• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON A CLASS OF DOUGLAS FINSLER METRICS?

    2018-05-05 07:09:46HongmeiZHU朱紅梅
    關(guān)鍵詞:紅梅

    Hongmei ZHU(朱紅梅)

    College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China

    E-mail:zhm403@163.com

    1 Introduction

    In Finsler geometry,Douglas curvature is an important projectively invariant,which is introduced by J.Douglas in 1927.It it also a non-Riemannian quantity,because all the Riemannian metrics have vanishing Douglas curvature inherently.Finsler metrics with vanishing Douglas curvature are called Douglas metrics.Roughly speaking,a Douglas metric is a Finsler metric which is locally projectively equivalent to a Riemannian metric[5].

    Douglas metrics form a rich class of Finsler metrics including locally projectively flat Finsler metrics[4]and Berwald metrics;The later are those metrics which Berwald curvatures vanish[1].It is known that a Finsler metric is locally projectively flat,namely,its geodesics are all straight line segments in some suitable locally coordinate system,if and only if its both Douglas curvature and Weyl curvature vanish.

    A Randers metric,introduced by a physicist G.Randers in 1941,is of the form F=α+β,whereis a Riemannian metric and β=bi(x)yiis a 1-form.However,it can also be expressed in the following navigation form

    (α,β)-metrics are a rich and important class of Finsler metrics,partly because they are“computable”.The researches on(α,β)-metrics enrich Finsler geometry and the approaches offer references for further study.In 2009,B.Li,Y.Shen,and Z.Shen gave a characterization of Douglas(α,β)-metrics with dimension n ≥ 3[5].

    A more general class named general(α,β)-metric was first introduced in[11]in the following form

    where α is a Riemannian metric,β is a 1-form,b:= ‖βx‖α,and φ(b2,s)is a smooth function.If φ = φ(s)is independent of b2,then F=is an(α,β)-metric.If α =|y|, β = 〈x,y〉,thenis the so-called spherically symmetric Finsler metrics[9,13,15].Moreover,general(α,β)-metrics include part of Bryant’s metrics[2,11]and part of fourth root metrics[7].In[9],X.Mo,N.M.Solórzano,and K.Tenenblat determined all of spherically symmetric Douglas Finsler metrics.Under the condition that β is closed and conformal,the author determined all of Douglas general(α,β)-metric[14].

    In this article,we only need the condition that β is not parallel with respect to α determines all of Douglas general(α,β)-metric on a manifold of dimension n > 2.The main result is given below.

    Theorem 1.1Let F= αφ(b2,s),s=,be a regular general(α,β)-metric on an open subset U ? Rn(n ≥ 3).Suppose that β is not parallel with respect to α and F is not of Randers type.Then,F is a Douglas metric if and only if F lies in one of the following cases:

    (1)φ=φ(b2,s)satisfies

    where ki:=ki(b2),i=1,2,3,4 and β satisfies

    where τ= τ(x)is a scalar function on U.

    (2)φ=φ(b2,s)satisfies(1.1)and

    Moreover,β satisfies

    where k:=k(b2)/=1,μi:=μi(b2),i=1,2 andμ1+μ2b2=(k+1).In this case,dβ /=0.

    (3)φ=φ(b2,s)satisfies(1.1)and

    Moreover,β satisfies

    Let us take a look at a special case;When φ1=0,takingthe case 1 of Theorem 1.1 is reduced to a result which characterizes Douglas(α,β)-metrics with dimension n ≥ 3(Theorem 1.1 in[5]).Notice that Theorem 1.1 contains some important singular,Finsler metrics,for example Finsler metrics of Kropina type.

    X.Wang and B.Li studied Douglas general(α,β)-metrics in[10].Their result is just case 1 of Theorem 1.1.However,we find that case 2 and case 3 also exist recently.For example,for case 2,takeand k=3,then in this case,(1.1)and(1.3)are reduced to the followings:

    By a direct computation,it is easy to verify that the following function

    satisfies(1.8)and(1.9),where f(t)is an arbitrary function satisfying the following inequalities:

    In this case,the corresponding general(α,β)-metric is a regular Finsler metric.

    In the following,according to(1.10),for case 2,let us take a look at an example.

    Example 1.1Let M be a manifold of dimension n > 2.TakeandIt is easy to verify that α and β satisfy

    Moreover,dβ/=0.Choose f=(t+2)2in(1.10),then

    where b:= ‖β‖α=Hence,the corresponding Finsler metrics

    are Douglas metrics.

    Similarly,we can find regular Finsler metrics in case 3.Mostly important,β is closed in the case of(α,β)-metrics;However,it is seen from Theorem 1.1 that β permits not closed in the case of general(α,β)-metrics.That is to say,our results express that Douglas general(α,β)-metrics are much more and richer than Douglas(α,β)-metrics.

    For three cases of Theorem 1.1,it is easier to solve case 1 because it is close to the result of Douglas(α,β)-metrics.However,case 2 and case 3 do not occur in the case of Douglas(α,β)-metrics,especially β is not closed.It is a pleasure and surprised to us.The two cases are complicated.

    2 Preliminaries

    In local coordinates,the geodesics of a Finsler metric F=F(x,y)are characterized by

    where

    The local function Gi=Gi(x,y)define a global vector fieldon TM{0},which is called the spray.For a Riemannian metric,the spray coefficients are determined by its Christoffel symbols as

    Douglas metrics can be characterized by

    It is known that Douglas metrics can be also characterized by the following equations[1]

    By definition,a general(α,β)-metric is a Finsler metric expressed in the following form,

    where φ(b2,s)is a positive smooth function defined on the domain|s|≤ b < bofor some positive number(maybe in finity)bo.Then,the function F= αφ(b2,s)is a Finsler metric for any Riemannian metric α and any 1-form β if and only if φ(b2,s)satisfies

    when n≥3 or

    when n=2[11].

    where(aij):=(aij)?1and bi:=aijbj.It is easy to see that β is closed if and only if sij=0.

    According to[11],the spray coefficients Giof a general(α,β)-metricare related to the spray coefficientsαGiof α and given by

    where

    3 Necessary Conditions

    In this section,we are going to show the necessary conditions for a general(α,β)-metric to be a Douglas metric.

    Lemma 3.1Let F= αφ(b2,s),s=be a regular general(α,β)-metric on an open subset U ? Rn(n ≥ 3).Suppose that β is not parallel with respect to α and F is not of Randers type.If F is a Douglas metric,then F lies in one of the following cases:

    (1)φ=φ(b2,s)satisfies

    where ki:=ki(b2),i=1,2,3,4 and β satisfies

    where τ= τ(x)is a scalar function on U.

    (2)φ=φ(b2,s)satisfies(3.1)and

    Moreover,β satisfies

    Moreover,β satisfies

    where θ:= θiyiis a 1-form which is perpendicular to β. ξi:= ξi(b2),i=1,2 and

    ProofBy(2.2)and(2.5),we can show that a general(α,β)-metric is a Douglas metric if and only if

    To simplify the computations,we take the following coordinate transformation:(s,ua)→(yi)by

    Then,

    Let

    Because expression(3.8)involves rij,sijetc,one needs the following expression:

    Note that s1=bs11=0.Plugging the above identities into(3.8),we get a system of equations in the following form

    where Aijand Bijare polynomials in ya.We must have

    Let

    For i=1,j=a,by(3.8),we get

    From(3.9)and(3.10),then(3.11)is equivalent to

    and

    For i=a,j=b,by(3.8)we get

    It follows from(3.9)and(3.10)that(3.14)is equivalent to

    and

    Let

    Then,(3.16)can be rewritten as

    By(3.17),it is easy to show that

    We also get

    where

    Taking s=b in(3.20),we find that the ratio of r11and?B is a function of b2.Hence,suppose thatplugging them into(3.20)yields

    Let s=0,then(3.21)is reduced to

    where λ3(b2)= χ(b2,0)and λ4(b2)= Ψ(b2,0).Plugging(3.22)into(3.21)yields

    By(3.23),there exists a scalar function λ5(b2)such thatIn this case,(3.23)is reformed as

    Inserting Ψ and χ into(3.25)yields

    By now,we have obtained

    Next,we are going to obtain ra1and sa1from(3.13)and(3.15).Let s=0 in(3.15),we obtain

    where ε1= ε1(b2).Plugging(3.28)into(3.15)yields

    Taking s=b in(3.29),we have

    where ε2:= ε2(b2)and ε3:= ε3(b2).Inserting(3.30)into(3.29)yields

    By(3.31),we divide the problem into three cases:

    (1)ra1=0,sa1=0;

    (2)ra1=k(b2)sa1,sa1/=0;

    (3)sa1=0,ra1/=0.

    Case 1ra1=0,sa1=0.

    In this case,by(3.13)and(3.15),it is obtained thatBy sa1=0 and(3.18),then β is closed.From ra1=0 and(3.27),it follows that

    By the above equality and β being closed,we obtain(3.2).By(3.26),we obtain(3.1).

    Case 2ra1=k(b2)sa1,sa1/=0.

    Because sa1/=0,β is not closed.Moreover,we have obtained

    Noting that sijis skew symmetric,by(3.32),we obtain(3.5).In this case,ra1=?;Let us summarize what we have proved so far

    By(3.33),we have(3.4).

    By(3.31)and sa1/=0,we have

    where c1= ε2?kε3and c2:=(1?k)ε1.From(3.34),we claim that k/=1.If k=1,then(3.34)is reduced to bQ=c1s.In this case,φ=1+c1bs2.Hence,F is Riemannian.Plugging Q and R into(3.34),we rewrite it as

    whereμ1:=c2b2,μ2:=c1?c2.

    Differentiating(3.35)with respect to s yields

    Contracting(3.13)with yayields

    Plugging ra1=ksa1into(3.30)yields

    By(3.38),we get

    Plugging ra1=ksa1and(3.39)into(3.37)yields

    Because the coefficients of the right side in(3.40)is independent of s,if(3.40)holds,then by(3.34),we obtain

    where μ3:=and λ3:= λ3(b2).

    By making using of(3.35)and(3.36),we have

    Plugging(3.42)into(3.41)yields

    We claim that k+1+2μ1?μ3b2=0 and 2μ2+μ3=0.If k+1+2μ1?μ3b2/=0,by solving(3.43),we obtain

    where g(b2)is an arbitrary smooth function.Hence,the corresponding general(α,β)-metric is of Randers type.This case is excluded in the assumption of Theorem 1.1.If k+1+2μ1?μ3b2=0 and 2μ2+μ3/=0,then we obtain

    At this time,the corresponding general(α,β)-metric is of Kropina type.This case is excluded because this class of metrics are singular.Hence,

    Case 3sa1=0,ra1/=0.

    In this case,for rij,we have obtained

    Therefore,by(3.45),we have

    where θ := θiyiis a 1-form,which is perpendicular to β.By sa1=0 and(3.18),then β is closed.Hence,it follows from(3.46)that we obtain(3.7).

    Because sa1=0 and ra1/=0,by(3.31),we obtain

    Plugging R into(3.47)yields

    where ξ1:= ε1and.Differentiating(3.48)with respect to s yields

    Plugging sa1=0 into(3.13)yields

    Contracting(3.50)with respect to yayields

    Plugging sa1=0 into(3.30)yields

    By(3.52),we conclude that

    Plugging(3.53)into(3.51)yields

    By(3.47),the above equality is reduced to the following

    Because the right side in(3.54)is independent of s,there exists a function η(b2)such that

    We rewrite(3.55)as

    where ξ3:= η ? ε1.By(3.48)and(3.49),we obtain

    Plugging(3.57)into(3.56)yields

    We claim that 1?2b2ξ1?b2ξ3=0 and ξ3?2b2ξ2=0.If 1?2b2ξ1?b2ξ3/=0,then by solving(3.58),we obtain

    where g(b2)is an arbitrary smooth function.Hence,the corresponding general(α,β)-metric is of Randers type.This case is excluded in the assumption of Theorem 1.1.If 1?2b2ξ1?b2ξ3=0 and ξ3? 2b2ξ2/=0,then we obtain At this time,the corresponding general(α,β)-metric is of Kropina type.This case is excluded because this class of metrics are singular.Therefore,we obtain

    By(3.18),we have the following result.

    Remark 3.1If a general(α,β)-metric is a Douglas metric,then the Rank of skew symmetric matrix(sij)is not greater than 2.

    4 Sufficient Conditions

    In this section,we show the sufficient conditions for a general(α,β)-metric to be a Douglas metric.

    Lemma 4.1Let F= αφ(b2,s),s=,be a regular general(α,β)-metric on an open subset U ? Rn(n ≥ 3).Suppose that β is not parallel with respect to α and F is not of Randers type.Then,F is a Douglas metric if one of the following cases holds:

    (1)φ=φ(b2,s)satisfies

    where ki:=ki(b2),i=1,2,3,4 and β satisfies

    where τ= τ(x)is a scalar function on U.

    (2)φ=φ(b2,s)satisfies(4.1)and

    where k:=k(b2)/=1,μi:= μi(b2),i=1,2 and μ1+μ2b2= ?(k+1).Moreover,α and β satisfies

    whereμ1+μ2b2=(k+1)and k=k(b2).In this case,dβ/=0.

    (3)φ=φ(b2,s)satisfies(4.1)and

    and β satisfies

    where θ := θiyiis a 1-form which is perpendicular to β. ξi:= ξi(b2),i=1,2 and ξ1+ξ2b2=

    ProofAssume that case 1 holds.By(4.2),we have

    Plugging(4.8)into(2.5)yields

    where χ :=R? 2RΨb2? sΠ and P:= ατ[(k1+k2s2)Θ+(2ΘRb2+s?)(k1+k2b2)].

    Inserting(4.1)into(4.9)yields

    Thus,it follows from(2.1)and(4.10)that F is a Douglas metric.

    Assume that case 2 holds.By(4.4)and(4.5),we obtain

    Inserting(4.1),(4.3),(4.11),(4.12)and(3.42)into(2.5)yields

    where we have used the first formula of(3.44)and P:= ατ[(k1+k2s2)Θ+(2ΘRb2+s?)(k1+Hence,from(2.1)and(4.13),then F is a Douglas metric.

    Assume that case 3 holds.From(4.7),we obtain

    Plugging(4.14)and(4.15)into(2.5)yields

    where P:= ατ[(k1+k2s2)Θ +(2ΘRb2+s?)(k1+k2b2)]+(2sΘ +b2?)θ.

    Plugging(4.1),(4.6),and(3.57)into(4.16)yields

    where we have used the first formula of(3.59).Hence,by(2.1)and(4.17),then F is a Douglas metric.

    AcknowledgementsThe author would like to thank Professor Changtao Yu for his helpful discussion and the valuable comments.

    [1]Bácsó S,Matsumoto M.On Finsler spaces of Douglas type.A generalization of the notion of Berwald space.Publ Math Debrecen,1997,51:385–406.MR 98j:53024

    [2]Bryant R.Some remarks on Finsler manifolds with constant flag curvature.Houston J Math,2002,28:221–262

    [3]Bácsó S,Matsumoto M.On Finsler spaces of Douglas type-a generalization of the notion of Berwald space.Publ Math Debrecen,1997,51:385–406

    [4]Cheng X Y,Shen Z M.Projectively flat Finsler metrics with almost isotruplc-S-curvature.Acta Mathematica Scientia,2006,26B(2):307–313

    [5]Li B L,Shen Y B,Shen Z M.On a class of Douglas metrics.Studia Sci Math Hung,2009,46:355–365

    [7]Li B L,Shen Z M.On a class of projectively flat Finsler metrics with constant flag curvature.Int J Math,2007,18:749–760

    [7]Li B L,Shen Z M.Projectively flat fourth root Finsler metrics.Can Math Bull,2012,55:138–145

    [8]Matsumoto M.Finsler spaces with(α,β)-metric of Douglas type.Tensor(N S),1998,60:123–134

    [9]Mo X H,Solórzano N M,Tenenblat K.On spherically symmetric Finsler metrics with vanishing Douglas curvature.DiffGeom Appl,2013,31:746–758

    [10]Wang X M,Li B L.On Douglas general(α,β)-metrics,arXiv:1606.08043v1.

    [11]Yu C T,Zhu H M.On a new class of Finsler metrics.DiffGeom Appl,2011,29:244–254

    [12]Yu C T,Zhu H M.Projectively flat general(α,β)-metrics with constant flag curvature.J Math Anal Appl,2015,429:1222–239

    [13]Zhou L F.Spherically symmetric Finsler metrics in Rn.Publ Math Debrecen,2012,80:67–77

    [14]Zhu H M.On general(α,β)-metrics with vanishing Douglas curvature.Int J Math,2015,26(9):Article ID:1550076,16pp

    [15]Zhu H M.A class of Finsler metrics of scalar flag curvature.DiffGeom Appl,2015,40:321–331

    猜你喜歡
    紅梅
    紅梅
    誰救了誰
    最大的傘
    “歡樂”和“高興”
    Unequal Compulsory Education in Rural and Urban China
    The Application of the Theory of Behaviourism in English Teaching in Senior High School
    青春歲月(2017年1期)2017-03-14 01:13:44
    種下的生日禮物
    Strategies for Enhancing the Competence of Oral English
    真開心
    亚洲精华国产精华精| 久久久久久久午夜电影 | 一级a爱视频在线免费观看| 国产精品1区2区在线观看. | 日韩 欧美 亚洲 中文字幕| 欧美老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 国产精品一区二区在线不卡| 婷婷丁香在线五月| 久久久国产成人精品二区 | 两人在一起打扑克的视频| av片东京热男人的天堂| 成人三级做爰电影| 成人影院久久| 啦啦啦在线免费观看视频4| 美女福利国产在线| 亚洲国产精品合色在线| 亚洲精品国产区一区二| 亚洲 国产 在线| 成人av一区二区三区在线看| www.自偷自拍.com| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 精品乱码久久久久久99久播| 男女免费视频国产| 国产精品偷伦视频观看了| 99香蕉大伊视频| 国产麻豆69| 狂野欧美激情性xxxx| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 一本大道久久a久久精品| 亚洲国产中文字幕在线视频| 日日夜夜操网爽| 美女国产高潮福利片在线看| 老司机靠b影院| 嫩草影视91久久| 欧美黄色片欧美黄色片| 黄色视频,在线免费观看| 欧美色视频一区免费| 午夜久久久在线观看| 色播在线永久视频| 日本黄色视频三级网站网址 | 男人操女人黄网站| 男女高潮啪啪啪动态图| 人人妻人人添人人爽欧美一区卜| 欧美日韩精品网址| 少妇粗大呻吟视频| 欧美精品高潮呻吟av久久| 日本精品一区二区三区蜜桃| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 高清在线国产一区| 国产1区2区3区精品| 色综合婷婷激情| 亚洲欧美日韩另类电影网站| 一二三四在线观看免费中文在| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩精品网址| 日本黄色视频三级网站网址 | 最新的欧美精品一区二区| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 18禁裸乳无遮挡动漫免费视频| 色尼玛亚洲综合影院| 国产精品久久久久成人av| 久久久国产欧美日韩av| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 国产高清激情床上av| 电影成人av| 欧美日韩亚洲国产一区二区在线观看 | 久久 成人 亚洲| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 青草久久国产| 久久国产亚洲av麻豆专区| 中文字幕制服av| av有码第一页| 首页视频小说图片口味搜索| 久久国产精品影院| 女人久久www免费人成看片| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩精品久久久久久密| 热99re8久久精品国产| 在线观看舔阴道视频| 亚洲精品在线观看二区| 亚洲av日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | av在线播放免费不卡| 久久久久久久精品吃奶| 91老司机精品| 大型黄色视频在线免费观看| 69av精品久久久久久| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 久久香蕉精品热| 久久ye,这里只有精品| 91成年电影在线观看| 亚洲片人在线观看| 日本欧美视频一区| 亚洲精品美女久久av网站| 免费在线观看完整版高清| 国产精品二区激情视频| 国产欧美日韩精品亚洲av| 一本一本久久a久久精品综合妖精| 亚洲av熟女| 亚洲五月天丁香| 波多野结衣一区麻豆| xxxhd国产人妻xxx| 在线观看一区二区三区激情| 免费看十八禁软件| 在线国产一区二区在线| 国产主播在线观看一区二区| 亚洲色图 男人天堂 中文字幕| 一级毛片精品| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 国产一区在线观看成人免费| 久久精品91无色码中文字幕| 黄片播放在线免费| 国产野战对白在线观看| 男人的好看免费观看在线视频 | 又黄又粗又硬又大视频| 国产一卡二卡三卡精品| aaaaa片日本免费| 99国产精品一区二区三区| av视频免费观看在线观看| 男人的好看免费观看在线视频 | 国产精品影院久久| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久av美女十八| 久久久久国内视频| 国产精品一区二区免费欧美| 精品亚洲成国产av| 国产精品久久视频播放| 成人精品一区二区免费| 久热这里只有精品99| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月 | av天堂在线播放| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| 涩涩av久久男人的天堂| 最新的欧美精品一区二区| 黄色毛片三级朝国网站| 亚洲片人在线观看| 很黄的视频免费| 久久久久国产精品人妻aⅴ院 | 午夜日韩欧美国产| av在线播放免费不卡| 欧美乱妇无乱码| 精品卡一卡二卡四卡免费| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 又黄又粗又硬又大视频| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 露出奶头的视频| 精品久久久久久电影网| 变态另类成人亚洲欧美熟女 | 在线永久观看黄色视频| 久久久精品国产亚洲av高清涩受| 一级a爱视频在线免费观看| 91精品三级在线观看| 国产成人av教育| 黑人操中国人逼视频| 国产成人系列免费观看| 欧美乱妇无乱码| 成人永久免费在线观看视频| 一本一本久久a久久精品综合妖精| aaaaa片日本免费| 少妇 在线观看| 国产午夜精品久久久久久| 国产成人欧美在线观看 | 黄色片一级片一级黄色片| 色老头精品视频在线观看| 91精品三级在线观看| 国产单亲对白刺激| 久久久久久久国产电影| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 国产精品免费一区二区三区在线 | 999精品在线视频| 免费女性裸体啪啪无遮挡网站| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| av网站免费在线观看视频| 一级毛片女人18水好多| 亚洲片人在线观看| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 美女高潮到喷水免费观看| 777米奇影视久久| 老司机靠b影院| 18禁美女被吸乳视频| 我的亚洲天堂| av欧美777| 一级作爱视频免费观看| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 日韩欧美一区二区三区在线观看 | 亚洲中文字幕日韩| 亚洲av熟女| 免费一级毛片在线播放高清视频 | 久久久国产欧美日韩av| 久99久视频精品免费| 激情在线观看视频在线高清 | 国产精品乱码一区二三区的特点 | 精品国产美女av久久久久小说| 久久久精品国产亚洲av高清涩受| 中文亚洲av片在线观看爽 | 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区 | xxxhd国产人妻xxx| 久久精品国产清高在天天线| av网站在线播放免费| 久久久久久久国产电影| 制服诱惑二区| 中文亚洲av片在线观看爽 | 亚洲熟女毛片儿| 国内毛片毛片毛片毛片毛片| 一区二区三区国产精品乱码| 高清视频免费观看一区二区| 伦理电影免费视频| 精品一品国产午夜福利视频| 久久精品国产99精品国产亚洲性色 | 美女午夜性视频免费| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 99国产综合亚洲精品| 久久人妻av系列| 国产成人系列免费观看| e午夜精品久久久久久久| 精品国产亚洲在线| 在线观看午夜福利视频| 亚洲色图av天堂| 亚洲av电影在线进入| av天堂久久9| 波多野结衣av一区二区av| 久久午夜亚洲精品久久| 麻豆乱淫一区二区| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | av福利片在线| 妹子高潮喷水视频| 桃红色精品国产亚洲av| 一级黄色大片毛片| 啪啪无遮挡十八禁网站| 老司机深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 丰满迷人的少妇在线观看| 国产精品久久久av美女十八| 亚洲免费av在线视频| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 美女福利国产在线| 欧美激情极品国产一区二区三区| 欧美大码av| 久久狼人影院| 两人在一起打扑克的视频| 12—13女人毛片做爰片一| av超薄肉色丝袜交足视频| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 欧美大码av| 精品视频人人做人人爽| 国产成人免费观看mmmm| 精品人妻1区二区| 亚洲熟女精品中文字幕| 精品国产亚洲在线| 亚洲五月婷婷丁香| 亚洲中文字幕日韩| 亚洲黑人精品在线| 大片电影免费在线观看免费| 欧美一级毛片孕妇| 午夜免费成人在线视频| 亚洲黑人精品在线| 看黄色毛片网站| 午夜免费成人在线视频| 亚洲人成电影观看| 成人精品一区二区免费| 在线观看免费视频网站a站| 老鸭窝网址在线观看| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 日本黄色日本黄色录像| 99热网站在线观看| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 国产高清激情床上av| 久久亚洲真实| 黄色毛片三级朝国网站| 午夜福利乱码中文字幕| 欧美日韩视频精品一区| 亚洲一区二区三区不卡视频| 他把我摸到了高潮在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品1区2区在线观看. | а√天堂www在线а√下载 | www.自偷自拍.com| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 成人亚洲精品一区在线观看| 人妻久久中文字幕网| 热re99久久精品国产66热6| 日韩视频一区二区在线观看| 精品午夜福利视频在线观看一区| 不卡av一区二区三区| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 激情在线观看视频在线高清 | xxx96com| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 精品第一国产精品| 久久精品国产a三级三级三级| 午夜福利在线观看吧| 亚洲国产欧美网| 久热这里只有精品99| 国产成人av教育| 超碰97精品在线观看| 精品福利永久在线观看| 国产在视频线精品| 18禁美女被吸乳视频| 亚洲欧美一区二区三区久久| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 午夜免费观看网址| 国产单亲对白刺激| 中文字幕制服av| 成人黄色视频免费在线看| 亚洲国产精品合色在线| 国产免费现黄频在线看| 精品国内亚洲2022精品成人 | 欧美另类亚洲清纯唯美| 成年动漫av网址| 人妻久久中文字幕网| 巨乳人妻的诱惑在线观看| 久久草成人影院| 亚洲成人免费av在线播放| x7x7x7水蜜桃| 极品少妇高潮喷水抽搐| 国产亚洲欧美98| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡| 女人被狂操c到高潮| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 亚洲国产毛片av蜜桃av| 欧美成人免费av一区二区三区 | x7x7x7水蜜桃| 久久久国产欧美日韩av| 国产成人欧美在线观看 | 国产在线精品亚洲第一网站| 深夜精品福利| 日日夜夜操网爽| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 亚洲av美国av| 一级毛片精品| 露出奶头的视频| 亚洲欧美一区二区三区久久| 国产伦人伦偷精品视频| 97人妻天天添夜夜摸| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 91国产中文字幕| 身体一侧抽搐| 无人区码免费观看不卡| 男女午夜视频在线观看| 精品欧美一区二区三区在线| 成年动漫av网址| 男女高潮啪啪啪动态图| 国产精品二区激情视频| 男男h啪啪无遮挡| 国产免费现黄频在线看| 国产免费男女视频| 老鸭窝网址在线观看| 亚洲精品成人av观看孕妇| 18在线观看网站| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 黄色 视频免费看| 女警被强在线播放| 十分钟在线观看高清视频www| 亚洲欧美色中文字幕在线| 高清av免费在线| 亚洲精品久久成人aⅴ小说| 黄色丝袜av网址大全| 免费在线观看完整版高清| xxxhd国产人妻xxx| 亚洲性夜色夜夜综合| 欧美人与性动交α欧美软件| 人成视频在线观看免费观看| 精品少妇一区二区三区视频日本电影| 国产精华一区二区三区| 男人舔女人的私密视频| e午夜精品久久久久久久| 天天影视国产精品| 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 久久热在线av| 国产免费现黄频在线看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久人妻精品电影| 精品福利观看| 黄片大片在线免费观看| 精品电影一区二区在线| 国产区一区二久久| 国产淫语在线视频| xxx96com| 国产成人精品在线电影| 岛国在线观看网站| 久久精品亚洲av国产电影网| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 岛国毛片在线播放| 亚洲专区字幕在线| 一边摸一边抽搐一进一小说 | 欧美黄色淫秽网站| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全电影3 | 精品第一国产精品| 午夜福利免费观看在线| 女性被躁到高潮视频| 免费看十八禁软件| 久久久久久久国产电影| 精品欧美一区二区三区在线| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 成在线人永久免费视频| 欧美日韩瑟瑟在线播放| 色播在线永久视频| 天堂动漫精品| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 热99国产精品久久久久久7| 91av网站免费观看| 久久影院123| 黄色a级毛片大全视频| 色在线成人网| 别揉我奶头~嗯~啊~动态视频| 一边摸一边抽搐一进一出视频| 成人免费观看视频高清| 久久国产精品人妻蜜桃| 精品国产超薄肉色丝袜足j| 日韩大码丰满熟妇| 天堂俺去俺来也www色官网| 久久精品成人免费网站| 欧美性长视频在线观看| 亚洲精品一二三| 最近最新中文字幕大全电影3 | 男人舔女人的私密视频| 视频在线观看一区二区三区| 老司机亚洲免费影院| av有码第一页| 欧美乱码精品一区二区三区| 人妻 亚洲 视频| 国产成人欧美在线观看 | 少妇的丰满在线观看| 日韩成人在线观看一区二区三区| 国产97色在线日韩免费| 国产精品久久久久久精品古装| 久久久久久久精品吃奶| 亚洲va日本ⅴa欧美va伊人久久| 亚洲九九香蕉| 搡老熟女国产l中国老女人| 成年人免费黄色播放视频| 成人18禁在线播放| 国产精品久久久av美女十八| 久久久久视频综合| av欧美777| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 制服诱惑二区| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 欧美精品亚洲一区二区| cao死你这个sao货| av不卡在线播放| 精品国产一区二区三区久久久樱花| 两个人看的免费小视频| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 久久 成人 亚洲| 午夜福利欧美成人| 国产熟女午夜一区二区三区| 老司机亚洲免费影院| 天堂动漫精品| 美女扒开内裤让男人捅视频| 中文字幕制服av| 男人操女人黄网站| 变态另类成人亚洲欧美熟女 | 97人妻天天添夜夜摸| 欧美在线一区亚洲| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 亚洲欧美色中文字幕在线| 黑丝袜美女国产一区| av超薄肉色丝袜交足视频| 亚洲精品一卡2卡三卡4卡5卡| 桃红色精品国产亚洲av| 欧美日韩精品网址| 亚洲五月天丁香| 麻豆乱淫一区二区| 欧美色视频一区免费| 久久精品国产a三级三级三级| 久久久国产成人精品二区 | 老熟女久久久| 久久精品国产99精品国产亚洲性色 | 高清视频免费观看一区二区| 国产精品一区二区免费欧美| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 国产精品欧美亚洲77777| 久久精品aⅴ一区二区三区四区| 久久久久视频综合| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 国产不卡一卡二| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 欧美一级毛片孕妇| videos熟女内射| 久久久国产成人精品二区 | 天天添夜夜摸| 看片在线看免费视频| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 亚洲久久久国产精品| 黄片播放在线免费| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 亚洲五月天丁香| 婷婷精品国产亚洲av在线 | 精品久久久久久久毛片微露脸| 国产亚洲av高清不卡| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 精品福利观看| 99热网站在线观看| 亚洲成av片中文字幕在线观看| 一本大道久久a久久精品| 免费观看a级毛片全部| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区久久| 中文欧美无线码| 久久狼人影院| 王馨瑶露胸无遮挡在线观看| 国产精品成人在线| 久久狼人影院| 亚洲午夜理论影院| 欧美精品一区二区免费开放| 国产淫语在线视频| 真人做人爱边吃奶动态| 超色免费av| 啦啦啦免费观看视频1| 成人精品一区二区免费| 桃红色精品国产亚洲av| 精品一区二区三卡| 热re99久久国产66热| 18在线观看网站| 搡老岳熟女国产| 免费在线观看日本一区| 国产精品久久视频播放| 在线视频色国产色| 国产亚洲精品一区二区www | 亚洲中文字幕日韩| 欧美一级毛片孕妇| videosex国产| 精品国产亚洲在线| 国产激情久久老熟女| 大陆偷拍与自拍| 老司机靠b影院| 男女高潮啪啪啪动态图| 黄频高清免费视频| 自线自在国产av| 精品久久久久久久久久免费视频 | 欧美人与性动交α欧美精品济南到| 亚洲精品久久成人aⅴ小说| 女人爽到高潮嗷嗷叫在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 视频区欧美日本亚洲| 色老头精品视频在线观看|