• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams

    2018-04-18 02:56:14DuZhangLiLiu
    Acta Mechanica Sinica 2018年2期

    C.F.Du·D.G.Zhang·L.Li·G.R.Liu

    1 Introduction

    Discretization of the deformation field of a flexible body in rigid-flexible coupled systems requires careful consideration to accurately model the dynamical behavior of the systems.Currently,the discrete methods including the assumed mode method(AMM)[1–3]and the finite element method(FEM)[4–7]are widely used.The AMM is originated from the method of using natural modes of vibration.The advantage is that a good approximate result can be achieved by using few modes,and hence the computation efficiency is often very high.However,how to find the natural modes can be difficult when the flexible body has an irregular shape.The FEM on the other hand is versatile for complex geometry.It is a robust and thoroughly developed discrete method that is widely used to solve many types of linear and non-linear engineering problems.Most practical engineering problems related to solids and structures are currently solved by using FEM packages that are commercially available.However,the FEM has also inherent shortcomings.It uses the Galerkin weak form and the essential formulations are confined with elements,which leads to discontinuous of derivatives for the displacement functions arose the interface of the elements,so that the stress solutions is low accuracy[8].Therefore,researchers have begun to look for new theory and discrete method for effective modeling the rigid-flexible coupled systems dynamics,such as the absolute nodal coordinate formulation[9,10]and the B-spline interpolation method[11,12].

    Recently,mesh-free methods have been proposed and applied to solve complex problems in engineering and sciences.Mesh-free methods use shape functions created using nodes,including the smoothed particle hydrodynamic method(SPH)[13–15],the element-free Galerkin method(EFG)[16],there producing kernel particle methods(RKPM)[17],the meshless local Petrov–Galerkin method(MLPG)[18],the point interpolation method(PIM)[19,20],and the radial point interpolation method(RPIM)[21,22].The nodebased smoothed PIM(NS-PIM or LC-PIM termed originally[23])has been recently developed and found very stable,is free from volumetric locking,and capable ofproducing upper bound solutions for force driving static problems[24–26].The discretized system equations in an NS-PIM are established using weakened weak(W2)forms based on a set of background cells,and the numerical operations are not confined within the cells,but across the neighboring cells.The W2 form introduces the so-called softening effects to the discretized system equation,and hence can effectively overcome the disadvantage of the FEM[27].This work aims to extend the mesh-free NS-PIM to solve problems of rigid flexible coupled systems dynamics.

    The behavior of beams based on the Euler–Bernoulli theory are governed by a typical 4th order differential equation with respect to coordinates.In the early work of solving 4th order boundary value problems,both displacement and slope(derivative of the displacement)are treated as independent variables.In this paper,due to the use of W2 concept,we solve the 4th order boundary value problems considering only displacement as the unknown variable,and its approximation is performed using the simple linear point interpolation method[28].In other words,we solve 4th order differential equations using only 1st order approximation.In our examination for static problems,the beams with three types of boundary conditions are analyzed,and the results are compared with the analytic solution,which shows the effectiveness of this method.The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem,considering a rotating flexible cantilever beam.In this case,we consider not only the transverse deformations of the rotating flexible cantilever beam,but also the longitudinal deformations.The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange’s equations of the second kind.Simulation results of the NS-PIM are compared with those obtained using FEM and AMM.It is found that compared with FEM,the NS-PIM makes the system soften and has anti-ill solving ability under the same calculation conditions.

    2 Static analysis

    2.1 Brief on the weak form for the Euler–Bernoulli beam

    Considering the small deformation situation,for a giving bending stiffnessEI,the strong form of governing equation of an Euler–Bernoulli beam is expressed by the well-known fourth-order differential equation[27]

    wherevis transverse deflection,andb yis the distributed load in the transverse direction along the beam.Depending on the problem,the boundary conditions can be given using a complementary pair of equations listed as follows

    whereMandQdenote the bending moment and shear force acting at the cross-section of the beam,respectively.ΓvandΓθare essential boundaries where deflection and slope are specified;ΓMandΓQare natural boundaries where bending moment and shear force are specified,respectively.The complementary condition requires that when the deflection(or slope)is specified at an end of the beam,the shear force(or moment)cannot be specified.This is to avoid the possibility of the Cauchy boundary value problem not being well posed[29].For example,Eq.(2)may pair with Eq.(3)(for fully clamped),Eq.(2)with Eq.(4)(simply support),Eq.(3)with Eq.(5)(sliding),and Eq.(4)with Eq.(5)(free).

    The standard Galerkin weak form used in the FEM formulation can be rewritten as

    in which we may note that the assumed deflection functionvmust be of at least 2nd order consistency.It is weaker compared to the strong form give in Eq.(1)which requires the assumed deflection function is at least 4th order consistency.The “weaker”here means that the assumed deflection function has lower consistency.

    2.2 Formulation of NS-PIM for Euler–Bernoulli beam

    2.2.1 Smoothed Galerkin weak form:a typical W2

    In a W2 formulation,we consider a beam discretized withNnnodes,as shown in Fig.1.Every two neighboring nodes form a cell known as background cell.For each node,a smoothing domain is formed that consists of the nearer halves of the two

    Fig.1 Discretization of the problem domain with nodes and the no debased smoothing domains

    Using the gradient smoothing operations[30],the smoothed first derivative ofvcan be expressed as

    in which we may note:(1)the deflection functionvcan now only be of the first order consistency(a weakened weak form);(2)the domain integration on the left hand side is now converted to a simple summation(for better computational efficiency).

    2.2.2 NS-PIM equations for Euler–Bernoulli beams

    Because of the W2 formulation,in our NS-PIM,each node has only one degree of freedom(DOF)which is the deflection.We now use a linear interpolation of the deflectionvin each cell(cellΩcnin Fig.1)to approximate the deflection,which can be expressed as

    where the linear shape function can be simply given as

    wherelcn=xn+1?xnis the length of the cellΩcn,v n,andv n+1denote the nodal values of the deflection at nodesnandn+1.Substituting Eq.(11)into Eq.(9),the smoothed curvature for the smoothing domainΩsnwith interior nodes can be given as

    wheren=2,3,...,Nn?1.

    For simply supported boundary conditions,the zero deflection is set at the corresponding boundary point,just like in the FEM.For clamped boundary conditions,however,the following treatment is needed to impose the zero-slope conditions.The reason is the formulation of NS-PIM does not have rotation as a DOF.For the clamped boundary on the left end(n=1),we used the smoothed gradient that can be given by

    Similarly,for the clamped boundary on the right end(n=Nn),the smoothed gradient is given by

    It is clear that the zero-slope condition is imposed using the relation of two nodes on the boundary,which can be conveniently done without using two DOFs at a node.

    Next,substituting Eq.(13)into Eq.(10),a set of discretized algebraic system equations can be obtained in the following matrix form

    whereΦ(x)is the global matrix of all these nodal shape functions.The global smoothed stiffness matrix is assembled in the form of

    whereK nwhich is the stiffness matrix associated withΩsnis computed using

    The summation in Eq.(18)means an assembly(node marched summary).The assembling process is similar as that in the FEM,but must be based on the smoothing domains.We may note that in the FEM for beam,there are two DOFs(deflection and rotation)at each node,which is double of that in NS-PIM when the same number of nodes is used.

    2.3 Numerical examination of NS-PIM for static problems

    The NS-PIM is coded and examination has been performed to verify the formulation for static problems.Figure 2 shows three types of boundary conditions with distributed load that are considered in this examination.The parameters are taken asL=1 m,E I=1 N ·m2,andq=1 N/m.Figure3a–c shows the results of deflection under three types of boundary conditions using NS-PIM,FEM,AMM,together with the exact solution.The NS-PIM uses 22 DOFs,the FEM also uses 22 DOFs,and the AMM uses the first three modes.It is shown that these numerical results agree very well,and the differences are not distinguishable.These examples indicate that the NS-PIM has high accuracy even if using linear interpolation.

    The results of deflection are computed and listed in Tables1–3.It can be seen that the NS-PIM provides an upper bound solution for the deflection.This demonstrates that the NS-PIM makes the system soften.

    Figure 4 shows a cantilever beam subjected to pure bending moment at free end.The bending momentMe=1 N·m.Figure 5 shows the results of deflection.The NS-PIM uses 22 DOFs.It is shown that the numerical results agree very well with the exact solution,and the differences are not distinguishable.It also indicates that the pure bending boundary condition is able to be addressed by NS-PIM even if there is no rotation as the degree of freedom.

    3 NS-PIM of rigid-flexible coupled system dynamics

    3.1 NS-PIM for rotating flexible beams

    For rotating flexible beams,we assume that for the bending deformations,the rotating flexible beam obeys the Euler–Bernoulli beam theory.This means that the cross-section of the beam is perpendicular to the central axis of the beam and remains in a plane after deformation.

    Fig.2 Three types of boundary conditions of beams with distributed load:cantilever beam,simply–simply supported beam,and clamped-simply supported beam,respectively

    Consider a flexible beam attached to a rigid hub of radiusa,and rotating about theZaxis,following the right-hand rule convention in the inertial coordinate systemOXYZ,as shown in Fig.6.A planar floating coordinate system,which rotates with the beam is denoted byO?x yz.The rotary inertia of the hub isJh.Physical parameters of the beam are as follows:lengthL,cross-section areaS,Young’s modulusE,area moment of inertiaI,and mass densityρ.The position vector of arbitrary pointPon the flexible beam in the inertial frameOXYZafter deformation can be given by

    Fig.3 The deflection under different boundary conditions:a cantilever beam;b simply–simply supported beam;c clamped-simply supported beam

    Table 1 The deflection of cantilever beam

    Table 2 The deflection of simply–simply supported beam

    Table 3 The deflection of clamped-simply supported beam

    In Eq.(21),Θis the direction cosine matrix of floating coordinate system relative to the inertial coordinate system.The

    Fig.4 A cantilever beam subjected to pure bending moment at free end

    Fig.5 The deflection with pure bending moment at free end

    Fig.6 The deformation of rotating flexible beam

    deformation vectoruin the floating coordinate systemO?x yzcan be expressed by

    wherew1is the axial stretch deformation andw2is the transverse deformations of the flexible beam.w cis the coupling term of the deformation which is caused by the transverse deformation.It can be given by

    The velocity vector of arbitrary pointPin the inertial coordinate system can be obtained through the first derivative of Eq.(20)versus time.It can be given by

    Then the kinetic energy of the system is

    The elastic potential energy of the system is

    3.2 Dynamic equations of the rotating flexible beam system

    The flexible beam is divided intoNccells shown in Fig.1.As discussed in Sect.2.3,using Eqs.(11)and(12),the axial stretch deformationw1and the transverse deformationsw2inith cell can be expressed

    whereAi(t)andB i(t)are the axial stretch deformation vector and the transverse deformations vector of nodesiandi+1 with the change of time,respectively.The generalized coordinates of the beam are

    So the nodal coordinate vector can be written as

    whereR iis a Boolean matrix given by

    Substituting Eq.(31)into Eq.(22),the deformation matrix of arbitrary pointPon the flexible beam can be expressed by

    whereH(x)is the coupling shape functions,it can be given by

    tor.Substituting Eqs.(25)and(26)into Lagrange’s equations of the second kind

    whereJohandJobare constant;S,M,C,andDare constant matrixes.The underlined term is additional coupling term which caused by transverse bending deformation and it makes the longitudinal deformation shorten.This term appears in the generalized mass matrix and the generalized force matrix.

    With the discussion of Sect.2.3,using the smoothing operations,the stiffness matrixK2can be expressed by

    Using Eqs.(18)and(19),the global smoothed stiffness matrix can be obtained.

    3.3 Transient dynamic simulation

    When the angular velocity of the hub is given,the dynamic equations of the system can be expressed by

    whereT=15 s.The angular velocity of the hub reachesΩ0at timeT.The hub radiusa=0.Parameters of the rotating beam are[31]:L=8 m,S=7.2968× 10?5m2,I=8.2189 × 10?9m4,ρ=2766.7 kg/m3,andE=68.952 GPa.

    The tip responses of the rotating beam with differentΩ0are shown in Figs.7–10.The simulation results of AMM,FEM,and NS-PIM are compared.AMM uses three to seven modes,FEM uses ten elements and NS-PIM uses 21 nodes.Figure 7a shows the longitudinal deformation at the tip of the beam whenΩ0=4 rad/s.It is seen that these three discrete methods almost overlap with each other.The longitudinal deformationu xcontains two parts:the axial stretch deformationw1and the coupling term of the deformationw c,which is caused by the transverse deformation.It is negative meaning that the longitudinal deformation is mainly caused by the coupling termw c.Figures 7b–c and 8 show the tip transverse bending deformation and its deformation rate which is the first derivative of deformation versus time,respectively.As shown in these figures,the results of these three discrete methods almost overlap with each other.Figure 9a shows the longitudinal deformation at the tip of the beam whenΩ0=20 rad/s.In order to illustrate the less accuracy of AMM when the deformation is large,the elasticity modulus reduces to 50 GPa.It is seen that the results of NS-PIM and FEM are almost overlap,but AMM is quite different.Figures 9b–c and 10 show the tip transverse bending deformation and its deformation velocity,respectively.It is seen that the results of AMM is quite different from the other two methods.That means AMM is not applicable when the deformation is large,it is applicable in the case of small deformation.Compared with FEM,NS-PIM is a little different.Figures 9c and 10c show that the amplitude of AMM is much smaller than FEM,the amplitude of NS-PIM is nearly the same as FEM.However,the vibration phase of NS-PIM is different from FEM.This is because of the soft characteristic of NS-PIM.In order to illustrate that AMM is not applicable in the case of large deformation,Fig.11 shows the tip transverse bending deformation whenΩ0=20 rad/s andE=20 GPa.It is seen that the largest deformation is over 5 m,belong to large deformation problem.AMM is divergent,that means AMM is not applicable in the large deformation problem.NS-PIM and FEM are convergent.But there are a little difference between NS-PIM and FEM.Still,this is because of the soft characteristic of NS-PIM.

    Fig.7 Tip responses of the rotating beam for slow rotation(Ω0=4 rad/s):a The longitudinal deformation at the tip of the beam;b the transverse deformation at the tip of the beam;c the transverse deformation at the tip of the beam after 15 s

    Fig.8 Tip transverse deformation rate of the beam for slow rotation(Ω0=4 rad/s):a tip transverse deformation rate from 0 to 20 s;b tip transverse deformation rate after 15 s

    Fig.9 Tip responses of the rotating beam for fast rotation(Ω0=20 rad/s):a the longitudinal deformation at the tip of the beam;b the transverse deformation at the tip of the beam;c the transverse deformation at the tip of the beam after 15 s

    Fig.10 Tip transverse deformation rate of the beam for fast rotation(Ω0=20 rad/s):a tip transverse deformation rate from 0 to 20 s;b tip transverse deformation rate after 15 s

    Tables 4 and 5 show the relative time,the relative error and the amplitude of these three discrete methods whenΩ0=4 rad/s andΩ0=20 rad/s,respectively.AMM uses the first three to seven modes,and the relative time is com-pared with three modes AMM.The relative error is compared with ten elements FEM.NS-PIM uses 21 nodes.It is seen that three modes AMM computes the fastest,and NS-PIM is faster than FEM.WhenΩ0=4 rad/s,the deformation is small so AMM is applicable.For AMM,the error of the amplitude is small and the accuracy is not improved even if increasing the modes.Instead,the computational efficiency reduces significantly.WhenΩ0=20 rad/s,the deformation is large so AMM is not applicable and the error is big to 45.45%.Regardless of the deformation is small or large,the FEM and NS-PIM are applicable.But the amplitude of NS-PIM is larger than FEM,this is also because of the soft characteristic of NS-PIM,and its accuracy is very high even if using the linear shape function.

    When there is an external torque acting on the hub,the large overall motion of the system is unknown.The dynamic responses of the beam can be calculated from Eq.(35).The parameters of the beam are the same as the situation when the angular velocity of the hub is given.Assuming the external torque of the hub is given by

    Fig.11 Large deformation situation

    Table 4 The relative time,the relative error and the amplitude of these three discrete methods(Ω0=4 rad/s)

    Table 5 The relative time,the relative error and the amplitude of these three discrete methods(Ω0=20 rad/s)

    whereT=10 s,andτ0is the amplitude of the external torque.

    The rotation angle and the tip responses of the rotating beam are shown in Fig.12 whenτ0equals 10 N ·m.It is seen that these three discrete methods almost overlap with each other.When the external torque is removed,the flexible beam swings back and forth in which the rotation angle is equal to 4.5 rad.From Fig.12c,one can observe that the amplitude of NS-PIMislagerand the vibrational frequency is smaller than the other two methods.This phenomenon demonstrates again that the NS-PIM makes the system soften.Figure13 shows the tip transverse deformation of FEM and NS-PIM whenτ0equals 50 N ·m under the same calculation conditions.It is seen that the result of FEM is divergent quickly.This is because the dynamic equations of FEM are ill-conditioned.However,the result of NS-PIM is still convergent.One can conclude that the dynamic equations of NS-PIM have anti-ill solving ability compared with FEM under the same calculation conditions.

    4 Conclusion

    In this paper,a mesh-free method which is called NS-PIM is formulated for rigid-flexible coupled dynamic analysis of beams.We conclude the paper with the following points.

    (1)Through the smoothing operation based on nodes,the requirements on the consistence of the displacement functions are further weakened.The solutions of fourth order boundary value and initial value problems can now be approximated using linear shape functions in NS-PIM.(2)For static problems,NS-PIM has high accuracy even if using linear interpolation.It provides a unique upper bound solution for the deflection.

    (3)For the problem of rotating flexible beam,when the deformation is small,the results of AMM,FEM,and NS-PIM are close.Even if increasing the number of modes,the accuracy is not improved for AMM,but the computational efficiency reduces significantly.When the deformation is large,AMM is not applicable,but FEM and NS-PIM is still applicable.The soft characteristic of NS-PIM is more obvious than the situation of small deformation.What’s more,the dynamic equations of NS-PIM have anti-ill solving ability compared with FEM under the same calculation conditions.In other words,the NSPIM is more stable than FEM.

    (4)Because of only displacement as independent variable at per node,NS-PIM the total DOFs is half of that of FEM model using the same number of nodes,and hence NS-PIM computes faster than FEM.

    Fig.12 The rotation angle and the tip responses of the rotating beam(τ0=10 N ·m):a the rotation angle;b tip transverse deformation from 0 to 15 s;c tip transverse deformation after 10 s

    Fig.13 The tip responses of the rotating beam(τ0=50 N ·m)

    AcknowledgementsThe authors are grateful for the support from the National Natural Science Foundation of China(Grants 11272155,11132007,and 11502113),the Fundamental Research Funds for Central Universities(Grant 30917011103),and the China Scholarship Council for one year study at the University of Cincinnati.

    1.Yoo,H.H.,Ryan,R.R.,Scott,R.A.:Dynamics of flexible beams undergoing overall motions.J.Sound Vib.181,261–278(1995)

    2.Yoo,H.H.,Shin,S.H.:Vibration analysis of rotating cantilever beams.J.Sound Vib.212,807–828(1998)

    3.Li,L.,Zhang,D.G.,Zhu,W.D.:Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect.J.Sound Vib.333,1526–1541(2014)

    4.Chung,J.,Yoo,H.H.:Dynamic analysis of a rotating cantilever beam by using the finite element method.J.Sound Vib.249,147–164(2002)

    5.Du,H.,Lira,M.K.,Liew,K.M.:A nonlinear finite element model for dynamics of flexible manipulators.Mech.Mach.Theory 31,1109–1119(1996)

    6.Sanborn,G.G.,Shabana,A.A.:A rational finite element method based on the absolute nodal coordinate formulation.Nonlinear Dyn.58,565–572(2009)

    7.Liu,G.R.,Quek,S.S.:Finite Element Method:A Practical Course,2nd edn.Butter worth-Heinemann,Burlington(2013)

    8.Liu,G.R.,Gu,Y.T.:An Introduction to Meshfree Methods and Their Programming.Springer,Dordrecht(2005)

    9.Sanborn,G.G.,Shabana,A.A.:On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation.Multibody Syst.Dyn.22,181–197(2009)

    10.Sugiyama,H.,Gerstmayr,J.,Shabana,A.A.:Deformation modes in the finite element absolute nodal coordinate formulation.J.Sound Vib.298,1129–1149(2006)

    11.Lan,P.,Shabana,A.A.:Integration of B-spline geometry and ANCF finite element analysis.Nonlinear Dyn.61,193–206(2010)

    12.Liu,Y.N.,Sun,L.,Liu,Y.H.,et al.:Multi-scale B-spline method for 2-D elastic problems.Appl.Math.Model.35,3685–3697(2011)

    13.Lucy,L.B.:A numerical approach to testing of the fission hypothesis.Astron.J.8,1013–1024(1977)

    14.Liu,G.R.,Liu,M.B.:Smoothed Particle Hydrodynamics:A Meshfree Practical Method.World Scientific,Singapore(2003)

    15.Monaghan,J.J.:An introduction to SPH.Comput.Phys.Commun.48,89–96(1998)

    16.Belytschko,Y.,Lu,Y.Y.,Gu,L.:Element-free Galerkin methods.Int.J.Numer.Methods Eng.37,229–256(1994)

    17.Liu,W.K.,Jun,S.,Zhang,Y.E.:Reproducing kernel particle methods.Int.J.Numer.Methods Eng.20,1081–1106(1995)

    18.Atluri,S.N.,Zhu,T.:A new meshless local Petrov–Galerkin(MLPG)approach in computational mechanics.Comput.Mech.22,117–127(1998)

    19.Liu,G.R.,Gu,Y.T.:A point interpolation method for two dimensional solids.Int.J.Numer.Methods Eng.50,937–951(2001)

    20.Liu,G.R.,Dai,K.Y.,Lim,K.M.,et al.:A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures.Comput.Mech.29,510–519(2002)

    21.Liu,G.R.,Zhang,G.Y.,Gu,Y.T.,et al.:A meshfree radial point interpolation method(RPIM)for three-dimensional solids.Comput.Mech.36,421–430(2005)

    22.Wang,J.G.,Liu,G.R.:A point interpolation meshless method based on radial basis functions.Int.J.Numer.Methods Eng.54,1623–1648(2002)

    23.Liu,G.R.,Zhang,G.Y.,Dai,K.Y.,et al.:A linearly conforming point interpolation method(LC-PIM)for 2-D solid mechanics problems.Int.J.Comput.Methods 2,645–665(2005)

    24.Liu,G.R.,Zhang,G.Y.:Upper bound solutions to elasticity problems:a unique property of the linearly conforming point interpolation method(LC-PIM).Int.J.Numer.Methods Eng.74,1128–1161(2008)

    25.Zhang,G.Y.,Liu,G.R.,Wang,Y.Y.,et al.:A linearly conforming point interpolation method(LC-PIM)for three-dimensional elasticity problems.Int.J.Numer.Methods Eng.72,1524–1543(2007)

    26.Wu,S.C.,Liu,G.R.,Zhang,H.O.,et al.:A node-based smoothed point interpolation method(NS-PIM)for thermoelastic problems with solution bounds.Int.J.Heat Mass Transf.52,1464–1471(2009)

    27.Liu,G.R.:Meshfree Methods:Moving Beyond the Finite Element Method.CRC Press,Boca Raton(2002)

    28.Cui,X.Y.,Liu,G.R.,Li,G.Y.,et al.:A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique.CMES 28,217–229(2008)

    29.Liu,G.R.,Han,X.:Computational Inverse Techniques in Nondestructive Evaluation.CRC Press,Boca Raton(2003)

    30.Liu,G.R.:Meshfree Methods:Moving Beyond the Finite Element Method,2nd edn.CRC Press,Boca Raton(2010)

    31.Wu,S.C.,Haug,E.J.:Geometric non-linear substructuring for dynamics of flexible mechanical system.Int.J.Numer.Methods Eng.26,2211–2226(1988)

    在线观看66精品国产| 色视频www国产| 国产高清视频在线观看网站| 国产亚洲精品久久久久久毛片| 精品午夜福利视频在线观看一区| 国产黄色小视频在线观看| 少妇丰满av| 少妇熟女aⅴ在线视频| 久久伊人香网站| 嫩草影院入口| 亚洲成人中文字幕在线播放| 搡老熟女国产l中国老女人| 美女 人体艺术 gogo| 在线观看美女被高潮喷水网站 | 免费在线观看视频国产中文字幕亚洲| 久久精品国产99精品国产亚洲性色| 色综合站精品国产| 最好的美女福利视频网| 9191精品国产免费久久| 非洲黑人性xxxx精品又粗又长| 黄色视频,在线免费观看| www日本黄色视频网| 亚洲在线观看片| 欧美日韩福利视频一区二区| 欧美性猛交╳xxx乱大交人| av中文乱码字幕在线| 亚洲av成人一区二区三| 国产69精品久久久久777片 | 757午夜福利合集在线观看| 中文资源天堂在线| 亚洲国产日韩欧美精品在线观看 | 亚洲五月天丁香| 88av欧美| 神马国产精品三级电影在线观看| 日韩欧美在线乱码| 91麻豆av在线| 桃红色精品国产亚洲av| 国产黄a三级三级三级人| 每晚都被弄得嗷嗷叫到高潮| 9191精品国产免费久久| 日韩欧美在线二视频| 高清毛片免费观看视频网站| 国产欧美日韩精品亚洲av| 成人国产一区最新在线观看| 国产伦在线观看视频一区| 特大巨黑吊av在线直播| 一本一本综合久久| 香蕉丝袜av| 国产精品久久久人人做人人爽| 国产精品久久久久久久电影 | 欧美一级毛片孕妇| 欧美xxxx黑人xx丫x性爽| 久久香蕉国产精品| av国产免费在线观看| 又紧又爽又黄一区二区| 一级毛片女人18水好多| 狂野欧美激情性xxxx| 男人的好看免费观看在线视频| 老汉色av国产亚洲站长工具| 免费看a级黄色片| 亚洲熟女毛片儿| 在线国产一区二区在线| 成年女人毛片免费观看观看9| 桃红色精品国产亚洲av| 亚洲九九香蕉| 亚洲美女视频黄频| 人妻夜夜爽99麻豆av| 久久草成人影院| 最近最新免费中文字幕在线| 久久99热这里只有精品18| 欧美绝顶高潮抽搐喷水| 国产麻豆成人av免费视频| 久久久国产精品麻豆| 一级a爱片免费观看的视频| 999久久久精品免费观看国产| 麻豆一二三区av精品| 美女高潮的动态| 亚洲成av人片免费观看| 亚洲狠狠婷婷综合久久图片| 国产一区二区在线观看日韩 | 亚洲成人久久爱视频| 国产成人精品无人区| 亚洲国产欧洲综合997久久,| 国产av在哪里看| 动漫黄色视频在线观看| 国产精品亚洲美女久久久| 高清在线国产一区| 99久久精品国产亚洲精品| 国产成人影院久久av| or卡值多少钱| 草草在线视频免费看| 此物有八面人人有两片| 亚洲专区国产一区二区| 99精品在免费线老司机午夜| 国产精品久久电影中文字幕| 熟女人妻精品中文字幕| 国产高清有码在线观看视频| 亚洲精品美女久久av网站| 国产又色又爽无遮挡免费看| 黄色 视频免费看| 岛国在线观看网站| 99久久99久久久精品蜜桃| 色综合欧美亚洲国产小说| tocl精华| 麻豆av在线久日| 日韩免费av在线播放| 国产欧美日韩精品一区二区| 久久草成人影院| 女警被强在线播放| 国模一区二区三区四区视频 | svipshipincom国产片| av女优亚洲男人天堂 | 少妇的逼水好多| 成人18禁在线播放| 免费在线观看成人毛片| 午夜免费激情av| 国产成人精品久久二区二区91| 琪琪午夜伦伦电影理论片6080| 精品国产三级普通话版| 日韩欧美精品v在线| 每晚都被弄得嗷嗷叫到高潮| 老熟妇乱子伦视频在线观看| 一本综合久久免费| 成人欧美大片| 欧美国产日韩亚洲一区| 女人被狂操c到高潮| 久99久视频精品免费| 亚洲国产欧美一区二区综合| 听说在线观看完整版免费高清| 日本 av在线| 在线视频色国产色| ponron亚洲| 亚洲欧美精品综合一区二区三区| 香蕉久久夜色| 亚洲av中文字字幕乱码综合| 亚洲欧洲精品一区二区精品久久久| 久久草成人影院| 国内精品久久久久久久电影| 亚洲成av人片免费观看| 久久久久九九精品影院| 99国产精品一区二区蜜桃av| 亚洲av日韩精品久久久久久密| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久精品电影| 神马国产精品三级电影在线观看| 欧美一区二区精品小视频在线| 一级黄色大片毛片| 亚洲午夜精品一区,二区,三区| 国产伦一二天堂av在线观看| 99精品在免费线老司机午夜| 淫妇啪啪啪对白视频| 国产人伦9x9x在线观看| 成熟少妇高潮喷水视频| 又爽又黄无遮挡网站| 亚洲人成伊人成综合网2020| 成年人黄色毛片网站| 一本久久中文字幕| 精品久久久久久久末码| 香蕉丝袜av| 观看美女的网站| 淫秽高清视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区三区四区久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩成人在线观看一区二区三区| 91字幕亚洲| av在线蜜桃| 三级国产精品欧美在线观看 | 嫩草影院精品99| 天堂动漫精品| 亚洲精品美女久久久久99蜜臀| 男女做爰动态图高潮gif福利片| 亚洲国产看品久久| 亚洲国产精品999在线| 大型黄色视频在线免费观看| 老熟妇仑乱视频hdxx| av在线蜜桃| 悠悠久久av| 亚洲成人久久性| 国产一区二区三区视频了| 成年女人看的毛片在线观看| 一区二区三区激情视频| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 超碰成人久久| 又黄又爽又免费观看的视频| www日本在线高清视频| 免费在线观看视频国产中文字幕亚洲| 国产免费男女视频| 国产精品99久久久久久久久| 一个人看视频在线观看www免费 | 色尼玛亚洲综合影院| 精品日产1卡2卡| 亚洲国产中文字幕在线视频| 亚洲精品乱码久久久v下载方式 | 两个人视频免费观看高清| 亚洲国产精品合色在线| 久久精品国产综合久久久| 亚洲国产欧美网| 9191精品国产免费久久| 亚洲专区字幕在线| 免费在线观看视频国产中文字幕亚洲| 一个人看视频在线观看www免费 | 最新美女视频免费是黄的| 国产 一区 欧美 日韩| 欧美一级a爱片免费观看看| 天堂网av新在线| 99热精品在线国产| 黑人操中国人逼视频| 久久精品亚洲精品国产色婷小说| 亚洲无线观看免费| 久久精品亚洲精品国产色婷小说| 亚洲专区字幕在线| 欧美不卡视频在线免费观看| 亚洲色图av天堂| 女同久久另类99精品国产91| 成人特级黄色片久久久久久久| 悠悠久久av| 婷婷精品国产亚洲av在线| av中文乱码字幕在线| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 久久中文看片网| 亚洲精品美女久久久久99蜜臀| 国产精品九九99| 叶爱在线成人免费视频播放| 亚洲av第一区精品v没综合| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频| 午夜精品久久久久久毛片777| 黄色片一级片一级黄色片| 国产成人欧美在线观看| 校园春色视频在线观看| 两个人看的免费小视频| 一级毛片高清免费大全| 国产午夜精品论理片| 免费无遮挡裸体视频| 欧美三级亚洲精品| 午夜免费成人在线视频| av国产免费在线观看| 18禁国产床啪视频网站| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久com| 三级毛片av免费| 狂野欧美激情性xxxx| av黄色大香蕉| 免费观看精品视频网站| 国产熟女xx| 欧美日韩精品网址| 不卡一级毛片| 婷婷精品国产亚洲av在线| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 亚洲无线在线观看| 两个人视频免费观看高清| 久久午夜亚洲精品久久| x7x7x7水蜜桃| 在线播放国产精品三级| 国产精品野战在线观看| 欧美精品啪啪一区二区三区| 小说图片视频综合网站| 好男人电影高清在线观看| 欧美在线黄色| www.999成人在线观看| av在线天堂中文字幕| 天天躁日日操中文字幕| 男人和女人高潮做爰伦理| 美女高潮的动态| 久久人妻av系列| 欧美日本视频| 亚洲欧美精品综合一区二区三区| 国产高潮美女av| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 日本免费a在线| 性色avwww在线观看| 日本撒尿小便嘘嘘汇集6| 国产久久久一区二区三区| 成人欧美大片| 婷婷亚洲欧美| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 女生性感内裤真人,穿戴方法视频| 18禁美女被吸乳视频| 后天国语完整版免费观看| 女人被狂操c到高潮| 男女那种视频在线观看| 91在线观看av| 国产视频一区二区在线看| 亚洲乱码一区二区免费版| 欧美黄色片欧美黄色片| 国产黄色小视频在线观看| tocl精华| 老司机午夜福利在线观看视频| 国内精品久久久久精免费| 欧美精品啪啪一区二区三区| 欧美一区二区精品小视频在线| 国内揄拍国产精品人妻在线| 欧美性猛交黑人性爽| 欧美xxxx黑人xx丫x性爽| 免费在线观看成人毛片| 精品久久久久久久久久免费视频| 精品人妻1区二区| 18禁国产床啪视频网站| 亚洲九九香蕉| 99在线视频只有这里精品首页| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添小说| 又紧又爽又黄一区二区| 久久国产乱子伦精品免费另类| 99精品欧美一区二区三区四区| cao死你这个sao货| 女警被强在线播放| 中文在线观看免费www的网站| 91九色精品人成在线观看| 成年女人看的毛片在线观看| 五月伊人婷婷丁香| 视频区欧美日本亚洲| 一本久久中文字幕| 亚洲男人的天堂狠狠| 国产亚洲精品综合一区在线观看| 久久香蕉精品热| 亚洲国产精品sss在线观看| 国产av不卡久久| 欧美xxxx黑人xx丫x性爽| 中出人妻视频一区二区| 真人做人爱边吃奶动态| 国产视频一区二区在线看| 国产精品久久久av美女十八| 床上黄色一级片| 亚洲五月婷婷丁香| 亚洲中文日韩欧美视频| 精品国产美女av久久久久小说| 99久久国产精品久久久| 久久热在线av| 色老头精品视频在线观看| 久久久久亚洲av毛片大全| 免费高清视频大片| 中亚洲国语对白在线视频| www国产在线视频色| 亚洲中文日韩欧美视频| 日本黄大片高清| 色综合亚洲欧美另类图片| 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 天堂网av新在线| 99视频精品全部免费 在线 | 成人av在线播放网站| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 亚洲乱码一区二区免费版| 久久精品综合一区二区三区| 麻豆av在线久日| 亚洲avbb在线观看| 特大巨黑吊av在线直播| 天堂av国产一区二区熟女人妻| netflix在线观看网站| 亚洲欧美精品综合一区二区三区| 97人妻精品一区二区三区麻豆| 舔av片在线| 欧美日韩福利视频一区二区| 黑人欧美特级aaaaaa片| 国产精品98久久久久久宅男小说| 国产精品久久久av美女十八| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 国产高清三级在线| 女同久久另类99精品国产91| 日本 av在线| 少妇裸体淫交视频免费看高清| 亚洲人成伊人成综合网2020| 丁香六月欧美| 悠悠久久av| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 国产精品永久免费网站| 午夜免费成人在线视频| 搡老妇女老女人老熟妇| xxx96com| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 两个人的视频大全免费| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 男女午夜视频在线观看| 成年人黄色毛片网站| 美女被艹到高潮喷水动态| 看免费av毛片| 身体一侧抽搐| 国产精品日韩av在线免费观看| 欧美色视频一区免费| 天堂影院成人在线观看| 精品国产超薄肉色丝袜足j| 男女做爰动态图高潮gif福利片| 男女之事视频高清在线观看| 色av中文字幕| 欧美乱码精品一区二区三区| 久久国产乱子伦精品免费另类| 亚洲九九香蕉| 久久久久性生活片| 免费无遮挡裸体视频| 亚洲成人精品中文字幕电影| 免费观看人在逋| 婷婷丁香在线五月| 一本综合久久免费| 久久精品夜夜夜夜夜久久蜜豆| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色| 国内精品一区二区在线观看| 色在线成人网| 免费人成视频x8x8入口观看| 熟女少妇亚洲综合色aaa.| 欧美日韩国产亚洲二区| 国产高清激情床上av| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 日韩精品中文字幕看吧| 久久人人精品亚洲av| 国产成人精品无人区| 99热这里只有精品一区 | 一区二区三区高清视频在线| 19禁男女啪啪无遮挡网站| 国产淫片久久久久久久久 | 国产91精品成人一区二区三区| 久久亚洲真实| 日本在线视频免费播放| 1000部很黄的大片| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 少妇的逼水好多| 日韩欧美国产一区二区入口| 99国产精品一区二区蜜桃av| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 男人舔奶头视频| 亚洲欧美一区二区三区黑人| 国产三级黄色录像| 嫩草影院精品99| 美女扒开内裤让男人捅视频| 免费av不卡在线播放| 在线永久观看黄色视频| 亚洲人与动物交配视频| 一区二区三区国产精品乱码| 人人妻人人澡欧美一区二区| 国产成人精品无人区| 国产精品久久电影中文字幕| 日韩欧美 国产精品| 国产高清视频在线观看网站| 美女cb高潮喷水在线观看 | 少妇人妻一区二区三区视频| 性色avwww在线观看| 九色国产91popny在线| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 美女高潮的动态| 日本黄色视频三级网站网址| 91麻豆av在线| 亚洲人与动物交配视频| 日本黄色视频三级网站网址| 非洲黑人性xxxx精品又粗又长| 欧美成人性av电影在线观看| 欧美成人一区二区免费高清观看 | 日本 欧美在线| 精品欧美国产一区二区三| 欧美丝袜亚洲另类 | 国产亚洲av嫩草精品影院| 97超级碰碰碰精品色视频在线观看| 色精品久久人妻99蜜桃| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩福利视频一区二区| 国产成人啪精品午夜网站| 免费一级毛片在线播放高清视频| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 亚洲av熟女| 男女做爰动态图高潮gif福利片| АⅤ资源中文在线天堂| 99久久无色码亚洲精品果冻| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 国模一区二区三区四区视频 | 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 哪里可以看免费的av片| 久久久久性生活片| h日本视频在线播放| 亚洲熟妇熟女久久| 麻豆av在线久日| 中文资源天堂在线| 午夜免费观看网址| 久久久色成人| 亚洲最大成人中文| 国产欧美日韩一区二区三| 在线免费观看不下载黄p国产 | 久久久久性生活片| 精品久久久久久久人妻蜜臀av| 男女午夜视频在线观看| 欧美日韩乱码在线| 精品午夜福利视频在线观看一区| 不卡一级毛片| 天天添夜夜摸| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| АⅤ资源中文在线天堂| 老司机午夜十八禁免费视频| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 国产高清视频在线播放一区| 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 免费高清视频大片| 国产激情久久老熟女| 日韩免费av在线播放| 中国美女看黄片| 亚洲专区国产一区二区| 日韩欧美三级三区| 美女 人体艺术 gogo| 在线a可以看的网站| 亚洲无线在线观看| 亚洲在线自拍视频| 精品人妻1区二区| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 香蕉丝袜av| 精品久久蜜臀av无| 欧美日韩综合久久久久久 | 香蕉丝袜av| 成人一区二区视频在线观看| 黄色女人牲交| 亚洲一区高清亚洲精品| 两个人的视频大全免费| a在线观看视频网站| 成人永久免费在线观看视频| 哪里可以看免费的av片| 观看免费一级毛片| 1024香蕉在线观看| 人妻久久中文字幕网| 婷婷精品国产亚洲av在线| 99精品久久久久人妻精品| 亚洲av五月六月丁香网| 99国产综合亚洲精品| 国产 一区 欧美 日韩| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 免费看美女性在线毛片视频| 首页视频小说图片口味搜索| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 亚洲aⅴ乱码一区二区在线播放| www.精华液| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式 | 成人亚洲精品av一区二区| 国产精品久久久久久久电影 | 999精品在线视频| 岛国在线免费视频观看| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 又黄又粗又硬又大视频| 深夜精品福利| 久久国产精品人妻蜜桃| 久久人人精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 香蕉久久夜色| 99热只有精品国产| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 久久热在线av| 亚洲,欧美精品.| 国产69精品久久久久777片 | 欧美在线黄色| 又大又爽又粗| 国产免费男女视频| 一个人免费在线观看电影 | 999精品在线视频| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 他把我摸到了高潮在线观看| 国产精品 欧美亚洲| 人人妻人人澡欧美一区二区| 精品无人区乱码1区二区| 99视频精品全部免费 在线 | 欧美日韩一级在线毛片| 国产高潮美女av| 麻豆av在线久日| 在线观看66精品国产| 在线观看美女被高潮喷水网站 | 男人的好看免费观看在线视频| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| av黄色大香蕉| 男女午夜视频在线观看| av片东京热男人的天堂| 国产精品98久久久久久宅男小说| 嫩草影院精品99| 亚洲中文日韩欧美视频| 亚洲18禁久久av| 91老司机精品| 2021天堂中文幕一二区在线观| 俺也久久电影网| 不卡一级毛片|