    Multiplying the second equation of(3.1)by Aρ and integrating on S,we have

    Combining(4.7)and(4.8),we get

    Utilizing the Agmon inequalityand the period boundary conditions,we can estimate that

    Similarly,for the terms J12and J13,we have

    Hence,by means of the Young inequality,we can deduce from(4.9)that

    Noting that for?r> 0,it follows from(4.6)that the following two integrations are bounded:

    By applying the uniformly Gronwall inequality,we obtain

    Integrating the both sides of(4.10)from t to t+r,we obtain

    By using the Poincaré inequality κ‖u‖2≤ |Au|2and κ|u|2≤ ‖u‖2,we deduce from(4.5)and(4.11)that|ρ(s)|, ‖ρ(s)‖,|u(s)|,and ‖u(s)‖ are uniformly bounded.Recalling that the solution operator{S(t)}t≥0is defined by(u(t),ρ(t))=S(t)(u0,ρ0)=(S1(t)u0,S2(t)ρ0).From the above analysis,it deduces that if the initial data(u0,ρ0)∈ H2× H2,then the semigroup{S(t)}t≥0is uniformly bounded in L2(S)and H1(S).That is to say,setting B(0,R)the ball which is centered at 0 of radius R in L2(S)and H1(S),then S1(t)u0,S2(t)ρ0∈ B(0,R)for?t≥ t0+r.

    We now prove that the semigroup{S(t)}t≥0is a mapping from H2×H2to itself and admits an absorbing set B(0,R)with appropriate radius R.In fact,multiplying the first equation of(3.1)by A2u and integrating with respect to x on the circle S,we obtain

    where we have used the fact that

    Multiplying the second equation of(3.1)by A2ρ and integrating with respect to x on the circle S,we can deduce that

    Combining(4.13)and(4.14),we get

    Next,we shall estimate the inner product terms in(4.15)respectively.For J21,integrating by parts,it then follows from the Agmon inequality that

    For J22,by applying the Agmon inequality,it follows from(4.5)and(4.11)that

    Similarly,we can estimate the term J23as follows:

    Then,from(4.15)–(4.18),we deduce

    which implies that

    Note that

    and

    Utilizing the uniformly Gronwall inequality,we get

    Integrating the both sides of(4.20)on the interval[t,t+r],we obtain

    From the above analysis,we obtain|Au(t)|2≤ k3and|Aρ(t)|2≤ k7.This means that the semi-group mapping S(t):(u0,ρ0)→ (u(t),ρ(t))is uniformly bounded in H2× H2.Choosing the open ball B(0,R)∈H2with the radiusthen for any bounded set B?H2×H2,we have S(t)B?B(0,R)2for t≥t0+r,which means that the open ball B(0,R)2is a bounded absorbing set of{S(t)}t≥0in H2× H2.Thus,this completes the proof of Theorem 2.2.

    5 Proof of Theorem 2.3

    ProofBy Lemma 2.1,it just remains to prove the compactness of the solution operator S(t).Multiplying the first equation of(3.1)by t2Δ2Au and integrating with respect to x on the circle S,we can deduce that

    Moreover,by the period boundary conditions and integrating by parts,we can estimate that

    and

    Multiplying the second equation of(3.1)by t2Δ2Aρ and integrating with respect to x on S,we can deduce that

    To obtain the uniformly estimate,we need to deal with the term M21= 〈ρ?ρ,t2Δ2Au〉H+〈uρx,t2Δ2Aρ〉H+ 〈uxρ,t2Δ2Aρ〉H.Indeed,it follows from the Sobolev inequality that

    where k9is a nonnegative constant depend on|ρ|,‖ρ‖,|Aρ|,|u|,‖u‖,|Au|,|?Au|,t.Hence,it follows from the analysis(5.1)–(5.6)that

    Using the Poincaré inequality,we deduce from(5.7)that

    Defining the functions as follows:

    Utilizing estimates(4.6),(4.12),and(4.22),we obtain

    Applying the uniformly Gronwall inequality and the Poincaré inequality,we deduce that

    where κ is a positive constant as before.It thus transpires that

    Noting that the space H3×H3is compactly embedded into H2×H2,for any bounded set B of H2×H2,by means of the Ascoli-Arzela theorem,it follows from(5.9)and(5.10)that there exists a t0=t0(B)>0 such that the semigroup S(t)is uniformly compact,that is,is relatively compact in H2×H2.Hence,Lemma 2.1 can be applied to guarantee the existence of the global attractor A in H2×H2.

    Indeed,the global attractor is given by the ω-limit set of B(0,R)2as A= ω(B(0,R)2),where B(0,R)is the open ball with radiusobtained in the proof of Theorem 2.2.Thus,the proof of Theorem 2.3 is completed.

    [1]Alarcon E A,Iorio R J.The existence of global attractors for a class of nonlinear dissipative evolution equations.Proceedings of the Royal Society of Edinburgh Section A:Mathematics,2005,135(5):887–913

    [2]Babin A V,Vishik M I.Attractors of Evolution Equations//Attractors of evolution equations.North-Holland,1992

    [3]de Monvel A B,Shepelsky D.Riemann-Hilbert approach for the Camassa-Holm equation on the line.Comptes Rendus Mathematique,2006,343(10):627–632

    [4]Beals R,Sattinger D H,Szmigielski J.Multi-peakons and a theorem of Stieltjes.Inverse Problems,1999,15(1):L1–L4

    [5]Constantin A,McKean H P.A shallow water equation on the circle.Communications on Pure and Applied Mathematics,1999,52(8):949–982

    [6]Camassa R,Holm D D.An integrable shallow water equation with peaked solitons.Physical Review Letters,1993,71(11):1661–1664

    [7]Camassa R,Holm D D,Hyman J M.A new integrable shallow water equation.Advances in Applied Mechanics,1994,31:1–33

    [8]Chen R M,Liu Y.Wave breaking and global existence for a generalized two-component Camassa-Holm system.International Mathematics Research Notices,2010,2011(6):1381–1416

    [9]Chen M,Zhang Y.A two-component generalization of the Camassa-Holm equation and its solutions.Letters in Mathematical Physics,2006,75(1):1-15

    [10]Constantin A,Strauss W A.Stability of peakons.Communications on Pure and Applied Mathematics,2000,53(5):603–610

    [11]Constantin A,Strauss W A.Stability of a class of solitary waves in compressible elastic rods.Physics Letters A,2000,270(3):140–148

    [12]Constantin A.On the scattering problem for the Camassa-Holm equation//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,2001,457(2008):953–970

    [13]Constantin A.On the inverse spectral problem for the Camassa-Holm equation.Journal of Functional Analysis,1998,155(2):352–363

    [14]Constantin A,Gerdjikov V S,Ivanov R I.Inverse scattering transform for the Camassa-Holm equation.Inverse Problems,2006,22(6):2197–2207

    [15]Ding D,Tian L.The attractor in dissipative Camassa-Holm equation.Acta Mathematicae Applicatae Sinica,2004,27(3):536–545

    [16]Dai H H.Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod.Acta Mechanica,1998,127(1/4):193–207

    [17]Escher J,Lechtenfeld O,Yin Z.Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation.Discrete and continuous dynamical systems,2007,19(3):493–513

    [18]Falqui G.On a Camassa-Holm type equation with two dependent variables.Journal of Physics A:Mathematical and General,2005,39(2):327–342

    [19]Fuchssteiner B,Fokas A S.Symplectic structures,their B?cklund transformations and hereditary symmetries.Physica D:Nonlinear Phenomena,1981,4(1):47–66

    [20]Wei F,Da-Jun Z.The Hamiltonian structures ofμ-equations related to periodic peakons.Chinese Physics Letters,2013,30(8):080201

    [21]Fuchssteiner B.Some tricks from the symmetry-toolbox for nonlinear equations:generalizations of the Camassa-Holm equation.Physica D:Nonlinear Phenomena,1996,95(3/4):229–243

    [22]Guan C,Yin Z.Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system.Journal of Differential Equations,2010,248(8):2003–2014

    [23]Gui G,Liu Y.On the global existence and wave-breaking criteria for the two-component Camassa-Holm system.Journal of Functional Analysis,2010,258(12):4251–4278

    [24]Gui G,Liu Y.On the Cauchy problem for the two-component Camassa-Holm system.Mathematische Zeitschrift,2011,268(1):45–66

    [25]Gui G,Liu Y,Zhu M.On the wave-breaking phenomena and global existence for the generalized periodic Camassa-Holm equation.International Mathematics Research Notices,2011,2012(21):4858–4903

    [26]Guo F,Gao H,Liu Y.On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system.Journal of the London Mathematical Society,2012,86(3):810–834

    [27]Gurevich A V,Zybin K P,Gnedin N Y,et al.Nondissipative gravitational turbulence.Zh Eksp Teor Fiz,1988,94:3–25

    [28]Hunter J K,Saxton R.Dynamics of director fields.SIAM Journal on Applied Mathematics,1991,51(6):1498–1521

    [29]Hunter J K,Zheng Y.On a completely integrable nonlinear hyperbolic variational equation.Physica D:Nonlinear Phenomena,1994,79(2/4):361–386

    [30]Ito M.Symmetries and conservation laws of a coupled nonlinear wave equation.Physics Letters A,1982,91(7):335–338

    [31]Ivanov R.Two-component integrable systems modelling shallow water waves:the constant vorticity case.Wave Motion,2009,46(6):389–396

    [32]Johnson R S.Camassa-Holm,Korteweg-de Vries and related models for water waves.Journal of Fluid Mechanics,2002,455:63–82

    [33]Kolev B.Poisson brackets in Hydrodynamics.Discrete and Continuous Dynamical Systems-Series A,2007,19(3):555–574

    [34]Khesin B,Lenells J,Misio lek G.Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms.Mathematische Annalen,2008,342(3):617–656

    [35]Liu J,Yin Z.On the Cauchy problem of a periodic 2-componentμ-Hunter-Saxton system.Nonlinear Analysis:Theory,Methods&Applications,2012,75(1):131–142

    [36]Liu J.The Cauchy problem of a periodic 2-componentμ-Hunter-Saxton system in Besov spaces.Journal of Mathematical Analysis and Applications,2013,399(2):650–666

    [37]Liu J,Yin Z.Global weak solutions for a periodic two-componentμ-Hunter-Saxton system.Monatshefte für Mathematik,2012,168(3/4):503–521

    [38]Lenells J,Misio lek G,Ti?glay F.Integrable evolution equations on spaces of tensor densities and their peakon solutions.Communications in Mathematical Physics,2010,299(1):129–161

    [39]Lenells J.Conservation laws of the Camassa-Holm equation.Journal of Physics A:Mathematical and General,2005,38(4):869–880

    [40]Olver P J,Rosenau P.Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support.Physical Review E,1996,53(2):1900–1906

    [41]Tian L,Fan J.The attractor on viscosity Degasperis-Procesi equation.Nonlinear Analysis:Real World Applications,2008,9(4):1461–1473

    [42]Tian L,Gao Y.The global attractor of the viscous Fornberg-Whitham equation.Nonlinear Analysis:Theory,Methods&Applications,2009,71(11):5176–5186

    [43]Tian L,Tian R.The attractor for the two-dimensional weakly damped KdV equation in belt field.Nonlinear Analysis:Real World Applications,2008,9(3):912–919

    [44]Tian L,Xu Y,Zhou J.Attractor for the viscous two-component Camassa-Holm equation.Nonlinear Analysis:Real World Applications,2012,13(3):1115–1129

    [45]Tian L,Xu Y.Attractor for a viscous coupled Camassa-Holm equation.Advances in Difference Equations,2010,2010(1):512812

    [46]Temam R.In finite-dimensional dynamical systems in mechanics and physics.Springer Science&Business Media,2012

    [47]Wang F,Li F,Chen Q.Wave breaking and global existence for a weakly dissipative generalized twocomponent μ-Hunter-Saxton system.Nonlinear Analysis:Real World Applications,2015,23:61–77

    [48]Yin Z.On the Structure of Solutions to the Periodic Hunter-Saxton Equation.SIAM Journal on Mathematical Analysis,2004,36(1):272–283

    [49]Zuo D.A two-componentμ-Hunter-Saxton equation.Inverse Problems,2010,26(8):085003

    [50]Zong X,Sun S.On the global attractor of the two-component π-Camassa-Holm equation with viscous terms.Nonlinear Analysis:Real World Applications,2014,20:82–98

    [51]Zheng S.Nonlinear evolution equations.CRC Press,2004

    猜你喜歡
    劉斌張磊
    Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
    Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications?
    Temperature and doping dependent flat-band superconductivity on the Lieb-lattice?
    Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential?
    DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL?
    BR Sounds
    風(fēng)雨中逆行的抗“疫”巾幗戰(zhàn)士——記呼吸科副主任張磊
    北極光(2020年1期)2020-07-24 09:04:06
    尋找快樂的機(jī)器蛙
    “口”“ㄙ”偏旁混用趣談
    溶解度計算錯誤種種和對策
    久9热在线精品视频| 十八禁人妻一区二区| 无人区码免费观看不卡| 美女扒开内裤让男人捅视频| 国产伦一二天堂av在线观看| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 手机成人av网站| 纯流量卡能插随身wifi吗| 久久精品aⅴ一区二区三区四区| 黑丝袜美女国产一区| 又大又爽又粗| 大码成人一级视频| 欧美绝顶高潮抽搐喷水| 人人妻人人澡欧美一区二区 | 欧美日韩一级在线毛片| 免费观看精品视频网站| 黄色 视频免费看| 91麻豆精品激情在线观看国产| 亚洲av第一区精品v没综合| 久久这里只有精品19| 国产片内射在线| 无限看片的www在线观看| 大型黄色视频在线免费观看| 色综合站精品国产| x7x7x7水蜜桃| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 日韩欧美国产在线观看| 久热爱精品视频在线9| 99re在线观看精品视频| 亚洲国产欧美一区二区综合| 欧美一级毛片孕妇| 成年版毛片免费区| 国产高清激情床上av| а√天堂www在线а√下载| 久久久精品国产亚洲av高清涩受| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 国产亚洲精品第一综合不卡| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 国产高清视频在线播放一区| 88av欧美| 亚洲九九香蕉| 首页视频小说图片口味搜索| 中文字幕色久视频| 黄色丝袜av网址大全| 91精品国产国语对白视频| 亚洲国产日韩欧美精品在线观看 | 亚洲精品中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 国产高清有码在线观看视频 | 中文字幕av电影在线播放| 久久久久久久久中文| 亚洲专区字幕在线| 免费无遮挡裸体视频| 免费在线观看影片大全网站| 国产一区二区在线av高清观看| 两性夫妻黄色片| 级片在线观看| 国产一级毛片七仙女欲春2 | 99精品久久久久人妻精品| 午夜免费鲁丝| 亚洲专区中文字幕在线| 日韩视频一区二区在线观看| 中出人妻视频一区二区| 曰老女人黄片| 他把我摸到了高潮在线观看| 免费看十八禁软件| 午夜免费鲁丝| 欧美日韩黄片免| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 亚洲自偷自拍图片 自拍| 久久国产乱子伦精品免费另类| 日韩视频一区二区在线观看| 老司机福利观看| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 免费观看人在逋| 99久久精品国产亚洲精品| 看黄色毛片网站| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 精品国产国语对白av| 亚洲精品在线观看二区| 日本a在线网址| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 成人精品一区二区免费| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站 | 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 少妇被粗大的猛进出69影院| 中国美女看黄片| 伦理电影免费视频| 日本黄色视频三级网站网址| 99热只有精品国产| 黄色片一级片一级黄色片| 99久久99久久久精品蜜桃| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 成人18禁在线播放| 亚洲一区二区三区色噜噜| 老汉色av国产亚洲站长工具| 国产麻豆成人av免费视频| 色播在线永久视频| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 精品不卡国产一区二区三区| 岛国视频午夜一区免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 国产一卡二卡三卡精品| 极品人妻少妇av视频| 一本综合久久免费| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 香蕉丝袜av| 91麻豆av在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一青青草原| 国内精品久久久久久久电影| 老司机在亚洲福利影院| АⅤ资源中文在线天堂| 成年女人毛片免费观看观看9| 超碰成人久久| 91成人精品电影| or卡值多少钱| 欧美乱妇无乱码| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区av网在线观看| 看片在线看免费视频| 亚洲国产精品合色在线| 在线观看www视频免费| 久久欧美精品欧美久久欧美| 精品国产美女av久久久久小说| 成在线人永久免费视频| 视频在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 午夜成年电影在线免费观看| 日日摸夜夜添夜夜添小说| 国产精品98久久久久久宅男小说| 波多野结衣av一区二区av| 长腿黑丝高跟| 一夜夜www| 亚洲视频免费观看视频| 国产精品爽爽va在线观看网站 | 亚洲av五月六月丁香网| 国产高清视频在线播放一区| 亚洲第一青青草原| 在线观看午夜福利视频| 级片在线观看| 国语自产精品视频在线第100页| avwww免费| 黑丝袜美女国产一区| 青草久久国产| 美女扒开内裤让男人捅视频| 美女国产高潮福利片在线看| 成人三级黄色视频| 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 国产人伦9x9x在线观看| 国产精品亚洲美女久久久| 国产高清视频在线播放一区| 欧美黑人精品巨大| 90打野战视频偷拍视频| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 最近最新中文字幕大全电影3 | 国产精品亚洲av一区麻豆| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 免费看a级黄色片| 19禁男女啪啪无遮挡网站| 国产伦人伦偷精品视频| 国产麻豆成人av免费视频| 国产精品野战在线观看| 国产一级毛片七仙女欲春2 | 人人妻人人爽人人添夜夜欢视频| 亚洲七黄色美女视频| 中文字幕人妻熟女乱码| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 亚洲欧美激情在线| 中文字幕人成人乱码亚洲影| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 最新美女视频免费是黄的| 欧美不卡视频在线免费观看 | 日韩欧美国产在线观看| 亚洲色图av天堂| 国产又爽黄色视频| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 欧美激情久久久久久爽电影 | 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| 精品午夜福利视频在线观看一区| 97碰自拍视频| 欧美成狂野欧美在线观看| 日韩大尺度精品在线看网址 | 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 久久精品国产亚洲av高清一级| 午夜精品久久久久久毛片777| 午夜久久久在线观看| 欧美日韩福利视频一区二区| 制服人妻中文乱码| 少妇 在线观看| 久久狼人影院| 香蕉丝袜av| 两人在一起打扑克的视频| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 91av网站免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 搞女人的毛片| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 国产成人一区二区三区免费视频网站| xxx96com| 老司机在亚洲福利影院| 村上凉子中文字幕在线| 国产成人精品在线电影| 又大又爽又粗| 高清在线国产一区| 午夜激情av网站| 在线观看一区二区三区| 色播亚洲综合网| 伦理电影免费视频| 女同久久另类99精品国产91| 国产一卡二卡三卡精品| 禁无遮挡网站| 久久青草综合色| 91字幕亚洲| 嫩草影院精品99| 狂野欧美激情性xxxx| 国语自产精品视频在线第100页| avwww免费| 亚洲色图 男人天堂 中文字幕| 日韩欧美国产在线观看| 久久久久久人人人人人| 亚洲狠狠婷婷综合久久图片| 国产单亲对白刺激| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 国产成人影院久久av| 99国产精品99久久久久| 精品人妻在线不人妻| 中文字幕人妻熟女乱码| 少妇熟女aⅴ在线视频| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 久久中文字幕人妻熟女| 日本vs欧美在线观看视频| 热re99久久国产66热| 两个人免费观看高清视频| 国产极品粉嫩免费观看在线| 又黄又爽又免费观看的视频| 国产主播在线观看一区二区| 久久人妻熟女aⅴ| 亚洲精品国产一区二区精华液| 少妇 在线观看| 日韩欧美三级三区| 两性夫妻黄色片| 国产精品一区二区免费欧美| 成人av一区二区三区在线看| 长腿黑丝高跟| 69精品国产乱码久久久| 国产单亲对白刺激| 欧美性长视频在线观看| 精品国产一区二区三区四区第35| 日本 欧美在线| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 国产亚洲精品第一综合不卡| av视频在线观看入口| 日本在线视频免费播放| 黄色 视频免费看| 亚洲无线在线观看| 午夜久久久在线观看| 老熟妇仑乱视频hdxx| 日日干狠狠操夜夜爽| 国产日韩一区二区三区精品不卡| 乱人伦中国视频| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 9热在线视频观看99| 国产真人三级小视频在线观看| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 国产99白浆流出| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 国产av一区二区精品久久| 在线av久久热| 在线视频色国产色| 最新在线观看一区二区三区| 最好的美女福利视频网| 亚洲欧美激情综合另类| 亚洲伊人色综图| tocl精华| 久久久久久免费高清国产稀缺| 最近最新免费中文字幕在线| 老司机在亚洲福利影院| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三| 欧美成人免费av一区二区三区| 亚洲伊人色综图| 黄色片一级片一级黄色片| 99久久久亚洲精品蜜臀av| 嫁个100分男人电影在线观看| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 国产精品亚洲美女久久久| 亚洲av电影在线进入| 国产1区2区3区精品| 深夜精品福利| 怎么达到女性高潮| 日韩三级视频一区二区三区| 99精品在免费线老司机午夜| 亚洲中文av在线| 亚洲色图综合在线观看| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 国产精品九九99| 精品国产乱子伦一区二区三区| 国产精品免费一区二区三区在线| 九色国产91popny在线| 午夜免费观看网址| 两个人看的免费小视频| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 国产一区二区三区综合在线观看| 免费在线观看日本一区| 成人免费观看视频高清| 搡老岳熟女国产| 久久久国产成人精品二区| 涩涩av久久男人的天堂| 久久久国产成人精品二区| 亚洲美女黄片视频| 首页视频小说图片口味搜索| 欧美在线黄色| 午夜成年电影在线免费观看| 国产私拍福利视频在线观看| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 90打野战视频偷拍视频| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 亚洲国产日韩欧美精品在线观看 | 真人一进一出gif抽搐免费| 在线观看www视频免费| 给我免费播放毛片高清在线观看| 老司机靠b影院| 99riav亚洲国产免费| av免费在线观看网站| 久久精品91无色码中文字幕| 一边摸一边做爽爽视频免费| tocl精华| 自线自在国产av| 国产国语露脸激情在线看| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 韩国精品一区二区三区| 成人国语在线视频| 美女午夜性视频免费| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 精品国产乱子伦一区二区三区| 免费高清视频大片| 在线国产一区二区在线| 极品教师在线免费播放| 少妇熟女aⅴ在线视频| 国产成人精品无人区| 久久久久国产精品人妻aⅴ院| 亚洲七黄色美女视频| 欧美国产精品va在线观看不卡| 男女下面插进去视频免费观看| 9热在线视频观看99| 久久精品91无色码中文字幕| 妹子高潮喷水视频| 国产精品美女特级片免费视频播放器 | 亚洲七黄色美女视频| 成人国产综合亚洲| 日韩大码丰满熟妇| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 久久久久久久久久久久大奶| 免费观看精品视频网站| 精品久久久久久久毛片微露脸| 午夜福利影视在线免费观看| 69av精品久久久久久| 一级a爱视频在线免费观看| 桃红色精品国产亚洲av| 久久久久久人人人人人| 国产亚洲欧美98| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 99香蕉大伊视频| 此物有八面人人有两片| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看| 精品熟女少妇八av免费久了| 亚洲自拍偷在线| 免费久久久久久久精品成人欧美视频| 亚洲av美国av| 国产成人精品久久二区二区免费| 两个人视频免费观看高清| 一级黄色大片毛片| av福利片在线| 亚洲国产精品sss在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区久久 | 久久精品亚洲熟妇少妇任你| 日韩大码丰满熟妇| 伊人久久大香线蕉亚洲五| 亚洲成a人片在线一区二区| 中文字幕人成人乱码亚洲影| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 91在线观看av| 老鸭窝网址在线观看| 亚洲中文字幕日韩| 一进一出抽搐动态| 搡老岳熟女国产| 中文字幕最新亚洲高清| 91精品三级在线观看| 免费在线观看日本一区| 露出奶头的视频| 国产亚洲精品av在线| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 国产三级在线视频| 69精品国产乱码久久久| 一本大道久久a久久精品| 19禁男女啪啪无遮挡网站| 成人三级做爰电影| 91字幕亚洲| 大香蕉久久成人网| 又黄又爽又免费观看的视频| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 美女大奶头视频| 成人手机av| 精品福利观看| 啦啦啦 在线观看视频| 国产精品永久免费网站| 日本免费一区二区三区高清不卡 | 丁香六月欧美| 国产私拍福利视频在线观看| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 天天一区二区日本电影三级 | 亚洲国产精品久久男人天堂| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 亚洲人成网站在线播放欧美日韩| 国产伦人伦偷精品视频| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 性欧美人与动物交配| 日韩精品青青久久久久久| 久久香蕉激情| 亚洲国产高清在线一区二区三 | 午夜视频精品福利| 欧美中文日本在线观看视频| 国产欧美日韩一区二区三| 亚洲欧美日韩高清在线视频| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| aaaaa片日本免费| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 久久午夜综合久久蜜桃| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| ponron亚洲| 久久精品成人免费网站| 日韩国内少妇激情av| 国产av精品麻豆| 久久 成人 亚洲| 岛国视频午夜一区免费看| 九色国产91popny在线| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看| 操美女的视频在线观看| 精品电影一区二区在线| 欧美激情久久久久久爽电影 | 欧美最黄视频在线播放免费| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 国产精品久久视频播放| 一进一出抽搐gif免费好疼| 女人精品久久久久毛片| 1024香蕉在线观看| 一本综合久久免费| 成年人黄色毛片网站| 美女大奶头视频| 怎么达到女性高潮| 国产成人精品无人区| 老熟妇仑乱视频hdxx| 国产精品久久电影中文字幕| 成人免费观看视频高清| 变态另类成人亚洲欧美熟女 | 久久亚洲精品不卡| 看片在线看免费视频| 电影成人av| 神马国产精品三级电影在线观看 | 欧美黄色淫秽网站| 午夜福利,免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一品国产午夜福利视频| 一区二区三区国产精品乱码| a级毛片在线看网站| 亚洲精品在线观看二区| 九色国产91popny在线| 日本免费a在线| 丝袜在线中文字幕| 午夜福利成人在线免费观看| 亚洲熟妇中文字幕五十中出| 美女国产高潮福利片在线看| 国产成人av教育| 1024香蕉在线观看| 欧美绝顶高潮抽搐喷水| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 可以在线观看毛片的网站| a级毛片在线看网站| 午夜免费成人在线视频| 久久人人爽av亚洲精品天堂| 最近最新中文字幕大全免费视频| 日韩免费av在线播放| 高清在线国产一区| 久久人妻福利社区极品人妻图片| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 黄色视频不卡| 午夜激情av网站| 免费不卡黄色视频| 18禁国产床啪视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 在线免费观看的www视频| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国视频午夜一区免费看| 欧美国产精品va在线观看不卡| 国产欧美日韩综合在线一区二区| 免费av毛片视频| 搡老熟女国产l中国老女人| 久久性视频一级片| 午夜福利欧美成人| 色播在线永久视频| 午夜精品在线福利| 日本 av在线| 91九色精品人成在线观看| 久久午夜亚洲精品久久| 精品国产一区二区三区四区第35| 亚洲中文日韩欧美视频| 成人手机av| 久久亚洲精品不卡| 国产伦一二天堂av在线观看| 99精品久久久久人妻精品|