[摘要] 凝血功能紊亂是導致膿毒癥器官功能衰竭的重要因素,目前臨床上主要治療措施是抗凝治療。以凝血級聯(lián)反應關(guān)鍵蛋白酶為靶點的抗凝治療有導致重要器官出血的風險;而內(nèi)源性凝血接觸系統(tǒng)抑制劑在發(fā)揮抗凝作用的同時不增加出血量,這提示調(diào)節(jié)接觸系統(tǒng)活性有望為膿毒癥治療提供新思路。本文就內(nèi)源性凝血接觸系統(tǒng)激活物磷酸鹽聚合物、中性粒細胞胞外誘捕網(wǎng)、微粒、鏈霉素等在膿毒癥凝血障礙中的作用及研究進展進行綜述,為臨床治療膿毒癥提供新思路。
[關(guān)鍵詞] 膿毒癥;血液凝固因子;接觸系統(tǒng);治療應用;綜述
[中圖分類號] R631;R977.6
[文獻標志碼] A
[文章編號] 2096-5532(2018)03-0375-04
膿毒癥是機體對感染的反應失調(diào)而導致危及生命的器官功能障礙[1],是危害人類健康的急危重癥[2-5]。膿毒癥凝血功能障礙,特別是高凝狀態(tài)下大量微血栓形成是多器官功能障礙綜合征(MODS)的主導因素[6-10]。因此,尋找安全有效的抗凝藥物對膿毒癥的治療有重要意義。然而,以凝血級聯(lián)反應關(guān)鍵蛋白酶為靶點的抗凝藥物,如活化蛋白C、組織因子途徑抑制物(TFPI)以及肝素,都存在出血的不良反應。臨床發(fā)現(xiàn),乏內(nèi)源性凝血接觸系統(tǒng)因子的病人出血的風險大大降低[11-13],提示調(diào)控接觸系統(tǒng)活性有望在膿毒癥凝血功能障礙的治療中發(fā)揮積極作用。本文就接觸系統(tǒng)相關(guān)因子及激活物的研究進展綜述如下。
1 膿毒癥與凝血功能障礙
膿毒癥發(fā)病機制復雜,凝血功能紊亂是其最基本的病理改變之一[6-7,9]。凝血功能障礙可進一步發(fā)展為彌散性血管內(nèi)凝血(DIC)或(和)MODS。膿毒癥凝血功能障礙涉及凝血系統(tǒng)激活、抗凝系統(tǒng)破壞和纖溶系統(tǒng)抑制,外源性凝血途徑和內(nèi)源性凝血途徑均參與其中。膿毒癥致機體釋放大量炎癥因子(如白細胞介素6(IL-6)、腫瘤壞死因子α(TNF-α)等),與內(nèi)毒素等炎性遞質(zhì)一起作用于血管內(nèi)皮細胞(EC),導致組織因子(TF)釋放,從而啟動外源性凝血。此外,膿毒癥還可以造成血管壁的損傷和膠原暴露,后者與凝血因子Ⅻ(FⅫ)接觸啟動內(nèi)源性凝血。
1.1 外源性凝血與膿毒癥凝血功能障礙
膿毒癥發(fā)生時病原體釋放內(nèi)毒素刺激機體細胞產(chǎn)生的TNF-α、IL-1等炎癥因子可激活單核細胞、中性粒細胞等免疫細胞,誘導細胞TF表達上調(diào);另一方面內(nèi)毒素和炎癥因子作用于EC,引起EC損傷及TF釋放,從而啟動外源性凝血。外源性凝血在膿毒癥凝血功能障礙中的作用已在大量動物和臨床試驗中得到證實,但現(xiàn)有的抗凝藥物幾乎都存在出血的風險。
1.2 內(nèi)源性凝血與膿毒癥凝血功能障礙
內(nèi)源性凝血是指接觸系統(tǒng)成分與帶負電荷的異物表面(如玻璃、白陶土、硫酸酯、膠原等)接觸而啟動的凝血途徑。接觸系統(tǒng)是內(nèi)源性凝血的起始部分,由血漿前激肽釋放酶(PK)、凝血因子Ⅺ(FⅪ)、FⅫ和高分子質(zhì)量激肽原(HK)組成。膿毒癥時血管壁受損,F(xiàn)Ⅻ與膠原接觸而活化,從而啟動內(nèi)源性凝血。此外,少量活化FⅫ(FⅫa)還可作用于PK,將其裂解為激肽釋放酶,使FⅫ活化,形成凝血的正反饋放大效應。研究表明,膿毒癥病人血漿PK、FⅫ、HK濃度低于正常水平[14-15],提示接觸系統(tǒng)與膿毒癥的發(fā)生有關(guān)。臨床研究顯示,F(xiàn)Ⅺ濃度增高人群發(fā)生卒中和靜脈血栓的概率增加,靶向抑制FⅪ或FⅪa的活性可預防卒中的發(fā)生以及減少靜脈血栓形成[16-17]。這提示,內(nèi)源性凝血接觸系統(tǒng)有望為膿毒癥凝血紊亂的治療提供新思路。
近幾年來,一系列接觸系統(tǒng)新激活物例如磷酸鹽聚合物(PolyP)、中性粒細胞胞外誘捕網(wǎng)(NETs)、A組鏈球菌產(chǎn)生的鏈激酶、錯誤折疊的蛋白質(zhì)等的發(fā)現(xiàn),為內(nèi)源性凝血的體內(nèi)激活提供了有力的支持,同時也為多種凝血和血栓性疾病的研究指出了新方向。
1.2.1 PolyP與膿毒癥內(nèi)源性凝血 PolyP為線形正磷酸鹽聚合物,微生物體內(nèi)的PolyP多為長鏈結(jié)構(gòu)[18],而血小板致密顆粒中的PolyP多為短鏈結(jié)構(gòu)[19]。隨著研究的不斷深入,PolyP促血栓形成作用已逐漸得到證實[19]。PolyP激活凝血的機制包括:①提供內(nèi)源性凝血激活所必需的陰離子表面[20];②作為輔因子參與凝血酶激活FⅪ過程[19];③激活凝血因子Ⅴ(FⅤ)[21];④抑制TFPI活性[21];⑤增加纖維蛋白凝塊的穩(wěn)定性[20]。膿毒癥時很多誘發(fā)因素可激活血小板釋放PolyP,進而激活FⅫ和PK[18],嚴重者可導致致死性血栓形成[22]。此外,繼發(fā)細菌感染時,PolyP激活的FⅫa還可直接激活凝血因子Ⅸ(FⅨ)與凝血酶原[23]。因此,激活的血小板、感染的致病菌以及死亡裂解的組織和免疫細胞均可通過PolyP啟動內(nèi)源性凝血途徑。還有研究顯示,工業(yè)合成的PolyP在體外有抑制內(nèi)源性凝血和血小板聚集的作用[24]。
1.2.2 NETs與膿毒癥內(nèi)源性凝血 NETs是激活的中性粒細胞在程序化死亡過程中釋放的一種組蛋白核酸復合體,在自然免疫過程中具有誘捕和殺死G+、G-細菌以及真菌的作用[25-26]。NET由DNA鏈、組蛋白和約20種不同的蛋白質(zhì)組成,在膿毒癥引起的微血栓中已經(jīng)發(fā)現(xiàn)了NETs的存在[23]。小鼠和靈長類動物血栓圖像研究表明,NETs可促進血栓形成[23]。NETs可為血栓形成提供支架,刺激血小板和紅細胞的聚集黏附,促進深靜脈血栓發(fā)生[27]。此外,NETs還可為FⅫ激活提供必需的陰離子表面[23],繼而通過內(nèi)源性凝血促進血栓形成[28-29]。CZAIKOSKI等[30]研究表明,NETs可加重膿毒癥小鼠的臟器損傷,而降解NETs可以改善器官損傷指標并降低膿毒癥小鼠的死亡率[23,28]。作為NETs主要成分之一的組蛋白可促進血小板激活[28],而激活的血小板還可釋放PolyP,啟動內(nèi)源性凝血[22,31]。
1.2.3 微粒(MP)與膿毒癥內(nèi)源性凝血 MP是不同類型的細胞在應激狀態(tài)下(激活或凋亡)分泌的直徑為0.1~1.0 μm微小膜性囊泡。近年來的研究顯示,MP在促進膿毒癥病人血栓形成中發(fā)揮重要作用[32-34]。血小板源性的MP(PMPs)含有TF和磷酯酰絲氨酸(PS)兩種主要促凝成分,且PMPs促凝活性最強[28]。血小板及紅細胞源性的MP可使FⅫ活化,啟動內(nèi)源性凝血并形成血栓[34]。紅細胞源性MP還可增加FⅪ活性進而促進血栓的形成[35]。此外,PMPs釋放的同時攜帶了血小板活化因子。后者不斷激活血小板,通過促進血小板依賴的凝血酶生成加速凝血反應。
1.2.4 鏈激酶與膿毒癥內(nèi)源性凝血 鏈激酶是一種單鏈蛋白質(zhì)。由A組鏈球菌產(chǎn)生,含有414個氨基酸殘基,相對分子質(zhì)量為4.7萬。SRISKANDAN等[36]報道,體外培養(yǎng)的鏈球菌上層液能激活PK,這可能與鏈球菌分泌的鏈激酶有關(guān)。鏈激酶能激活HK并引起緩激肽的釋放[37]。由此可以推測,在鏈球菌相關(guān)性膿毒癥中,鏈激酶可能與接觸系統(tǒng)激活的內(nèi)源性凝血有關(guān)。
2 接觸系統(tǒng)抑制劑
免疫抑制劑、抗感染、強化胰島素、抗凝等綜合治療在一定程度上提高了膿毒癥病人的生存率,但治療效果遠未達到預期。而針對內(nèi)源性凝血障礙的抗凝藥物,如PolyP抑制劑、NETs抑制劑、MP抑制劑以及FⅪ和FⅫ抑制劑,在發(fā)揮抗凝作用的同時不增加出血量,逐漸引起醫(yī)學界的重視。
2.1 PolyP抑制劑
聚酰胺-胺(PAMAMG)樹枝狀聚合物以及肝素逆轉(zhuǎn)劑(UHRAs)是PolyP的抑制劑。SULLENGER等[26]發(fā)現(xiàn),第3代PAMAMG樹枝狀聚合物可有效預防腎上腺素誘導的小鼠肺臟血栓形成且不增加尾靜脈出血時間。同樣,MORRISSEY等[38]研究顯示,1.0樹枝狀聚合物和硫酸多黏菌素B可減少FeCl3誘導的小鼠動脈血栓形成。此外,RICH-ARD等[39]還發(fā)現(xiàn)UHRAs在激光誘導的小鼠肱動脈血栓模型中顯示出抑制血栓形成的能力,且毒性低、出血副作用少。但PolyP抑制劑的臨床應用價值還有待進一步證實。
2.2 NETs抑制劑
肽基精氨酸脫亞胺酶(PAD4)是促進NETs釋放、影響NETs形成靜脈血栓的關(guān)鍵因素[40]。研究顯示,在由結(jié)扎下腔靜脈誘導的小鼠靜脈血栓模型中,乏PAD4組小鼠在6 h內(nèi)靜脈血栓形成率比野生型小鼠低38.1%[40]。絲氨酸蛋白酶抑制劑B1可抑制中性粒細胞彈性蛋白的生成[41],減少NETs的產(chǎn)生,進而減少血栓形成。純化組蛋白靜脈輸入可顯著增加靜脈血栓的發(fā)生[42],而傳統(tǒng)抗凝藥肝素可置換并降解NETs中的組蛋白,減少小鼠靜脈血栓的形成[28]。另外,多唾液酸可通過中和組蛋白作用減弱NETs介導的細胞毒性[43];脫氧核糖核酸酶1可降解自由NET,減少小鼠血栓形成[42]。NETs抑制劑的臨床應用價值值得深入探討。
2.3 MP抑制劑
MP具有促進凝血反應作用,抑制MP可以減少血栓生成。研究表明,Ras相關(guān)C3肉毒梭菌素底物1(Rac1)在調(diào)節(jié)膿毒癥MPs誘導的血栓形成中發(fā)揮關(guān)鍵作用,Rac1抑制劑NSC23766可以抑制盲腸結(jié)扎穿孔誘導的膿毒癥小鼠凝血酶的生成[44],從而抑制血栓的形成。此外,他汀類藥物也可減少由MP誘導的凝血酶的產(chǎn)生,從而提高外周動脈閉塞性病人的生存率[45]。還有研究顯示,實驗條件下普拉格雷代謝產(chǎn)物可以強烈抑制PMPs的產(chǎn)生[46]。此外,HERAULT等[47]對大鼠動靜脈分流模型的研究結(jié)果顯示,F(xiàn)Ⅹa抑制劑DX9065A和Sanorg34006可以通過抑制血小板MP產(chǎn)生發(fā)揮抗血栓作用。MP抑制劑的臨床應用價值還需要大量研究驗證。
2.4 FⅪ和FⅫ抑制劑
研究結(jié)果表明,F(xiàn)Ⅺ和FⅫ抑制劑可減少動靜脈血栓形成[48]。FⅪ抑制劑反義寡核苷酸(ASOs)的抗血栓效應堪比華法令和低分子肝素,且無出血傾向[49]??笷Ⅺ抗體和小分子FⅪ抑制劑在多種動物血栓模型中均顯示出減少動、靜脈血栓形成作用[44,50-51]。FⅫ抑制劑具有同樣的作用,即使大劑量使用FⅫ抑制劑也不會增加出血量[44,51]。KLEINSCHNITZ等[50]發(fā)現(xiàn)敲除FⅫ老鼠的動脈血栓形成減少,缺血性腦病損傷發(fā)生率降低。但是FⅪ和FⅫ抑制劑用于膿毒癥的抗凝治療尚缺乏臨床試驗的支持。
3 結(jié)語
內(nèi)源性凝血抗凝制劑在大量動物血栓模型中顯示出,其具有在抗凝抗血栓作用的同時不增加出血時間和出血量的優(yōu)點,是一類具有研究前景的膿毒癥的治療藥物。但內(nèi)源性凝血接觸系統(tǒng)抑制劑在臨床的研究尚少,其作用效能及確切效果和臨床應用價值有待深入探討。
[參考文獻]
[1]SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al.The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA: the Journal of the American Medical Association, 2016,315(8):801-810.
[2]ADHIKARI N K, FOWLER R A, BHAGWANJEE S A. Critical care 1 critical care and the global burden of critical illness in adults[J]. Lancet, 2010,376(9749):1339-1346.
[3]FLEISCHMANN C, THOMAS R O, HARTMANN M, et al. Hospital incidence and mortality rates of sepsis[J]. Deutsches Arzteblatt International, 2016, 113(10):159-166.
[4]YEBENES J C, RUIZ-RODRIGUEZ J C, FERRER R, et al. Epidemiology of sepsis in Catalonia: analysis of incidence and outcomes in a European setting[J]. Annals of Intensive Care, 2017,7(1):19.
[5]FLEISCHMANN C, SCHERAG A, ADHIKARI N K, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 193(3):259-272.
[6]LEVI M, SCHULTZ M, POLL T V D. Sepsis and thrombosis[J]. Seminars in Thrombosis and Hemostasis, 2013, 39(5):559-566.
[7]LEVI M, POLL T V D. Inflammation and coagulation[J]. Critical Care Medicine, 2010,38(2 Suppl): S26-S34.
[8]GAO Y L, LU B, ZHAI J H, et al. The parenteral vitamin C improves sepsis and Sepsis-Induced multiple organ dysfunction syndrome via preventing cellular immunosuppression[J]. Mediators of Inflammation, 2017:4024672. doi:10.1155/2017/4024672.
[9]SIMMONS J, PITTET J F. The coagulopathy of acute sepsis[J]. Current Opinion in Anaesthesiology, 2015, 28(2):227-236.
[10]GRECO E, LUPIA E, BOSCO O, et al. Platelets and Multi-Organ failure in sepsis[J]. International Journal of Molecular Sciences, 2017,18(10). pii:E2200.doi:10.3390/ijms 18102200.
[11]RENNE T, SCHMAIER A H, NICKEL K F, et al. In vivo roles of factor Ⅻ[J]. Blood, 2012, 120(22):4296-4303.
[12]SHETTY S, SHELAR T, MIRGAL D, et al. Rare coagulation factor deficiencies: a countrywide screening data from India[J]. Haemophilia, 2014,20(4):575-581.
[13]TUCKER E I, VERBOUT N G, LEUNG P Y, et al. Inhibition of factor Ⅺ activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis[J]. Blood, 2012, 119(20):4762-4768.
[14]NITZSCHE R, ROSENHEINRICH M, KREIKEMEYER B A. Streptococcus pyogenes triggers activation of the human contact system by streptokinase[J]. Infection and Immunity, 2015, 83(8):3035-3042.
[15]MAAS C, GOVERS-RIEMSLAG J W, BOUMA B, et al. Misfolded proteins activate factor Ⅻ in humans, leading to kallikrein formation without initiating coagulation[J]. Journal of Clinical Investigation, 2008,118(9):3208-3218.
[16]YANG D T, FLANDERS M M, KIM H, et al. Elevated factor Ⅺ activity levels are associated with an increased odds ratio for cerebrovascular events[J]. American Journal of Clinical Pathology, 2006, 126(3):411-415.
[17]MEIJERS J C, TEKELENBURG W L, BOUMA B N, et al. High levels of coagulation factor Ⅺ as a risk factor for venous thrombosis[J]. The New England Journal of Medicine, 2000, 342(10):696-701.
[18]SMITH S A, CHOI S H, DAVIS-HARRISON R A, et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size[J]. Blood, 2010,116(20):4353-4359.
[19]MORRISSEY J H, CHOI S H, SMITH S A. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation[J]. Blood, 2012, 119(25):5972-5979.
[20]SMITH S A, MORRISSEY J H. Polyphosphate: a new player in the field of hemostasis[J]. Current Opinion in Hematology, 2014,21(5):388-394.
[21]CHOI S H, SMITH S A, MORRISSEY J H. Polyphosphate accelerates factor Ⅴ activation by factor Ⅺa[J]. Thrombosis and Haemostasis, 2015, 113(3):599-604.
[22]MULLER F, MUTCH N J, SCHENK W A, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo[J]. Cell, 2009, 139(6):1143-1156.
[23]YIPP B G, KUBES P. NETosis: how vital is it[J]? Blood, 2013, 122(16):2784-2794.
[24]YANG X Y, WAN M J, LIANG T, et al. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregationin vitro[J]. Biomedical Reports, 2017,6(1):57-62.
[25]FUCHS T A, BRILL A, DUERSCHMIED D, et al. Extracellular DNA traps promote thrombosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(36):15880-15885.
[26]MASSBERG S, GRAHL L, VON BRUEHL M L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nature Medicine, 2010,16(8):887-896.
[27]BRILL A, FUCHS T A, SAVCHENKO A S, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice[J]. Journal of Thrombosis and Haemostasis: JTH, 2012, 10(1):136-144.
[28]FUCHS T A, BHANDARI A A, WAGNER D D. Histones induce rapid and profound thrombocytopenia in mice[J]. Blood, 2011,118(13):3708-3714.
[29]JAIN S, PITOC G A, HOLL E K, et al. Nucleic acid scavengers inhibit thrombosis without increasing bleeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(32):12938-12943.
[30]CZAIKOSKI P G, MOTA J M, NASCIMENTO D C, et al. Neutrophil extracellular traps induce organ damage during ex-perimental and clinical sepsis[J]. PLoS One, 2016,11(2):e148142.
[31]SEMERARO F, AMMOLLO C T, MORRISSEY J H, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4[J]. Blood, 2011,118(7):1952-1961.
[32]OWENS A P, MACKMAN N. Microparticles in hemostasis and thrombosis[J]. Circulation Research, 2011,108(10):1284-1297.
[33]ZHOU L, QI X L, XU M X, et al. Microparticles: new light shed on the understanding of venous thromboembolism[J]. Acta Pharmacologica Sinica, 2014,35(9):1103-1110.
[34]Van Der MEIJDEN P E, Van SCHILFGAARDE M, Van OERLE R, et al. Platelet-and erythrocyte-derived microparticles trigger thrombin generation via factor Ⅻa[J]. Journal of Thrombosis and Haemostasis: JTH, 2012, 10(7):1355-1362.
[35]Van BEERS E J, SCHAAP M C, BERCKMANS R, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease[J]. Blood, 2008,112(11):52-53.
[36]SRISKANDAN S, KEMBALL-COOK G, MOYES D, et al. Contact activation in shock caused by invasive group A streptococcus pyogenes[J]. Critical Care Medicine, 2000, 28(11):3684-3691.
[37]WALKER M J, BARNETT T C, MCARTHUR J D, et al. Disease manifestations and pathogenic mechanisms of group A streptococcus[J]. Clinical Microbiology Reviews, 2014,27(2):264-301.
[38]SCHUMACHER W A, SEILER S E, STEINBACHER T E, et al. Antithrombotic and hemostatic effects of a small molecule factor Ⅺa inhibitor in rats[J]. European Journal of Pharmacology, 2007,570(1/3):167-174.
[39]TRAVERS R J, SHENOI R A, KALATHOTTUKAREN M T, et al. Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis[J]. Blood, 2014,124(22):3183-3190.
[40]MARTINOD K, DEMERS M, FUCHS T A, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(21):8674-8679.
[41]MAJEWSKI P, MAJCHRZAK-GORECKA M, GRYGIER B A, et al. Inhibitors of serine proteases in regulating the production and function of neutrophil extracellular traps[J]. Frontiers in Immunology, 2016,7:261. doi:10.3389/fimmu.2016.00261.
[42]TUCKER E I, MARZEC U M, WHITE T C, et al. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor Ⅺ[J]. Blood, 2009,113(4):936-944.
[43]SAFFARZADEH M, JUENEMANN C, QUEISSER M A, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones[J]. PLoS One, 2012,7(2):e32366.
[44]WANG Y Z, LUO L T, MORGELIN M, et al. Rac1 regulates sepsis-induced formation of platelet-derived microparticles and thrombin generation[J]. Biochemical and Biophysical Research Communications, 2017,487(4):887-891.
[45]MOBARREZ F, HE S, BROIJERSEN A, et al. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPⅢa on platelet-derived microparticles in patients with peripheral arterial occlusive disease[J]. Thrombosis and Haemostasis, 2011,106(2):344-352.
[46]JUDGE H M, BUCKLAND R J, SUGIDACHI A A, et al. Relationship between degree of P2Y(12) receptor blockade and inhibition of P2Y(12)-mediated platelet function[J]. Thrombosis and Haemostasis, 2010,103(6):1210-1217.
[47]HERAULT J P, PERRIN B, JONGBLOET C, et al. Effect of factor Ⅹa inhibitors on the platelet-derived microparticles procoagulant activity in vitro and in vivo in rats[J]. Thrombosis and Haemostasis, 2000,84(4):668-674.
[48]MULLER F, GAILANI D, RENNE T. Factor Ⅺ and Ⅻ as antithrombotic targets[J]. Current Opinion in Hematology, 2011,18(5):349-355.
[49]ZHANG H, LOWENBERG E C, CROSBY J R, et al. Inhibition of the intrinsic coagulation pathway factor Ⅺ by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk[J]. Blood, 2010,116(22):4684-4692.
[50]KLEINSCHNITZ C, STOLL G, BENDSZUS M, et al. Targeting coagulation factor Ⅻ provides protection from patholo-
gical thrombosis in cerebral ischemia without interfering with hemostasis[J]. Journal of Experimental Medicine, 2006,203(3):513-518.
[51]XU Y M, CAI T Q, CASTRIOTA G, et al. Factor Ⅺ la inhibition by infestin-4: in vitro mode of action and in vivo antithrombotic benefit[J]. Thrombosis and Haemostasis, 2014,111(4):694-704.