• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional analysis of progressive delamination in thin film electrodes

    2018-04-18 02:56:02MeiLiuBoLuDongLiShiJunQianZhang
    Acta Mechanica Sinica 2018年2期

    Mei Liu·Bo Lu·Dong-Li Shi·Jun-Qian Zhang

    List of symbols

    x(andη),z(andζ)Cartesian coordinates(m)

    LandhLength and thickness of the active layer(m)

    L cCritical size for delamination(m)

    cMolar concentration of lithium-ions(mol·m?3)

    cmaxStoichiometric saturation concentration(mol·m?3)

    caveAverage concentration(mol·m?3)

    ?Inhomogeneity of concentration(mol·m?1)

    N xandQ xzNormal and shear force resultant(N·m?1)

    MxBending moment of active layer(N)

    McDiffusion-induced bending moment

    (N)

    i nSurface current density(A·m?2)

    ˉiElectrochemical load factor

    DDiffusivity of lithium-ions(m2·s?1)

    ΩPartial molar volume of active material(m3·mol?1)

    p(andσn)Interfacial normal stress(N ·m?2)

    q(andσt)Interfacial shear stress(N ·m?2)

    σncandσtcInterfacial normal and shear strength(N·m?2)

    σx,σz,τxzStresses(N ·m?2)

    εx,εz,εxzStrains

    δnandδtInterfacial opening and sliding dis

    placement(m)

    δncandδtcCritical opening and sliding displacement(m)

    ΓInterfacial fracture toughness(J·m?2)

    υpandυsPoisson’s ratio of active material and

    substrate

    EpandEsYoung’s modulus of active material and substrate(N·m?2)

    upandwpDisplacements of the active layer(m)

    u0Mid-plane displacement(m)

    usandwsDisplacements of substrate surface(m)

    L1andL2Rigid displacements of the active layer and substrate(m)

    IBending stiffness of active layer(N·m)

    GpShear modulus of the active layer(N·m?2)

    μFriction coefficient

    QState of charge(SOC)

    tTime(s)

    ˉtcTime to delamination onset

    FFaraday constant(s·A ·mol?1)

    H1Sliding displacement related to the interfacial stresses

    1 Introduction

    The lithium-ion battery is one of the main power sources due to its high operation voltage,high energy density,low self discharge rate,and long cycle life[1].In order to satisfy the increasing requirements of energy density and power density,candidate materials have been investigated for the new generation of the electrodes.The capacity of a traditional carbonaceous anode is372 mAh/g[2],which is considerably lower than 4000 mAh/g for silicon[3].However,the volumetric change for the silicon electrode is much larger than the carbonaceous anode.Si experiences more than 300%volumetric change when it is fully lithiated[4,5].This may result in greatly high stresses and hereafter cracking or delamination of the electrodes[6].Consequently,the capacity loses and cycle performance fades during charging-discharging cycles[7].

    There are many studies attempting to reduce the damage of the silicon electrodes and consequently improve the electrochemical performance.Some investigations mainly focus on altering structures of the electrodes,such as nanowires[8],particles[9,10],and thin films[11].Subsequently,patterned silicon islands are fabricated as active material[12],which may avoid the in-plane cracking[13].However,the delamination in the interface between active material and current collector still exists[6,12].

    Several theoretical and experimental works addressed the delamination in thin film electrodes.For instance,Xiao et al.[12]found that a smaller size than a critical value can avoid the interfacial delamination.Meanwhile,Haftbaradaran et al.[14]used the shear-lag model to predict the critical size,in which the energy release rate is used as the delamination criteria in both two-dimensional and axisymmetric structure.Based on the cohesive model Pal et al.[15]focused on the impact of elastic-plastic deformation in the current collector on interfacial delamination.In addition,Liu[16]discussed the active layer debonded from a rigid substrate by using the finite element calculation with the cohesive model.Also,Prezas et al.[17]observed that the degree of delamination is proportional to the charge rate in constant-current cells.

    In our previous work[18,19],the evolution of the interfacial delamination has been studied by employing the cohesive model under the axisymmetric condition.However, the actual structure of the silicon islands is not necessarily the circular disk.For instance,the patterned silicon islands fabricated by Xiao etal.[12]were square.To some extent,plane strain and plane stress are two extreme cases for the three-dimensional problem of the rectangular plate.The symmetrical cross section of the rectangular plate can be an analogy with the plane strain condition since the normal and shear strains on the cross section are zero.Likewise,the edge surface of the rectangular plate is in accord with the plane stress condition.The stress/strain conditions in the rest region of the rectangular plate are in some measure between plane strain and plane stress.Hence,the plane analysis will be employed to evaluate the delamination for the rectangular island electrode as two extreme cases.

    The present work aims to develop a semi-analytical model with plane analysis for the interface delamination caused by diffusion-induced stresses.Several key factors of delamination will be obtained and evaluated.The impact of the constraint perpendicular to the plane will be discussed by comparing the two presented plane conditions.Finally,a formula for the critical size will be provided.

    2 Concentration profile

    Consider an electrode consists of an active layer and a substrate,as shown in Fig.1.The strip with widthhand length 2Lrepresents the active layer bonded to the semi-infinite substrate,which represents the supporting structures.The Li-ions transport through both top and edge surfaces,and diffuse along the directions of thickness and length during charging or discharging.

    In the present work,the charging/discharging behaviors of thin film electrodes are investigated under galvanostatic conditions.It is assumed that the diffusion is governed by Fick’s second law

    Fig.1 A strip active layer bonded to a semi-infinite substrate

    wherecis the molar concentration of Li-ion in the active layer andDis the diffusivity.The initial molar concentration is assumed to be zero

    Neglecting the electrochemical kinetics at the free surfaces during insertion and extraction,we assume the current density is uniform over the top and edge surfaces of the active layer and is proportional to cell current.Finally,the boundary conditions can be described as[19]

    whereF=96485.3 C/mol is Faraday constant,inis the surface current density for which magnitude is fixed during galvanostatic operation[20].The sign ofinis positive for lithiation while negative for delithiation.Consequently,by using the method of separation of variables,the dimensionless concentration in the active layer can be obtained as follows[21]

    Fig.2 Distribution of dimensionless concentration

    Figure 2 illustrates the distribution of Li-ions,taking into account the edge diffusion.The figure only shows the region ofˉx>0,because the structure is symmetric about thez-axis.

    3 Two-dimensional analysis for delamination

    The damage would start from the edge while deformations of the active layer and substrate mismatch.There are three zones during the delamination in the interface,i.e.,damage free zone,cohesive zone,and debonding zone[19],as shown in Fig.3.The stresses and the corresponding displacements are considered to be continuous in the damage free zone,since the interface is bonded perfectly.The triangular cohesive law is employed in the cohesive zone,the region ahead of the propagating crack.The triangular cohesive[22]is used to explain the constitutive behavior of the interface,and can be described as

    whereδnandδtare the interfacial opening and sliding separations,respectively,whileδncandδtcare corresponding critical values.The delamination occurs when the opening or sliding separation is greater than its limit.σnandσtare the interfacial normal and shear stresses,respectively.σncdetails of the cohesive law for the plane stress and plane strain cases might be different[23],it is also believed that two most important properties of the cohesive model are the strength and the fracture energy[24].Therefore,in the present work,the same cohesive model for both cases is assumed.

    There are normal stress and shear stress in the interface of the active layer and the substrate as shown in Fig.4.The active layer can be modeled as a strip in plane with the distributed vertical loadp(x)and horizontal loadq(x)provided by the substrate,and the interfacial normal and shear stresses are equal to the vertical and horizontal loads,respectively,i.e.,σz(x)=p(x),τxz(x)=q(x).The stresses can be solved by adopting plane analysis and exploiting the interfacial conditions described above.As for the substrate,it is regarded as an elastic problem of a semi-infinite plane.

    For the active layer,the constitutive equation solving the plane stress problem can be written as

    Fig.3 The deformation and the corresponding delamination caused by a lithiation and b delithiation

    Fig.4 Interfacial stresses p(x)and q(x)caused by the charging

    The nonzero stresses boundary conditions for the active layer are given as

    The stresses can be expressed as functions of the displacements

    Substituting Eq.(8a)–(8c)into the balance equations,then integrating the obtained equations and combining with the boundary conditions,we have the differential functions as follows

    The corresponding boundary conditions for Eq.(9a)and(9b)are

    whereL1is an unknown constant that represents the rigid vertical displacement of the active layer.The interfacial displacements of the active layer can be resolved once the stressesp,q,and the concentrationcare determined.

    The substrate endures the stresses in the region of the interface as the result of the interaction between the active layer and substrate.Thus,the boundary conditions can be described as

    The displacements on the surface of the semi-infinite substrate read as[26]

    whereusandwsrepresent the lateral and vertical displacements,respectively.The subscript s represents the substrate,e.g.,Young’s modulusEsand Poisson’s ratioυs.L2is the rigid vertical displacement.The interfacial displacements of the substrate can also be resolved once the stressespandqare determined.

    In the damage-free zone,the horizontal and vertical interfacial displacements are continuous,i.e.,up=usandwp=ws,while stressespandqare also continuous in the interface.The interface falls into the cohesive zone when the stresses exceed the corresponding restrictions.In the cohesive zone,pandqare still continuous,but the interfacial displacements are no longer continuous and have the relationships ofup+δt=usandwp+δn=ws.The cohesive stresses are linear with the corresponding interfacial separations,when the plate and the substrate separate completely,that is in the debonding zone.For the opening crack in the debonding zone,there is no interfacial stress,i.e.,p=q=0.For the closing crack,the normal stresspand the deflections are continuous,i.e.,wp=ws,while the shear stress is induced by friction,i.e.,q(x)=sgn(δt)μp(x),whereμis the friction coefficient.

    The integral governing equations with dimensionless interfacial stresses can be obtained as

    Due to the relation ships between the plane strain and plane

    4 Results and discussion

    4.1 Evolutions of delamination with charging time

    Fig.5 Evolution of normalized length of debonding zone against the charging time compared in plane stress and plane strain for variations of a length of active layerˉL,b thickness of active layerˉh,c electrochemical load factorˉi,d Poisson’s ratio of active layer υp,e Young’s modulus ratioˉE,f cohesive strengthˉσtc,and g Poisson’s ratio of the substrate υs

    Figure 5a,b illustrates the impact of the sizes(ˉLandˉh)of the active layer.Smaller length or thickness of the plate,leads to slower growth of delamination.Therefore,Fig.5a,b tells that the active layer should be prepared in small sizes to mitigate the interfacial damage of the electrode.It is also found that the difference between the plane strain and plane stress is significantly affected by the sizes of the active layer,which means the constraint perpendicular to the plane would play a great role on delamination in small size silicon island electrodes.

    Figure 5c shows the effect of the charging operation.Smallerˉileads to slower damage initiation and slower growth speed of delamination.An increase ofˉiwould significantly reduce the difference between two plane conditions.Besides,it is found thatˉihas more influence on the plane stress than plane strain.Therefore,it is suggested that the smaller electrochemical load factor is preferred in the operation of batteries,especially for the plane stress condition.

    Figure 5d demonstrates the evolution of the debonding zone for different Poisson’s ratio of the active layerυp.Interestingly,υphas considerable impact on the delamination process in plane strain.It might be caused by the effect of Poisson’s ratio,i.e.,the extra deformation along thex-axis induced by the constraint perpendicular to the plane.This also suggests that employing the active material with a smaller Poisson’s ratio is a possible strategy to delay the damage initiation.

    In Fig.5e–g,it is found that the Young’s modulus ratioˉE,the dimensionless cohesive strengthˉσtc,and the Poisson’s ratio of the substrateυshave insignificant impact on the delamination.Especially forυs,its variation barely impacts on the delamination process.As toˉEandˉσtc,only the onset and the early stage of the delamination are slightly affected by them,which is consistent with the results of Lu etal.[27].

    4.2 The time to delamination onset

    In order to avoid the delamination,a possible strategy of partial charge,which controls the state of charge(SOC)or the charging time and terminates the charging process before damage occurs,has been presented in Ref.[27].Since the impact of partial charge on decrease of cell capacity is limited[27,28],accelerated fatigue caused by partial charge should not be a major problem compared with the dramatic volume change of the Si electrode.The critical SOC or time to delamination onset is the necessary parameter for the utilization of the partial charge method.In galvanostatic charge operation,the SOC is directly proportional to the dimensionless time.Hence,the time to delamination onset will be discussed via the seven parameters ofˉi,ˉσtc,ˉE,υp,υs,ˉh,andˉLin this section.

    Figure 6 illustrates the effect of the parameters on delamination initiation,where the plane strain is also compared with plane stress.It is also found that the delamination onset for plane strain is earlier than the one for plane stress.This phenomenon is consistent with the conclusion of Fig.5,indicating that plane constraint for plane strain condition accelerates the delamination.

    Figure 6a,b plots the impacts of the sizes of active layer,which show that the time to delamination onset decreases with the increase of both dimensionless thicknessˉh=h/δtcand dimensionless lengthˉL=L/δtc.Meanwhile,the difference between plane strain and plane stress is significantly affected by the sizes,especially in the range of small sizes.These results are consistent with the ones of Fig.5a,b.

    Figure 6c shows the dimensionless critical time with respect to the dimensionless charging velocity.Smallˉican delay the delamination onset significantly.Whenˉivaries from 2 to 20,the critical time for delamination initiationˉtcdecreases to approximately 10 percent of its original value,which may explain why rapid charging is not preferred in real operations.Besides,the difference between plane stress and plane strain is also considerably affected byˉi.

    Figure 6d illustrates the impact of the Poisson’s ratio of the active layerυpon the delamination onset.The critical time reduces almost linearly with increase ofυp,indicating that the Poisson’s ratio of the active layer is another key factor that influences the delamination process.The significant increase of difference between the two curves also indicates that the difference between plane strain and plane stress is mainly caused by the effect of Poisson’s ratio of the active layer.

    Figure 6e–g shows the influence of Young’s modulus ratioˉE,the dimensionless cohesive strengthˉσtc,and the Poisson’s ratio of the substrateυs.It is found that largeˉEor smallˉσtctend to induce delamination,although the impact is insignificant.Moreover,as shown in Fig.6g,the delamination onset has an invisible weak dependence on the Poisson’s ratio of the substrateυs.

    Exceptˉiwhich represents the electrochemical load,the other six parameters all stand for the material properties and the geometry sizes.Comparing the six curves in Fig.6a,b,d–g,it is found that the influence of dimensionless lengthˉLon the delamination initiation is the most significant.Thereby the delamination onset can be significantly delayed by using a smaller active plate.This tells us that a critical length seems to exist for the island electrodes in which delamination could not occur at all.

    Fig.6 The time to delamination onset with respect to different parameters of the dimensionless.a Length of active layerˉL,b thickness of active layerˉh,c electrochemical load factorˉi,d Poisson’s ratio of the active layer υp,e Young’s modulus ratioˉE,f cohesive strengthˉσtc,and g Poisson’s ratio of the substrate υs

    4.3 The critical size for delamination

    It has been reported that reducing the size of the thin film electrode smaller than a critical value is another possible strategy to avoid delamination[12,14,27].Therefore,this section will investigate the critical size and draw a comparison between plane strain and plane stress.It has been reported that the critical size for delamination caused by diffusion-induced stresses only exists when mode-II(sliding)is the dominated mode[27].Similarly,in the present work,the critical size will be only discussed when the dominated interfacial damage is sliding.

    SOC can be obtained as follows[27]

    while a lithium-ion cell is charging in galvanostatic operation,whereΩcmaxis the maximum volumetric strain,cmaxis the stoichiometric saturation concentration,andQis the SOC.

    The sliding displacement happening at the edge,i.e.,ˉx=1,can be described as

    in which the interface stressesˉp,ˉqcan be solved by the governing Eqs.(15a)–(17d)and Eq.(20).

    The delamination begins when the sliding displacement reaches the limit,i.e.,δt=δtc.Substituting it into Eq.(22),the condition of the delamination initiation can be obtained as

    Considering the critical case that delamination does not occur

    Fig.7 The dimensionless critical size against the maximum volumetric strain in both plane strain and plane stress,where the solid lines denote the approximate analytical expression and the points represent the semi-analytical solution

    This expression indicates that the dimensionless critical lengthˉL c=L c/δtcis a function ofΩcmaxandυp.Reducing the maximum volumetric expansion and the Possion’s ratio of the active layer could be two effective ways to suppress the delamination.

    Figure 7 shows the critical size for delamination varies with the maximum volumetric strain.The approximate results are given by Eq.(27a)and(27b)while the semi analytical results are given by Eqs.(15a)–(17d)and Eq.(20)with the delamination length equals zero exactly,and the parameters are set asˉE=0.2,ˉh=0.5,andˉσtc=2×10?4.It is found that the approximate results have great accuracy especially whenΩcmax?0.75.Thus,this approximation is more appropriate for the material with large volumetric change,such as silicon.

    5 Conclusions

    Delamination of the active layer bonded on the substrate was investigated by plane analysis.The evolution of delamination and the initiation time to delamination was studied in plane strain and plane stress simultaneously.The plane strain condition is found more prone to delamination than the plane stress condition.

    The impact of seven key parameters,i.e.,the length of the active layerˉL,the thickness of the active layerˉh,the electrochemical load factorˉi,the Poisson’s ratio of the active layerυpand the substrateυs,the Young’s modulus ratioˉE,and the cohesive strengthˉσtcwere evaluated in both the evolution of delamination and the critical time.It was found that Poisson’s ratio of substrate,elastic modulus ratio,and cohesive strength have insignificant effect on both the critical time and the delamination process.However,the smaller sizes of the active layer,charging velocity,and Poisson’s ratio of the active layer can effectively prevent the delamination.

    Finally,the critical size for delamination was obtained as a function of maximum volumetric strainΩcmaxand Poisson’s ratio of active layerυp.The deviation of approximate analytical expression with the semi-analytical solution can be neglected whileΩcmax?0.75.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 11332005 and 11172159)and the Shanghai Municipal Education Commission of China(Grant 13ZZ070).

    Appendix A:Coefficient functions in the governing equations

    Appendix B:Numerical method for solving the derived integral equations

    In order to numerically solve the integral Eqs.(15a)–(17d)and Eq.(20),the length of the active layerLis divided intoψsegments.ˉxi=ˉηi=xi/L=(2i?1)/2ψdenotes the mid-point of theith line segment.Hence,the interface can be partitioned into three zones:damage-free zone(1?i??),cohesive zone(?+1?i?ξ),and debonding zone(ξ+1?i?ψ).Numerical integration of the integrals in Eqs.(15a)–(17d)and Eq.(20)can be made by the first integral mean value theorem.Take?10ˉG pˉpdˉηas an example

    Consequently,there are 2ψ+1 unknowns includingˉp?ˉηj?,ˉq?ˉηj?,andˉL0in 2ψ+1 linear algebraic equations.For a given time,the stresses and the lengths of the cohesive zone and debonding zone can be obtained by solving the system of linear equations repeatedly.In the first iteration,initial trial values of segment numbers?andξare assumed and the corresponding interfacial stresses can be obtained by solving the equations.Accordingly,?andξcan be adjusted by comparing the interfacial stresses with cohesive strengths,as well as comparing the open/sliding displacements with critical values.Then the second iteration begins.The iteration will not stop until?andξno longer change.

    1.Chen,J.:Recent progress in advanced materials for lithium ion batteries.Materials 6,156–183(2013)

    2.Dahn,J.R.,Zheng,T.,Liu,Y.,et al.:Mechanisms for lithium insertion in carbonaceous materials.Science 270,590(1995)

    3.Boukamp,B.A.,Lesh,G.C.,Huggins,R.A.:All-solid lithium electrodes with mixed-conductor matrix.J.Electrochem.Soc.128,725–729(1981)

    4.Baggetto,L.,Niessen,R.A.,Roozeboom,F.,et al.:High energy density all-solid-state batteries:a challenging concept towards 3D integration.Adv.Funct.Mater.18,1057–1066(2008)

    5.Chan,C.K.,Peng,H.,Liu,G.,et al.:High-performance lithium battery anodes using silicon nanowires.Nat.Nanotechnol.3,31–35(2008)

    6.Maranchi,J.P.,Hepp,A.F.,Evans,A.G.,etal.:Interfacial properties of the a-Si/Cu:active-inactive thin-film anode system for lithiumion batteries.J.Electrochem.Soc.153,A1246–A1253(2006)

    7.Kasavajjula,U.,Wang,C.,Appleby,A.J.:Nano-and bulk-siliconbased insertion anodes for lithium-ion secondary cells.J.Power Sources 163,1003–1039(2007)

    8.Howe,J.Y.,Burton,D.J.,Qi,Y.,etal.:Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode.J.Power Sources 221,455–461(2013)

    9.Li,H.,Huang,X.,Chen,L.,et al.:Ahigh capacity nano Sicomposite anode material for lithium rechargeable batteries.Electrochem.Solid State 2,547–549(1999)

    10.Kim,H.,Han,B.,Choo,J.,et al.:Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries.Angew.Chem.Ind.Ed.120,10305–10308(2008)

    11.Souquet,J.L.,Duclot,M.:Thin film lithium batteries.Solid State Ion.148,375–379(2002)

    12.Xiao,X.,Liu,P.,Verbrugge,M.W.,et al.:Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries.J.Power Sources 196,1409–1416(2011)

    13.Maranchi,J.P.,Hepp,A.F.,Kumta,P.N.:High capacity,reversible silicon thin-film anodes for lithium-ion batteries.Electrochem.Solid State 6,A198–A201(2003)

    14.Haftbaradaran,H.,Xiao,X.,Verbrugge,M.W.,et al.:Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands.J.Power Sources 206,357–366(2012)

    15.Pal,S.,Damle,S.S.,Patel,S.H.,et al.:Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery.J.Power Sources 246,149–159(2014)

    16.Liu,M.:Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation.Int.J.Solids Struct.67,263–271(2015)

    17.Prezas,P.D.,Somerville,L.,Jennings,P.,et al.:Effect of fast charging of lithium-ion cells:Performance and post-test results.SAE Technical Paper,2016-01-1194(2016)

    18.Lu,B.,Song,Y.,Guo,Z.,et al.:Modeling of progressive delamination in a thin film driven by diffusion-induced stresses.Int.J.Solids Struct.50,2495–2507(2013)

    19.Lu,B.,Song,Y.C.,Guo,Z.S.,etal.:Analysis of delamination in thin film electrodes under galvanostatic and potentiostatic operations with Li-ion diffusion from edge.Acta Mech.Sin.29,348–356(2013)

    20.Cheng,Y.-T.,Verbrugge,M.W.:Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation.J.Power Sources 190,453–460(2009)

    21.Crank,J.:The Mathematics of Diffusion.Oxford University Press,Oxford(1979)

    22.Camacho,G.T.,Ortiz,M.:Computational modelling of impact damage in brittle materials.Int.J.Solids Struct.33,2899–2938(1996)

    23.Woelke,P.B.,Shields,M.D.,Hutchinson,J.W.:Cohesive zone modeling and calibration for mode I tearing of large ductile plates.Eng.Fract.Mech.147,293–305(2015)

    24.Tvergaard,V.,Hutchinson,J.W.:The relation between crack growth resistance and fracture process parameters in elastic–plastic solids.J.Mech.Phys.Solids 40,1377–1397(1992)

    25.Li,J.,Dozier,A.K.,Li,Y.,et al.:Crack pattern formation in thin film lithium-ion battery electrodes.J.Electrochem.Soc.158,A689–A694(2011)

    26.Lei,G.H.,Sun,H.S.,Ng,C.W.W.:Relative displacements in semiinfinite plane.Rock Soil Mech.35,1224(2014)

    27.Lu,B.,Song,Y.,Zhang,J.:Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries.J.Power Sources 289,168–183(2015)

    28.Szczech,J.R.,Jin,S.:Nanostructured silicon for high capacity lithium battery anodes.Energy Environ.Sci.4,56–72(2011)

    久9热在线精品视频| 亚洲av成人不卡在线观看播放网| 国产午夜精品论理片| 九色国产91popny在线| 少妇的丰满在线观看| bbb黄色大片| 最近最新免费中文字幕在线| 成人午夜高清在线视频| 久久久精品欧美日韩精品| 午夜影院日韩av| 久久精品91蜜桃| 日本黄色视频三级网站网址| 午夜两性在线视频| 国产精品99久久99久久久不卡| 日日摸夜夜添夜夜添小说| 成年女人毛片免费观看观看9| 男插女下体视频免费在线播放| 在线观看免费日韩欧美大片| 午夜福利在线观看吧| 亚洲一码二码三码区别大吗| 精品免费久久久久久久清纯| 黄色视频不卡| 老汉色av国产亚洲站长工具| 亚洲激情在线av| 国产高清激情床上av| 一区福利在线观看| 国内揄拍国产精品人妻在线| 日韩精品免费视频一区二区三区| 亚洲国产精品sss在线观看| 天天躁夜夜躁狠狠躁躁| 国产一级毛片七仙女欲春2| 国产精品99久久99久久久不卡| 国产精品一区二区精品视频观看| 不卡av一区二区三区| 亚洲最大成人中文| 亚洲自偷自拍图片 自拍| 黑人操中国人逼视频| 中文字幕高清在线视频| 亚洲国产欧美网| 久久久久久久久中文| 亚洲一区二区三区不卡视频| 亚洲自偷自拍图片 自拍| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美网| 精品国产乱子伦一区二区三区| 怎么达到女性高潮| 看免费av毛片| 久久精品影院6| 人妻夜夜爽99麻豆av| 国产精品1区2区在线观看.| 国产精品1区2区在线观看.| 婷婷精品国产亚洲av| 亚洲av五月六月丁香网| 国产精品亚洲美女久久久| 特级一级黄色大片| 亚洲av五月六月丁香网| 激情在线观看视频在线高清| 手机成人av网站| 一级黄色大片毛片| 亚洲专区字幕在线| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 变态另类成人亚洲欧美熟女| 在线a可以看的网站| 国产精品亚洲一级av第二区| 亚洲人成网站在线播放欧美日韩| 久久精品91蜜桃| 国产午夜福利久久久久久| 12—13女人毛片做爰片一| 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 岛国在线观看网站| 三级男女做爰猛烈吃奶摸视频| 又黄又爽又免费观看的视频| 国产乱人伦免费视频| 老司机在亚洲福利影院| 手机成人av网站| 久久久久久免费高清国产稀缺| 91字幕亚洲| 一级a爱片免费观看的视频| 国产精品综合久久久久久久免费| 两个人的视频大全免费| 嫩草影视91久久| 神马国产精品三级电影在线观看 | 精品久久久久久久毛片微露脸| 99精品欧美一区二区三区四区| 久久久久久久午夜电影| 舔av片在线| 成人午夜高清在线视频| 亚洲五月天丁香| 国产精华一区二区三区| 后天国语完整版免费观看| 国产欧美日韩一区二区精品| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一小说| cao死你这个sao货| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 一级片免费观看大全| 午夜亚洲福利在线播放| 久久久久九九精品影院| 国产av又大| 亚洲五月婷婷丁香| 成人手机av| 午夜激情福利司机影院| 成年免费大片在线观看| www国产在线视频色| 欧美另类亚洲清纯唯美| 国内久久婷婷六月综合欲色啪| 国产99久久九九免费精品| 久久 成人 亚洲| 老司机深夜福利视频在线观看| 国产精品一区二区精品视频观看| 亚洲电影在线观看av| 999久久久国产精品视频| 男女下面进入的视频免费午夜| 欧美黑人精品巨大| 五月玫瑰六月丁香| 舔av片在线| 岛国在线免费视频观看| 91国产中文字幕| 1024手机看黄色片| 一本一本综合久久| 日本撒尿小便嘘嘘汇集6| 精品久久久久久成人av| √禁漫天堂资源中文www| 亚洲欧美日韩高清在线视频| 亚洲国产日韩欧美精品在线观看 | 变态另类丝袜制服| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 两性夫妻黄色片| 99久久精品国产亚洲精品| 法律面前人人平等表现在哪些方面| 最新美女视频免费是黄的| 9191精品国产免费久久| 老熟妇乱子伦视频在线观看| 亚洲全国av大片| 一a级毛片在线观看| 国产高清视频在线观看网站| 久久久精品欧美日韩精品| av超薄肉色丝袜交足视频| 最近在线观看免费完整版| 久久久国产成人精品二区| 午夜精品一区二区三区免费看| 国产伦一二天堂av在线观看| 午夜激情av网站| 此物有八面人人有两片| 日韩欧美一区二区三区在线观看| 男女床上黄色一级片免费看| 日本 欧美在线| 久久精品91无色码中文字幕| 久久香蕉激情| 久久精品国产99精品国产亚洲性色| 国产片内射在线| 亚洲一区二区三区不卡视频| 老熟妇乱子伦视频在线观看| 手机成人av网站| 亚洲人成网站在线播放欧美日韩| 大型黄色视频在线免费观看| 搡老岳熟女国产| 在线免费观看的www视频| 哪里可以看免费的av片| 99国产综合亚洲精品| 日日干狠狠操夜夜爽| 国产熟女午夜一区二区三区| 女人被狂操c到高潮| 国产高清videossex| 中文字幕高清在线视频| 成年版毛片免费区| 嫩草影视91久久| 在线观看一区二区三区| 久久久水蜜桃国产精品网| 最近最新中文字幕大全免费视频| 精品欧美国产一区二区三| av片东京热男人的天堂| 91大片在线观看| 国产成人精品久久二区二区免费| 亚洲熟女毛片儿| 国产av在哪里看| 老汉色av国产亚洲站长工具| 大型av网站在线播放| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区av网在线观看| 日本成人三级电影网站| 天天躁夜夜躁狠狠躁躁| 美女午夜性视频免费| 国产高清视频在线观看网站| 亚洲av熟女| 亚洲欧美激情综合另类| 午夜精品一区二区三区免费看| 国产精品乱码一区二三区的特点| 国产午夜福利久久久久久| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲综合一区二区三区_| tocl精华| 校园春色视频在线观看| 99精品在免费线老司机午夜| 女同久久另类99精品国产91| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av | 麻豆成人午夜福利视频| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 亚洲全国av大片| 亚洲av成人av| 性色av乱码一区二区三区2| 免费在线观看成人毛片| xxx96com| 国产精品国产高清国产av| 男人舔奶头视频| 亚洲精品美女久久久久99蜜臀| av超薄肉色丝袜交足视频| 成人国语在线视频| 欧美高清成人免费视频www| 999久久久国产精品视频| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 免费看日本二区| 91在线观看av| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| av福利片在线| 观看免费一级毛片| 成人国产综合亚洲| 美女大奶头视频| 麻豆国产97在线/欧美 | 99热这里只有精品一区 | 男女视频在线观看网站免费 | 999久久久精品免费观看国产| 一a级毛片在线观看| 亚洲性夜色夜夜综合| 三级毛片av免费| 欧美最黄视频在线播放免费| 国产精品久久久久久久电影 | 久久国产精品人妻蜜桃| 国产精品国产高清国产av| 在线视频色国产色| 长腿黑丝高跟| 一级片免费观看大全| 午夜福利成人在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 此物有八面人人有两片| 亚洲国产欧美人成| 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 婷婷亚洲欧美| 村上凉子中文字幕在线| 黄色视频不卡| 一级作爱视频免费观看| www.精华液| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 深夜精品福利| 久久午夜亚洲精品久久| 法律面前人人平等表现在哪些方面| 亚洲午夜理论影院| 免费看a级黄色片| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 国产av麻豆久久久久久久| 亚洲成人久久性| 中文字幕高清在线视频| 免费在线观看视频国产中文字幕亚洲| 成人国产一区最新在线观看| 色综合站精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人妻av系列| 妹子高潮喷水视频| 日韩欧美三级三区| a在线观看视频网站| 国产又黄又爽又无遮挡在线| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 美女扒开内裤让男人捅视频| 日韩精品中文字幕看吧| 午夜福利欧美成人| 亚洲国产精品成人综合色| 日本在线视频免费播放| 在线观看免费视频日本深夜| 在线永久观看黄色视频| 午夜福利在线观看吧| 精品第一国产精品| 亚洲国产高清在线一区二区三| 日本精品一区二区三区蜜桃| 午夜免费激情av| 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 一二三四社区在线视频社区8| 欧美色视频一区免费| 国产99久久九九免费精品| 国产精品影院久久| 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 久久中文字幕人妻熟女| 国产v大片淫在线免费观看| 又黄又爽又免费观看的视频| 国产精品一及| 禁无遮挡网站| 国产精品一区二区免费欧美| 我的老师免费观看完整版| 久久精品综合一区二区三区| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 久久这里只有精品中国| 中国美女看黄片| 欧美一级a爱片免费观看看 | 免费看十八禁软件| 50天的宝宝边吃奶边哭怎么回事| 91字幕亚洲| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 亚洲人与动物交配视频| 亚洲国产欧美网| 99re在线观看精品视频| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 嫩草影视91久久| 久久人妻福利社区极品人妻图片| 午夜福利成人在线免费观看| 国产亚洲av高清不卡| 国产黄a三级三级三级人| av片东京热男人的天堂| 国产黄片美女视频| 亚洲激情在线av| 欧美日韩一级在线毛片| 国产伦在线观看视频一区| av在线播放免费不卡| 在线观看午夜福利视频| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av高清一级| 在线播放国产精品三级| 999精品在线视频| 少妇裸体淫交视频免费看高清 | 欧美激情久久久久久爽电影| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 国产亚洲精品av在线| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片| 可以在线观看毛片的网站| 日韩欧美国产一区二区入口| 18禁美女被吸乳视频| 级片在线观看| 久久久久久人人人人人| 欧美性猛交╳xxx乱大交人| 成熟少妇高潮喷水视频| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 免费人成视频x8x8入口观看| 高清在线国产一区| 91老司机精品| 色尼玛亚洲综合影院| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 国内久久婷婷六月综合欲色啪| www.熟女人妻精品国产| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区| 黄色女人牲交| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女视频黄频| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看舔阴道视频| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 国产av一区二区精品久久| 久9热在线精品视频| 香蕉久久夜色| 国产蜜桃级精品一区二区三区| 1024手机看黄色片| 日韩国内少妇激情av| 国产精品,欧美在线| bbb黄色大片| 亚洲午夜精品一区,二区,三区| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 一二三四在线观看免费中文在| 亚洲国产欧美人成| 久久草成人影院| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕av在线有码专区| 美女大奶头视频| 青草久久国产| 特级一级黄色大片| 草草在线视频免费看| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 又爽又黄无遮挡网站| 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 中文在线观看免费www的网站 | 麻豆国产av国片精品| 757午夜福利合集在线观看| 丰满人妻一区二区三区视频av | 国产乱人伦免费视频| 国产一区二区激情短视频| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 我要搜黄色片| 一级毛片女人18水好多| 午夜福利欧美成人| 国产真实乱freesex| 欧美日韩精品网址| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 丝袜美腿诱惑在线| 国产精品一区二区免费欧美| 精华霜和精华液先用哪个| 麻豆国产av国片精品| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 国产人伦9x9x在线观看| av天堂在线播放| 青草久久国产| 欧美性长视频在线观看| 岛国视频午夜一区免费看| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av| 久久 成人 亚洲| 在线永久观看黄色视频| 最新在线观看一区二区三区| 国产精品久久久久久久电影 | 国语自产精品视频在线第100页| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 一个人观看的视频www高清免费观看 | 日本精品一区二区三区蜜桃| 又爽又黄无遮挡网站| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看 | 又黄又爽又免费观看的视频| 欧美性猛交黑人性爽| 国产精品一区二区免费欧美| 色在线成人网| 给我免费播放毛片高清在线观看| 激情在线观看视频在线高清| 叶爱在线成人免费视频播放| 中文字幕久久专区| 1024香蕉在线观看| 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| 1024手机看黄色片| 一级黄色大片毛片| 欧美日韩乱码在线| 国内精品久久久久精免费| av国产免费在线观看| bbb黄色大片| 久久香蕉精品热| 99久久无色码亚洲精品果冻| 成人精品一区二区免费| 1024香蕉在线观看| 国产激情久久老熟女| 亚洲美女黄片视频| 免费在线观看黄色视频的| 女同久久另类99精品国产91| 99国产综合亚洲精品| 亚洲精品av麻豆狂野| 久久精品国产清高在天天线| 亚洲av电影不卡..在线观看| 女人高潮潮喷娇喘18禁视频| 麻豆成人午夜福利视频| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看 | 正在播放国产对白刺激| 欧美在线黄色| 两人在一起打扑克的视频| 国产精品综合久久久久久久免费| www.www免费av| 国产精品一区二区三区四区免费观看 | 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 一进一出抽搐gif免费好疼| 日本一二三区视频观看| 成年版毛片免费区| 精品国产乱码久久久久久男人| 麻豆一二三区av精品| 五月玫瑰六月丁香| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 在线看三级毛片| 我的老师免费观看完整版| 国产精华一区二区三区| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 中文资源天堂在线| 国产一区二区激情短视频| 午夜精品一区二区三区免费看| 国产av一区二区精品久久| 人妻久久中文字幕网| 美女免费视频网站| 成人国语在线视频| 午夜免费成人在线视频| 国产av又大| 人妻夜夜爽99麻豆av| 午夜精品在线福利| 麻豆成人av在线观看| 母亲3免费完整高清在线观看| 日韩国内少妇激情av| 69av精品久久久久久| 欧美日韩精品网址| 日韩高清综合在线| 国产午夜福利久久久久久| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| 欧美zozozo另类| 又黄又爽又免费观看的视频| 在线观看美女被高潮喷水网站 | 观看免费一级毛片| 国产私拍福利视频在线观看| 香蕉久久夜色| 听说在线观看完整版免费高清| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 丰满的人妻完整版| 成人18禁在线播放| 久久天堂一区二区三区四区| 国产精品永久免费网站| 国产免费av片在线观看野外av| 高清在线国产一区| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 日韩精品免费视频一区二区三区| 99热这里只有精品一区 | 白带黄色成豆腐渣| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 精品福利观看| cao死你这个sao货| www日本在线高清视频| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 舔av片在线| 久久久久免费精品人妻一区二区| 露出奶头的视频| 久久精品国产综合久久久| 久久久精品欧美日韩精品| 国产熟女xx| 日本a在线网址| 成年版毛片免费区| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 亚洲熟女毛片儿| 久久九九热精品免费| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 国产又色又爽无遮挡免费看| 国产久久久一区二区三区| 黄色女人牲交| 最近最新中文字幕大全电影3| 亚洲av美国av| 可以在线观看毛片的网站| or卡值多少钱| 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 两个人的视频大全免费| 三级毛片av免费| 久久人人精品亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 在线永久观看黄色视频| 欧美久久黑人一区二区| 亚洲精品美女久久av网站| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| www国产在线视频色| 99re在线观看精品视频| 蜜桃久久精品国产亚洲av| 亚洲成人国产一区在线观看| 一级毛片女人18水好多| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 国产精品 国内视频| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费观看网址| 亚洲av成人精品一区久久| videosex国产| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 在线a可以看的网站| 欧美色视频一区免费| 又粗又爽又猛毛片免费看| 中出人妻视频一区二区| 国产蜜桃级精品一区二区三区| 日韩欧美国产在线观看| 久久久水蜜桃国产精品网|