• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

    2018-04-18 02:55:53KaiLongXuanWangXianguangGu
    Acta Mechanica Sinica 2018年2期

    Kai Long·Xuan Wang·Xianguang Gu

    1 Introduction

    Structural topology optimization is intended to place the given material to achieve best structural performance.The pioneer work can be traced to Bends?e and Kikuchi[1],the topology optimization has developed in a variety of directions with the emergence of substantial approaches including homogenization method,solid isotropic material with penalization(SIMP)method[2,3],evolutionary structural optimization method[4]and bi-directional evolutionary structural optimization(BESO)method[5],level set method[6–8]and phase field method[9].With the aim of establishing a direct link between topology optimization and a computer aided design(CAD)modeling system,more recently,an explicit topology optimization approach based on a moving morphable components(MMC)concept was presented by Guo et al.[10–15].Compared with the traditional method,the MMC method can render the solution containing more geometry and mechanical information in optimized topology.Comprehensive reviews on a specific method or comparison of various methods and their applications are given in Refs.[16–18].Meanwhile,topology optimization with inverse homogenization technique was proposed initially in microstructural design of porous and composite materials[19,20].The increasing advancement of additive manufacturing technology makes it possible to fabricate various man-made materials,such as porous material with negative Poisson’s ratio over large deformations[21],orthotropic material for negative or zero compressibility[22].The state of-the-art for material design via topology optimization can be referenced in Ref.[23].

    To date,the mentioned research is confined to individual macrostructural optimization or micro-scale material optimization,i.e.designing the macrostructures composed of optional materials or designing the microstructures for the expected or extreme properties individually.Concurrent design of structure and material becomes one of the hardest tasks in the fields of structural engineering and materials engineering,which has attracted the attention of many researchers.Rodrigues et al.[24]firstly addressed a hierarchical optimization formulation for optimizing material distribution in both macrostructure and microstructure.Later,this hierarchical approach was extended to 3D elastic structures by Coelho et al.[25].In their methods,optimal microstructures may vary from point to point,which leads to high computational cost and manufacture difficulties.To address these problems,Liu et al.[26]suggested a concurrent computational procedure that the porous material is uniform and periodically distributed in macrostructure.The extension of this approach for maximum primary frequency and minimum compliance of thermo-elastic structures was given by Niu et al.[27]and Deng et al.[28]successively.Then Guo et al.[29]presented a robust concurrent optimization formulation emphasized on uncertainties of loads.Optimized topologies of microstructure tend to be isotropic and Kagome structure under such uncertainties.The work of Huang et al.[30]used the BESO method for realizing the concurrent optimization design with the unambiguous configurations on both macro-and micro-scales.Nowadays,the BESO algorithm has been developed to achieve multifunctional designs[31]and to maximize natural frequency with a given mass[32].Also,Xu et al.[33–35]furthered the BESO method to concurrent topology optimization in regard to material distribution in macrostructure and periodic microstructure under harmonic,transient,and random excitations.Zhang and Sun[36]revealed the size effect of materials and structures in the integrated two-scale optimization approach.More recently,Xia and Breitkopf[37,38]proposed an FE2resolution framework focused on nonlinearity for the concurrent design.The study by Jia et al.[39]presented a hierarchical design of structures and multiphase material cells.Furthermore,Long et al.[40]introduced a two-scale topology optimization method for maximizing the frequency of macrostructure that are composed of periodic composite units consisting of two isotropic materials with distinct Poisson’s ratios.The work of Chen et al.[41]presents concurrent design method based on the moving is o-surface threshold concept.

    Volume or mass fraction of macrostructure or/and microstructure is taken as the constraint to improve general convergence in above concurrent optimization studies.As indicated by Sigmund and Maute[18],the volume constraint is regarded as the basic constraint for the academic interest.However,most real life applications have to meet various design demands,which come in the form of constraint in the optimization problem.Meanwhile,the minimization of the total mass would be of practical importance for the purpose of lightweight design.Compared with the existing concurrent optimization models[27,32,41]aiming at finding optimal configurations of macrostructures and microstructures with maximum structural stiffness or fundamental frequency,this paper aims to develop a novel concurrent optimization formulation based on the independent,continuous and mapping(ICM)method[42–44],in which the total mass of structure is minimized considering simultaneously load-carrying capabilities and thermal insulation properties.Structural responses at macro-and micro-levels are regarded as multiple constraints.Hence,the selection of weight coefficient in multi-objective design for multifunctional design can be avoided in previous study[28,31].By introducing the reciprocal variables,the objective function and constraint function can be explicitly approximated by the Taylor-series expansion method.Then the optimal problem can be effectively updated by sequential quadratic programming(SQP)algorithm,by setting up a series of sub-problems with the second order sensitivities.Some factors and parameters affecting the macrostructure or microstructure are also investigated.

    The rest of this paper is structured as follows.Section 2 formulates the concurrent topology optimization problem of minimization of total mass with multiple constraints.Section 3 describes the homogenization procedure for effective material properties and sensitivity analysis with respect to macro-and micro-scale density variables.Section 4 introduces the design variables to conduct the standard quadratic programming.Section 5 describes the filtering schemes to eliminate numerical instabilities.Section 6 presents 2D and 3D numerical examples to validate the effectiveness of the proposed optimization method.Section 7 draws the concluding remarks.

    2 Concurrent topology optimization for minimization of total mass with multiple constraints

    In this paper,it is assumed that the macrostructure is composed of periodic cellular units(PCUs)as indicated in Fig.1.Both macrostructure and microstructure are discretized by finite element(FE).Each element on macro-scale or micro-scale level is assigned an exclusive density,namely macro-elemental densityPi(i=1,2,...,M)or microelemental densityr j(j=1,2,...,N),whereMandNare the total number ofFE in macrostructure and microstructure,respectively.In the PCU,r j=1 indicates that thejth element is occupied by base material whiler j=0 when thejth element is void.Pi=1 means theith element is porous andPi=0 represents theith element is void whatever value ofr j.In the concurrent optimization,two sets of relative densities will be integrated into one system through homogenization theory.

    The total mass of the structuremcan be calculated as

    Fig.1 An illustration of a structure composed of periodic cellular units:a macrostructure;b periodic cellular units;c unit cell(microstructure)

    whereViis theith elemental volume,andρiHis the homogenized density in the macrostructure which is expressed as

    whereV jdenotes thejth elemental volume in the microstructure.ρdenotes the density of base material.

    The FE equation of the static equilibrium can be written as

    whereUandFrepresent the applied load vector and the nodal displacement vector of the macrostructure,respectively.Krepresents the global stiffness matrix of the macrostructure which can be assembled by the elemental stiffness matrixK i

    whereBis the strain-displacement matrix of the macrostructure.At the macro scale,theith elemental elastic matrixDMAis defined by

    whereαis the exponent of penalization with the typical valueα=4 in this paper.DHis the effective elasticity matrix which can be computed through numerical homogenization.

    The rigidity of the macrostructure can be measured in terms of nodal displacement,which can be calculated by multiplying a unit virtual load vectorΓand displacement vector.

    whereΓis a vector consisting of zeros except for the positiona,corresponding to the concerned d.o.f.,where its value is one.

    For the orthotropic material,the heat conduction capability can be evaluated in accordance with the summation of the diagonal elements in the effective thermal conductivity matrix.The thermal insulation constraint function for the 2D or 3D porous material can be stated as

    whereκHssis thesth diagonal element in the effective thermal conductivity matrix.ˉκis the upper bound for the final design.For anisotropic material,the non-diagonal elements can be non-zero.In this study,geometrical symmetries on bothxandyaxis are imposed on the microstructure for the design of orthotropic material.

    In this study,the concurrent topology optimization aims at finding the minimization of total mass considering rigidity of macrostructure and thermal insulation capabilities of porous material simultaneously.The optimization problem can be mathematically stated as

    From Eq.(9),we can observe that the objective function of total mass depends on both the macro-scale and micro-scale density variables.The constraint functions also include both macrostructural responsesdkand effective thermal conductivity related to the microstructure.It is a typical two-scale topology optimization problem where the optimized topologies of macrostructure and microstructure should be achieved simultaneously.

    3 Homogenization and sensitivity analyses on both the macro-scale and micro-scale

    The micro-elemental elastic matrix and thermal conductivity matrix are interpolated by SIMP scheme as

    whereβrepresents the micro penalization power with the value of4 in this work.D0andκ0denote the elasticity matrix and the thermal conductivity matrix when the corresponding element is solid.When the PCU is small enough in comparison to the size of the macrostructure,the effective elasticity matrixDHin Eq.(5)can be calculated through homogenization theory[45]

    where|V|is the volume ofPCU;Iis identity matrix;banduare the strain-displacement matrix and displacement vector for the microstructure,respectively.

    To obtain the displacement vectoru,the PCU is analyzed by applying the periodic boundary conditions

    The right-hand side term of Eq.(12)denotes the external forces caused by the uniform strain fields,e.g.two normal unit strains inxandydirections and one shear unit strain for 2D cases.

    Similarly,the homogenized heat conductivity matrix can be calculated as

    whereIsdenotes identity matrix for thermal conductivity homogenization,χrepresents the induced temperature gradient field,which can be computed from uniform gradient temperature.

    For numerical homogenization expressed by Eqs.(11)and(13),more details on implementation can be referenced in Ref.[45].

    With the aid of interpolation scheme in Eq.(10),the sensitivity of the homogenized elasticity tensor and thermal conductivity with respect tor jcan be conducted as

    The sensitivities of nodal displacement with respect to the macro-densityPiand micro-densityr jare obtained through adjoint method as[46]

    whereˉUrepresents the adjoint displacement vector of macrostructure,which can be obtained via solving the following adjoint equation

    In Eq.(15),the sensitivities of global stiffness matrixKwith respect toPiandr jcan be given based on Eqs.(4),(5),(11),and(14)

    4 Introduction of design variables and formulation of quadratic programming

    We notice that multiple constraints are present in Eq.(9),which needs to be solved by a mathematical programming algorithm.In this section,we will introduce design variables to make the constraint functions linearization by means of Taylor series expansion.

    In this study,the design variables are defined as the reciprocal function of density variables,i.e.

    The derivations ofPiorr jwith respect to design variables are expressed by

    where superscript(b)is the number of the optimization iteration.

    In the same way,we have

    In Eqs.(21)and(22),the sensitivities ofdkandκHsswith respect to the design variables are calculated by the chain rule as follows

    According to Eqs.(1)and(18),the total massmcan be rewritten as

    whereGandHare the first order derivative matrix and the Hessian matrix,respectively.

    The first-order and second-order derivatives of the total mass with respect to design variables can be calculated as follows

    In Eq.(26),the constantm(b)can be omitted for objective function.By combining Eqs.(21),(22),and(26),the mathematical optimization model determined by Eq.(9)can be rewritten as

    It is worth pointing out that Eq.(28)is in the form of a standard quadratic programming problem.Optimum values of design variables are updated by SQP algorithm efficiently.Then the macrostructure and microstructure are rebuilt by renewed densities according to Eq.(19)until the following criterion is satisfied as

    whereεis the precision of convergence.

    5 Elimination of numerical instabilities

    To avoid unfavorable phenomena in topology optimization,i.e.checkerboard patterns and mesh dependence,the sensitivity filter technique is widely used in topology optimization.In this paper,instead of filtering the sensitivity of the objective function in SIMP method,the first term of constraint function in Eq.(21)is taken as the filtered variable as

    The filter is implemented by solving the Helmholtz partial differential equation(PDE)with Neumann boundary conditions[47]

    It can be proved that

    From Eq.(32),the sum of filtered variables before and after filtering remains the same.The optimization procedure can benefit from such preserving feature which leads to a stable convergence.After filtering,the modified sensitivities expressed in Eq.(33)will replace the original sensitivities to update design variables.

    The filtering scheme brings blur boundary in final topologies on both macro-and micro-scales.To eliminate the immediate density,the filtering programs are terminated after convergence and the optimization procedure proceeds until meeting the condition described in Eq.(29)again.For the whole process,εis prescribed to be 0.1%and 0.01%before and after filtering.

    6 Numerical examples and discussions

    It is a usual practice in macro-scale topology optimization to adopt uniformly distributed material as the initial design to avoid local optimal solutions.However,it is infeasible in the inverse homogenization because the homogeneous sensitivity field generated by periodic boundary conditions will result in the halt of the optimization procedure.Following Amsturz et al.[48],the domain of PCU is assumed to be square with the edge length l.A circular region with the diameterDcomposed of softer material is defined at the center of PCU as shown in Fig.2.

    Fig.2 Density distribution of initial design

    To illustrate the capability and effectiveness of the proposed method,we present several numerical examples,for concurrently designing macrostructures and microstructures.The following material parameters are used for isotropic base material:Young’s modulusE=210 GPa,Poisson’s ratioν=0.3,densityρ=7800 kg/m3,and heat conductivityk=40 W/(m·K).For comparison,the normalized objective functionm/m0is used,in whichmandm0denote the total mass of the optimal structure and the initial structure full of materials,respectively.All numerical examples are run on a desktop computer with an Intel i7 2.93 GHz processor.

    6.1 Example I

    In the first example,a short cantilever beam is optimized to illustrate the effect of initial design on finial topologies.Figure 3 shows the admissible design domain in macrostructure with lengthL=120 cm,heightH=60 cm,and thicknessT=1 cm undergoing a concentrated vertical loadF=100 kN at the center of the right edge.The left side is fully constrained.The 2D design domain is discretized into 4-node plane strain elements with an edge length of 1 cm.The following constraints should be satisfied: (1) nodal distributions of material are investigated with the diameterD=5l/8,l/2,and 3l/8.The PCU is discretized into 80×80 4-node quadrilateral elements.The density is distributed uniformly with the value of 0.9 and 0.45 outside and inside the circle for three initial designs.No symmetric constraints are imposed on macrostructure and microstructure in this example.The optimized macrostructure,microstructure,and the corresponding material properties are summarized in Table 1.

    From Table 1,the results give the similar macrostructure,but distinct microstructure compared to each other.As expected,optimized topologies of both macrostructure and microstructure possess geometric symmetry.In all cases,the resulting nodal displacement constraint and effective conductivity agree wellwith prescribed values.Three massfractions of the final design are close to each other.Therefore,it can be inferred that optimized topologies of microstructure are affected by initial design,which has similarities to material design.Results from the first initial design provide the minimum mass and its corresponding microstructure is simpler than two others.

    To illustrate the effectiveness of the proposed method,the conventional SIMP method is adopted,i.e.Eq.(9)is updated directly by the Method of Moving Asymptotes(MMA)[49].Initial design in Table 1 with the diameterD=5l/8 is adopted.Optimized topologies of macrostructure and microstructure shown in Fig.4 are similar to those obtained by the proposed method.These results verify the effectiveness of the present approach.

    Fig.3 2D macro-structural design domain for the concurrent optimization in Example I,with the dimension:length L=120 cm,height H=60 cm with thickness T=1 cm.The left side is fully constrained and a concentrate vertical load F=100 kN is applied at the center of the right edge

    6.2 Example II

    From Fig.5,we can observe that optimized topologies of microstructure share similar configurations when the thermal-insulating capability of porous material is set to be a constant.In contrast,macrostructure depends obviously on different displacement constraint values imposed at pointA.It is seen that a larger mass fraction can be achieved with a more strict control on the displacement of macrostructure.It is intuitively easy to understand because the structure with a larger mass fraction possesses sufficient rigidity to resist elastic deformation.

    6.3 Example III

    This example is also the extension of Example I,which is considered in an attempt to reveal the influence of effective conductivity constraint on the final results.The nodal displacement constraint is fixed asu A??0.5 cm.The upper bound for the effective conductivity varies from 36 to 48 W/(m·K).Other parameters are the same as those chosen in Example I.Figure 6 shows the mass fraction for various upper bounds of the effective thermal conductivity with typical topologies of macrostructure and microstructure inserted.

    Table 1 Optimal results for different initial design

    Fig.4 Optimized topologies obtained from MMA algorithm for:a macrostructure;b microstructure

    Fig.5 Evolution history of the total mass with the increasing upper bound of effective thermal conductivity and the corresponding structural evolution for Example II

    In this example,we can find that optimized topologies of macrostructure share similar configurations for different conductivity constraint values when the nodal displacement constraint is fixed.However,the conductivity constraint values have a greater impact on the mass fraction of macrostructure and the volume fraction and optimal topology of microstructure.The mass fraction of macrostructure decreases monotonously with the increase of the conductivity constraint values,in contrast to the increase in the volume fraction of microstructure.Compared with results in Fig.5,because more emphasis is placed on thermal insulating properties of porous material,more material is shifted from micro level to macro level automatically.The optimal results have demonstrated that the proposed concurrent optimization method can distribute the base material between macrostructure and microstructure to meet the requirements of light weight design and various constraints simultaneously.

    Fig.6 Evolution history of the total mass with the increasing low bound of nodal displacement,and the corresponding structural evolution for Example III

    6.4 Example IV

    From Fig.7,it can be seen that the mass fractions for various low bounds of nodal displacement show the same tendency as that previously reported in Example 1.However,a slight difference can be found in optimized topologies of microstructure,which implies that,in spite of the same thermal insulation constraint,the microstructure may be affected by the variation of prescribed nodal displacements in macrostructure.

    Fig.7 Evolution history of the total mass with the increasing low bound of nodal displacement,and the corresponding structural evolution for Example IV

    6.5 Example V

    This example is the extension of Example II,specifically used for evaluating the effect of multiple nodal displacement constraints on optimized topologies.As depicted in Fig.3,two concentrated loads,acting in opposite directions,are imposed on pointB(downward)and pointC(upward)for loading case I and II,respectively.In loading case I,the constraint value of vertical displacement on pointCis prescribed asu C?0.9 cm as the first constraint.In loading case II,the low bound for the vertical displacement on pointBare investigated which varies from?0.8 to?1.1 cm.The symmetries inxandydirections are enforced on the microstructure for obtaining orthotropic material.Other parameters are the same as those chosen in Example II.Figure 8 presents the mass fraction for various low bounds of nodal displacement with optimal macro and micro topologies inserted.

    Apparently,optimal topology of macrostructure is symmetric only when nodal displacement constraint is prescribed to be symmetric in different loading cases.With more stringent requirements for the stiffness concerned with the macrostructure,the mass fraction increase monotonously at the macro level while the resulting topologies of the microstructure have no significant difference from each other.Seeking for a lightweight design,both load-carrying capabilities of the macrostructure in multiple loading cases and requirement of thermal insulation related to cellular material can be balanced by the proposed method.

    Fig.8 Evolution history of the mass fraction with the increasing low bound of nodal displacement,and the corresponding structural evolution for Example V

    6.6 Example VI

    This example optimizes a typical 3D structure,aiming to illustrate the feasibility of the proposed approach in 3D structure.Figure 9 shows the admissible design domain in macrostructure,which is discretized by brick elements with the size:lengthL=48 cm,widthB=30 cm,and heightH=6 cm.The size of the elements is 1 cm.The microstructure is discretized into 26×26×26 solid elements.The left surface is fully constrained and a concentrate forceF=1×104kN is applied on the centre of the right surface.

    When we fixed the low bound of nodal displacement asu A??1.0 cm,the upper bound for the effective conductivity varies from 30 to 40 W/(m·K).Figure 11 presents the mass fraction for various upper bounds of the effective thermal conductivity with optimal macro and micro topologies inserted.The final microstructure is symmetrical.

    Similar to 2D cases,Figs.10 and 11 also demonstrate that the two-scale optimal design is a compromising solution between the thermal insulation of materials and structural stiffness at macro level.The weight fractions of final design share the similar tendency as those illustrated in 2D cases.

    It is worth pointing out that topology optimization of 3D structure is time-consuming.In the present concurrent optimization model,there are six numerical homogenization analyses involving mechanical properties and three numerical homogenization analyses involving thermal properties for each iteration step.Table 2 provides a comparison of the iteration steps and computational cost(CPUtime in seconds)for six different FE discretization meshes.The optimized topologies of microstructure for different discretization meshes are also shown in Fig.12.As can be seen from Table 2,the CPU time increases dramatically as mesh density increases.It is normal for optimization methods to need more design iterations,when increasing the mesh density[46],especially for 3D structure.However,the presented method can provide a solution in which number of iterations is independent of discretization mesh.Figure 12 also demonstrates that optimized topologies are independent of the discretization mesh.The slight difference between these topologies is that the boundary becomes smoother with finer mesh.

    Fig.9 3D macrostructural design domain for the concurrent optimization in Example VI,with the dimension:length L=48 cm,width B=30 cm and height H=6 cm.The left surface is fully constrained and a concentrate force F=1×104 kN is applied on the centre of the right surface

    Fig.10 Evolution history of the mass fraction with the increasing low bound of nodal displacement,and the corresponding structural evolution for Example VI

    Fig.11 Evolution history of the mass fraction with the increasing upper bound of effective thermal conductivity and the corresponding structural evolution for Example VI

    Table 2 Iteration steps and CPU time for different FE discretization meshes

    7 Conclusion

    In this present paper,a novel concurrent topology optimization formulation for minimization of total mass considering load bearing in macrostructure and thermal insulation of porous material simultaneously is proposed,which is distinct with the existing concurrent topology optimization approaches.For a typical two-scale optimization problem,the objective function of total mass involves the macroscale and micro-scale density.The material properties from homogenization of microstructure are applied to macrostructural analysis,while the sensitivities of the microstructure are related to the displacement vectors of macrostructures obtained from original and adjoint load cases.With the introduction of reciprocal variables,the constraint functions are linearized while the objective function is approximated as the second order Taylor expansion.Then the established optimization model can be solved efficiently using SQP algorithm,by setting up a series of sub-problems in the form of a quadratic program with second-order sensitivities.

    As highlighted in the provided numerical examples,the proposed concurrent optimization method can automatically allocate the base material between macrostructure and microstructure to meet the requirements various constraints simultaneously to achieve a lightweight design.Because of its generality,this method can be extended to the structural design considering other design requirements,such as the frequency constraints.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 11202078,51405123)and the Fundamental Research Funds for the Central Universities(Grant 2017MS077).We are thankful for Professor Krister Svanberg for MMA program made freely available for research purposes.

    Fig.12 Optimized topologies for different FE discretization meshes:a 22×22×22;b 26×26×26;c 30×30×30;d 34×34×34;e 38×38×38;f 42×42×42

    1.Bends?e,M.P.,Kikuchi,N.:Generating optimal topologies in structural design using a homogenization method.Comput.Methods Appl.Mech.Eng.71,197–224(1988)

    2.Bends?e,M.P.:Optimal shape design as a material distribution problem.Struct.Optim.1,193–202(1989)

    3.Zhou,M.,Rozvany,G.I.N.:The COC algorithm,Part II:topological,geometrical and generalized shape optimization.Comput.Methods Appl.Mech.Eng.89,309–336(1991)

    4.Xie,Y.M.,Steven,G.P.:Asimple evolutionary procedure for structural optimization.Comput.Struct.49,885–896(1993)

    5.Huang,X.,Xie,Y.M.:Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elem.Anal.Des.43,1039–1049(2007)

    6.Wang,M.Y.,Wang,X.,Guo,D.:A level set method for structural topology optimization.Comput.Methods Appl.Mech.Eng.192,227–246(2003)

    7.Sethian,J.A.,Wiegmann,A.:Structural boundary design via level set and immersed interface methods.J.Comput.Phys.163,489–528(2000)

    8.Allaire,G.,Jouve,F.,Toader,A.M.:Structural optimization using sensitivity analysis and a level-set method.J.Comput.Phys.194,363–393(2004)

    9.Zhou,S.,Wang,M.Y.:Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition.Struct.Multidiscip.Optim.33,89(2007)

    10.Guo,X.,Zhang,W.,Zhong,W.:Doing topology optimization explicitly and geometrically?a new moving morphable components based framework.J.Appl.Mech.81,081009(2014)

    11.Guo,X.,Zhang,W.,Zhang,J.,et al.:Explicit structural topology optimization based on moving morphable components(MMC)with curved skeletons.Comput.Methods Appl.Mech.Eng.310,711–748(2016)

    12.Zhang,W.,Zhang,J.,Guo,X.:Lagrangian description based topology optimization—a revival of shape optimization.J.Appl.Mech.83,041010(2016)

    13.Zhang,W.,Yang,W.,Zhou,J.,et al.:Structural topology optimization through explicit boundary evolution.J.Appl.Mech.84,011011(2016)

    14.Zhang,W.,Chen,J.,Zhu,X.,et al.:Explicit three dimensional topology optimization via moving morphable void(MMV)approach.Comput.Methods Appl.Mech.Eng.322,590–614(2017)

    15.Guo,X.,Zhou,J.,Zhang,W.,et al.:Self-supporting structure design in additive manufacturing through explicit topology optimization.Comput.Methods Appl.Mech.Eng.323,27–63(2017)

    16.Eschenauer,H.A.,Olhoff,N.:Topology optimization ofcontinuum structures:a review.J.Appl.Mech.Appl.Mech.Rev.54,331–390(2001)

    17.Rozvany,G.I.N.:A critical review of established methods of structural topology optimization.Struct.Multidiscip.Optim.37,217–237(2009)

    18.Sigmund,O.,Maute,K.:Topology optimization approaches.Struct.Multidiscip.Optim.48,1031–1055(2013)

    19.Sigmund,O.:Materials with prescribed constitutive parameters:an inverse homogenization problem.Int.J.Solids Struct.31,2313–2329(1994)

    20.Sigmund,O.:Tailoring materials with prescribed elastic properties.Mech.Mater.20,351–368(1995)

    21.Clausen,A.,Wang,F.,Jensen,J.S.,et al.:Topology optimized architectures with programmable Poisson’s ratio over large deformations.Adv.Mater.27,5523–5527(2015)

    22.Xie,Y.M.,Yang,X.,Shen,J.,etal.:Designing orthotropic materials for negative or zero compressibility.Int.J.Solids Struct.51,4038–4051(2014)

    23.Wang,X.,Xu,S.,Zhou,S.,et al.:Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:a review.Biomaterials 83,127–141(2016)

    24.Rodrigues,H.,Guedes,J.M.,Bendsoe,M.P.:Hierarchical optimization of material and structure.Struct.Multidiscip.Optim.24,1–10(2002)

    25.Coelho,P.G.,Fernandes,P.R.,Guedes,J.M.,et al.:A hierarchical model for concurrent material and topology optimisation of threedimensional structures.Struct.Multidiscip.Optim.35,107–115(2008)

    26.Liu,L.,Yan,J.,Cheng,G.:Optimum structure with homogeneous optimum truss-like material.Comput.Struct.86,1417–1425(2008)

    27.Niu,B.,Yan,J.,Cheng,G.:Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency.Struct.Multidiscip.Optim.39,115–132(2009)

    28.Deng,J.,Yan,J.,Cheng,G.:Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material.Struct.Multidiscip.Optim.47,583–597(2013)

    29.Guo,X.,Zhao,X.,Zhang,W.,et al.:Multi-scale robust design and optimization considering load uncertainties.Comput.Methods Appl.Mech.Eng.283,994–1009(2015)

    30.Huang,X.,Zhou,S.W.,Xie,Y.M.:Topology optimization of microstructures of cellular materials and composites for macrostructures.Comput.Mater.Sci.67,397–407(2013)

    31.Yan,X.,Huang,X.,Sun,G.,et al.:Two-scale optimal design of structures with thermal insulation materials.Compos.Struct.120,358–365(2015)

    32.Liu,Q.,Chan,R.,Huang,X.:Concurrent topology optimization of macrostructures and material microstructures for natural frequency.Mater.Des.106,380–390(2016)

    33.Xu,B.,Jiang,J.S.,Xie,Y.M.:Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance.Compos.Struct.128,221–233(2015)

    34.Xu,B.,Xie,Y.M.:Concurrent design of composite macrostructure and cellular microstructure under random excitations.Compos.Struct.123,65–77(2015)

    35.Xu,B.,Huang,X.,Xie,Y.M.:Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads.Compos.Struct.142,335–345(2016)

    36.Zhang,W.,Sun,S.:Scale-related topology optimization of cellular materials and structures.Int.J.Numer.Methods Eng.68,993–1011(2006)

    37.Xia,L.,Breitkopf,P.:Concurrent topology optimization design of material and structure within FE2nonlinear multiscale analysis framework.Comput.Methods Appl.Mech.Eng.278,524–542(2014)

    38.Xia,L.,Breitkopf,P.:Recent advances on topology optimization of multiscale nonlinear structures.Arch.Comput.Methods Eng.24,227–249(2016)

    39.Jia,J.,Cheng,W.,Long,K.,et al.:Hierarchical design of structures and multiphase material cells.Comput.Struct.165,136–144(2016)

    40.Long,K.,Han,D.,Gu,X.:Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency.Comput.Mater.Sci.129,194–201(2017)

    41.Chen,W.,Tong,L.,Liu,S.:Concurrent topology design of structure and material using a two-scale topology optimization.Comput.Struct.178,119–128(2017)

    42.Sui,Y.,Peng,X.:The ICM method with objective function transformed by variable discrete condition for continuum structure.Acta Mech.Sin.22,68–75(2006)

    43.Sui,Y.,Yang,D.:Anew method for structural topological optimization based on the concept of independent continuous variables and smooth model.Acta Mech.Sin.14,179–185(1998)

    44.Sui,Y.:Modelling,Transformation and Optimization? New Developments of Structural Synthesis Method.Dalian University of Technology Press,Dalian(1996)

    45.Andreassen,E.,Andreasen,C.S.:How to determine composite material properties using numerical homogenization.Comput.Mater.Sci.83,488–495(2014)

    46.Zuo,Z.H.,Xie,Y.M.:Evolutionary topology optimization of continuum structures with a global displacement control.Comput.Aided Des.56,58–67(2014)

    47.Lazarov,B.S.,Sigmund,O.:Filters in topology optimization based on Helmholtz-type differential equations.Int.J.Numer.Methods Eng.86,765–781(2011)

    48.Amstutz,S.,Giusti,S.M.,Novotny,A.A.,etal.:Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures.Int.J.Numer.Methods Eng.84,733–756(2010)

    49.Svanberg,K.:The method of moving asymptotes-a new method for structural optimization.Int.J.Numer.Methods Eng.24,359–373(1987)

    亚洲黑人精品在线| 免费看av在线观看网站| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区免费| 多毛熟女@视频| 国产精品一区二区免费欧美 | 久久精品久久精品一区二区三区| 午夜91福利影院| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 男人舔女人的私密视频| 无遮挡黄片免费观看| 日韩视频在线欧美| 久久久久久久久久久久大奶| 精品一区在线观看国产| 久久国产精品影院| 男女午夜视频在线观看| 波多野结衣av一区二区av| 午夜精品国产一区二区电影| 蜜桃国产av成人99| 亚洲精品国产区一区二| 丝瓜视频免费看黄片| 一个人免费看片子| kizo精华| 一二三四社区在线视频社区8| 国产精品一区二区在线观看99| 亚洲国产精品一区二区三区在线| 国产精品国产三级专区第一集| 久久精品久久久久久噜噜老黄| 一级毛片 在线播放| 国产精品 欧美亚洲| 中文字幕av电影在线播放| 性色av一级| 亚洲成人国产一区在线观看 | 啦啦啦啦在线视频资源| 19禁男女啪啪无遮挡网站| 亚洲美女黄色视频免费看| 久久午夜综合久久蜜桃| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 成年人黄色毛片网站| 亚洲情色 制服丝袜| 欧美成人午夜精品| 99re6热这里在线精品视频| 国产精品国产三级专区第一集| 国产人伦9x9x在线观看| 日韩一区二区三区影片| 在线天堂中文资源库| 久久99精品国语久久久| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放| 久久精品久久久久久噜噜老黄| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 欧美日韩综合久久久久久| 久久久精品国产亚洲av高清涩受| 99久久综合免费| 亚洲av在线观看美女高潮| 精品久久久久久久毛片微露脸 | 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| bbb黄色大片| 色播在线永久视频| 精品亚洲成a人片在线观看| 成人亚洲欧美一区二区av| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 18禁观看日本| 免费观看人在逋| 中文字幕色久视频| 一级黄色大片毛片| 亚洲精品一二三| 免费人妻精品一区二区三区视频| av国产精品久久久久影院| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 亚洲精品国产色婷婷电影| 少妇 在线观看| 国产91精品成人一区二区三区 | 亚洲国产欧美一区二区综合| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影| 99re6热这里在线精品视频| 中文字幕人妻熟女乱码| 9191精品国产免费久久| 亚洲精品国产区一区二| 精品国产国语对白av| 精品少妇久久久久久888优播| 男人爽女人下面视频在线观看| 久久久久久人人人人人| 亚洲人成网站在线观看播放| 你懂的网址亚洲精品在线观看| 99精品久久久久人妻精品| 亚洲av男天堂| 真人做人爱边吃奶动态| 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 夫妻性生交免费视频一级片| 国产成人av教育| 看免费av毛片| 免费看av在线观看网站| 1024香蕉在线观看| 波野结衣二区三区在线| 亚洲黑人精品在线| 精品熟女少妇八av免费久了| 日韩中文字幕视频在线看片| 久久精品久久精品一区二区三区| 成年人午夜在线观看视频| 18禁观看日本| 久久亚洲国产成人精品v| 波多野结衣一区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 久久青草综合色| 下体分泌物呈黄色| 少妇精品久久久久久久| 欧美日本中文国产一区发布| 日韩大码丰满熟妇| 国产一区亚洲一区在线观看| 热re99久久国产66热| 97在线人人人人妻| 日韩大码丰满熟妇| 亚洲欧美一区二区三区久久| 久久天堂一区二区三区四区| 99精品久久久久人妻精品| 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 老熟女久久久| 日本a在线网址| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 亚洲精品成人av观看孕妇| 青青草视频在线视频观看| 国产精品99久久99久久久不卡| 一级黄片播放器| a级毛片黄视频| av在线app专区| 免费在线观看完整版高清| 国产精品av久久久久免费| 欧美日韩一级在线毛片| 国产精品偷伦视频观看了| 精品国产乱码久久久久久男人| 欧美精品一区二区大全| av一本久久久久| 国产精品免费视频内射| 国产淫语在线视频| 99国产综合亚洲精品| 亚洲激情五月婷婷啪啪| 精品欧美一区二区三区在线| 9191精品国产免费久久| 亚洲专区中文字幕在线| 久久久久精品人妻al黑| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 国产又爽黄色视频| 精品国产乱码久久久久久男人| 久久这里只有精品19| 日日夜夜操网爽| 美女视频免费永久观看网站| 久久av网站| 十八禁人妻一区二区| 精品一区在线观看国产| 午夜激情av网站| 精品一区二区三卡| 久久人妻熟女aⅴ| 在线av久久热| 女人爽到高潮嗷嗷叫在线视频| 老熟女久久久| 国产精品一区二区在线观看99| 最黄视频免费看| 免费在线观看日本一区| 悠悠久久av| 在线精品无人区一区二区三| 亚洲欧美一区二区三区黑人| 一级毛片 在线播放| 亚洲欧美一区二区三区久久| 久久精品国产a三级三级三级| www.av在线官网国产| 日本色播在线视频| av在线播放精品| 日韩一区二区三区影片| 午夜福利一区二区在线看| 最近最新中文字幕大全免费视频 | 美国免费a级毛片| 午夜免费成人在线视频| 精品视频人人做人人爽| 精品福利永久在线观看| 在线av久久热| 精品国产国语对白av| 日日爽夜夜爽网站| 丰满迷人的少妇在线观看| 欧美日韩av久久| 97在线人人人人妻| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 午夜91福利影院| 在线亚洲精品国产二区图片欧美| 美女午夜性视频免费| 一二三四社区在线视频社区8| 免费看十八禁软件| 亚洲精品国产色婷婷电影| 9热在线视频观看99| 久久狼人影院| 欧美激情高清一区二区三区| 国产一区亚洲一区在线观看| 一本综合久久免费| 纯流量卡能插随身wifi吗| 国产三级黄色录像| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀 | 亚洲精品国产av成人精品| 中文字幕制服av| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美精品济南到| 久久久久视频综合| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡 | 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 国产黄频视频在线观看| 久久综合国产亚洲精品| 性色av一级| 久久鲁丝午夜福利片| 久9热在线精品视频| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 国产成人一区二区在线| 91国产中文字幕| av在线播放精品| 嫩草影视91久久| 欧美激情高清一区二区三区| av又黄又爽大尺度在线免费看| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 欧美日韩视频精品一区| 亚洲中文日韩欧美视频| 久久久久久人人人人人| 国产av国产精品国产| 侵犯人妻中文字幕一二三四区| 18禁观看日本| 少妇被粗大的猛进出69影院| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 久久久久久久国产电影| 欧美黑人精品巨大| 国产视频内射| netflix在线观看网站| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 在线国产一区二区在线| 91成人精品电影| 性色av乱码一区二区三区2| 午夜久久久在线观看| 又紧又爽又黄一区二区| 国产成年人精品一区二区| 女警被强在线播放| 麻豆成人av在线观看| 欧美日韩乱码在线| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久, | 一进一出抽搐gif免费好疼| av超薄肉色丝袜交足视频| 一本大道久久a久久精品| 久久香蕉国产精品| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 黑人操中国人逼视频| 免费看a级黄色片| 国产黄色小视频在线观看| 亚洲第一电影网av| 麻豆成人av在线观看| 黄色视频不卡| 国产亚洲欧美98| 国产精品国产高清国产av| 亚洲激情在线av| 中文字幕人妻熟女乱码| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 禁无遮挡网站| 中文字幕高清在线视频| 美女免费视频网站| 久久久久国内视频| 亚洲精品av麻豆狂野| 人人妻人人澡欧美一区二区| 国产成人精品无人区| 黄片播放在线免费| 久久人人精品亚洲av| 一级片免费观看大全| 日日夜夜操网爽| www.自偷自拍.com| 69av精品久久久久久| 国产在线精品亚洲第一网站| 国产精品影院久久| 亚洲黑人精品在线| 窝窝影院91人妻| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 亚洲av中文字字幕乱码综合 | 国产av又大| 可以在线观看毛片的网站| 亚洲国产精品999在线| 视频在线观看一区二区三区| 看片在线看免费视频| 美女免费视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 黄网站色视频无遮挡免费观看| 日本 欧美在线| 国产精品亚洲美女久久久| 日韩欧美三级三区| 久久久久久亚洲精品国产蜜桃av| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 欧美乱妇无乱码| 看黄色毛片网站| 亚洲片人在线观看| 免费在线观看黄色视频的| 搞女人的毛片| 黄片小视频在线播放| av片东京热男人的天堂| 免费在线观看影片大全网站| 1024手机看黄色片| ponron亚洲| 国产真实乱freesex| 色哟哟哟哟哟哟| 两性夫妻黄色片| 亚洲中文字幕日韩| 久久九九热精品免费| 黄色成人免费大全| 国产成人影院久久av| 国产精品一区二区精品视频观看| 99久久无色码亚洲精品果冻| 色播在线永久视频| 精品乱码久久久久久99久播| 精品无人区乱码1区二区| 午夜激情av网站| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 亚洲中文字幕一区二区三区有码在线看 | 可以免费在线观看a视频的电影网站| 大型黄色视频在线免费观看| 精品无人区乱码1区二区| 嫩草影视91久久| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| av福利片在线| 神马国产精品三级电影在线观看 | 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 黑丝袜美女国产一区| 中文在线观看免费www的网站 | 国产一区在线观看成人免费| 亚洲人成电影免费在线| 好男人电影高清在线观看| 日韩有码中文字幕| 午夜免费成人在线视频| 亚洲成国产人片在线观看| 国产成人系列免费观看| 亚洲avbb在线观看| 午夜免费观看网址| 怎么达到女性高潮| 午夜福利免费观看在线| 欧美乱色亚洲激情| 欧美zozozo另类| 国产精品一区二区精品视频观看| 俺也久久电影网| 少妇 在线观看| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 成年版毛片免费区| 国产精品日韩av在线免费观看| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 国产野战对白在线观看| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 美女高潮到喷水免费观看| 色综合欧美亚洲国产小说| 亚洲全国av大片| 欧美成人一区二区免费高清观看 | 国产单亲对白刺激| 午夜福利欧美成人| 中文字幕最新亚洲高清| 国产成年人精品一区二区| 国产精品电影一区二区三区| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 91av网站免费观看| 免费无遮挡裸体视频| 中国美女看黄片| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 好男人电影高清在线观看| 亚洲人成电影免费在线| 亚洲国产高清在线一区二区三 | www.熟女人妻精品国产| 日韩精品青青久久久久久| 日韩高清综合在线| 天天一区二区日本电影三级| 视频区欧美日本亚洲| 中文字幕久久专区| 欧美午夜高清在线| 亚洲欧美日韩高清在线视频| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 搡老岳熟女国产| 99精品久久久久人妻精品| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 成人18禁在线播放| 美女免费视频网站| 国产视频内射| 日本三级黄在线观看| 此物有八面人人有两片| 午夜精品在线福利| 久热爱精品视频在线9| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 国产精品久久久人人做人人爽| 一卡2卡三卡四卡精品乱码亚洲| 一进一出好大好爽视频| 中文字幕av电影在线播放| 国产精品av久久久久免费| 成人国产综合亚洲| av片东京热男人的天堂| 亚洲精品国产区一区二| а√天堂www在线а√下载| 成人精品一区二区免费| 90打野战视频偷拍视频| 色老头精品视频在线观看| 午夜免费激情av| 亚洲熟女毛片儿| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 精品高清国产在线一区| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 欧美日本亚洲视频在线播放| 日韩一卡2卡3卡4卡2021年| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 手机成人av网站| 51午夜福利影视在线观看| 国产精品野战在线观看| 岛国视频午夜一区免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人av| 好看av亚洲va欧美ⅴa在| 老鸭窝网址在线观看| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 丰满的人妻完整版| 一区二区三区国产精品乱码| 亚洲国产精品成人综合色| 不卡一级毛片| 女人被狂操c到高潮| 精品国产美女av久久久久小说| 精品国内亚洲2022精品成人| 搡老妇女老女人老熟妇| 动漫黄色视频在线观看| 国产亚洲av嫩草精品影院| 不卡一级毛片| 麻豆国产av国片精品| 亚洲成人久久性| 久久香蕉激情| 老汉色∧v一级毛片| 黄片大片在线免费观看| 一级a爱视频在线免费观看| 欧美黑人巨大hd| 精品福利观看| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 国产成人精品无人区| www日本在线高清视频| 狠狠狠狠99中文字幕| 亚洲国产精品合色在线| 国产成人精品无人区| 婷婷亚洲欧美| 色精品久久人妻99蜜桃| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| av视频在线观看入口| 岛国在线观看网站| 日本 欧美在线| 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 久久精品91蜜桃| 香蕉国产在线看| 国产成人欧美| 精品欧美国产一区二区三| 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 免费在线观看日本一区| 狠狠狠狠99中文字幕| 丝袜在线中文字幕| 婷婷丁香在线五月| 天堂√8在线中文| 757午夜福利合集在线观看| 1024手机看黄色片| 国产又色又爽无遮挡免费看| 成人欧美大片| 一级片免费观看大全| 男人舔女人的私密视频| 亚洲国产精品久久男人天堂| 久久久久久大精品| 黑人巨大精品欧美一区二区mp4| 精品无人区乱码1区二区| 日韩欧美一区二区三区在线观看| 波多野结衣巨乳人妻| 中亚洲国语对白在线视频| 好男人电影高清在线观看| 日本在线视频免费播放| 久久久精品欧美日韩精品| 国产视频一区二区在线看| 免费在线观看成人毛片| 亚洲第一青青草原| 搞女人的毛片| 久久九九热精品免费| 国产成人系列免费观看| 看免费av毛片| 免费人成视频x8x8入口观看| 97碰自拍视频| 一本精品99久久精品77| 国产亚洲精品久久久久5区| 在线观看www视频免费| 老司机午夜福利在线观看视频| 一二三四社区在线视频社区8| 岛国在线观看网站| 黄色片一级片一级黄色片| 他把我摸到了高潮在线观看| 在线观看舔阴道视频| 91国产中文字幕| 搡老岳熟女国产| 国产精品电影一区二区三区| 国产精品 国内视频| 欧美一区二区精品小视频在线| 亚洲免费av在线视频| 一a级毛片在线观看| 久久国产精品人妻蜜桃| 久久久久久大精品| 日韩国内少妇激情av| 1024视频免费在线观看| 精品国产亚洲在线| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 欧美午夜高清在线| 我的亚洲天堂| 女性生殖器流出的白浆| 亚洲va日本ⅴa欧美va伊人久久| 国产熟女午夜一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲午夜理论影院| 欧美乱妇无乱码| 男女下面进入的视频免费午夜 | 亚洲真实伦在线观看| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 国产在线精品亚洲第一网站| 久久久水蜜桃国产精品网| av电影中文网址| 国产熟女午夜一区二区三区| 久久精品国产亚洲av香蕉五月| 搡老熟女国产l中国老女人| 最近最新免费中文字幕在线| 不卡一级毛片| xxxwww97欧美| 两个人免费观看高清视频| 成人18禁高潮啪啪吃奶动态图| 一二三四社区在线视频社区8| 亚洲一区中文字幕在线| 免费在线观看亚洲国产| 亚洲久久久国产精品| 老熟妇乱子伦视频在线观看| 国产日本99.免费观看| 亚洲精品美女久久久久99蜜臀| 婷婷精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 国产精品二区激情视频| 欧美日韩精品网址| 成年免费大片在线观看| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 老鸭窝网址在线观看| 国产精品综合久久久久久久免费| 国产97色在线日韩免费|