• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical algorithm for rigid body position estimation using the quaternion approach

    2018-04-18 02:56:11MiodragZigicNenadGrahovac
    Acta Mechanica Sinica 2018年2期

    Miodrag Zigic·Nenad Grahovac

    1 Introduction

    Accurate rigid body attitude estimation is of a great importance in aerospace,marine and automotive engineering,autonomous robotic systems and human movement analysis.Position and orientation determination of unmanned aerial vehicles(UAVs),which have become part of daily life,and which are used as toys,or to perform different tasks and missions in both the civilian and the military sectors,is essential,see Ref.[1].For these purposes,different positioning and navigation systems are developed.An inertial measurement unit(IMU)is a device containing accelerometers and gyroscopes,used for measuring the angular velocity of a body and the acceleration of its point in the body reference frame.Some of the devices enable measuring the Earth’s magnetic field as well.From these data the body attitude needs to be determined.Measurement errors varies and depend on the type of IMU.Contrary to high-quality and expensive inertial navigation systems,the popularity of miniature low-cost inertial sensors has increased due to recent technological development.However,the latter devices are not so accurate as the former ones.Also,small errors in output data accumulate and grow with time and distance,see Ref.[2].Thus,a lot of effort has been made by both industry and the scientific community in order to improve resultsofapplicationsoflow-cost inertial devices.In the direction of reducing the errors,different filtering techniques are developed,see Refs.[3,4].In this manner,Chao et al.[5]performed a comparative study of low-cost IMUs,including both hardware and software solutions.The rigid body state estimation problem using low-pass sensors is observed in Ref.[6].Comparison of a gyroscope vs.an accelerometer measurement and investigation in which only accelerometers are used for computation of linear and angular motions of a rigid body are presented in Refs.[7,8].The scheme for rigid body position estimation using the Lagrange-d’Alambert principle from variational mechanics is proposed in Ref.[9].Low-cost wearable sensors,such as IMUs,are widely used in biomechanics,see Refs.[10,11].Their usage for rehabilitation purposes are studied in Ref.[12].Accurate orientation tracking of ahuman body parts,by the use of inertial and magnetic sensors,is presented in Ref.[13].An application of IMU in a gait monitoring is analyzed in Ref.[14],while Esser et al.[15]studied their application to determine the center of mass acceleration during human walking,using the quaternion representation.

    Quaternions represent an excellent tool for describing arbitrary rotations in space,without singularities.The name of quaternion denotes a quadrinomial expression,where one term represents the real part,while the other terms together stand for the imaginary part,see Ref.[16].Analytical properties of quaternions and their application in mechanics,computer vision,graphics,and animation can be found in numerous papers,see for example,in Refs.[17–20].The quaternion approach for a rigid body attitude estimation in bio-logging,in order to determine an animal’s movements and behavior,via IMU attached to the animal,is presented in Refs.[21,22].Expressions of physical quantities,such as angle of rotation,velocity,acceleration and momentum,in quaternion space,are given in the paper of Chou[23].Recent results in the field of rigid body dynamics in terms of quaternions are presented in Refs.[24,25]via Hamilton’s equations,while both Lagrange’s and Hamilton’s frameworks are used in Ref.[26].Equations of motion of a rigid body derived from the D’Alambert’s variational principle using quaternions are analyzed in Ref.[27].Equations of motion in the last four mentioned papers assume the form of differential-algebraic equations,due to the algebraic constraint.Contrary to the analysis of the rigid body dynamics by quaternion parameters,in this study quaternions are used in rigid body kinematics,i.e.,for determination of a rotation matrix.We propose the numerical algorithm for estimation of both a rigid body orientation and the linear acceleration of an arbitrary point of the body,based on the quaternion approach,which can be easily applied to a wide class of engineering problems.

    2 The problem

    The free motion of a rigid body is considered.In order to estimate its attitude two coordinate systems are introduced:a nonmoving(inertial)reference frameOξηζwith unit vectorsλ,μ,νand a reference frameC x yzwith unit vectorsi,j,k,which is fixed to the body and moves together with it,where the pointCrepresents the center of mass of the rigid body,Fig.1.An IMU is located at an arbitrary pointAof the body,providing the projections¨x A,¨y A,¨z Aof the absolute accelerationa A,as well as the projectionsωx,ωy,ωzof the angular velocityωof the body onto the moving axesx,y,z.

    Fig.1 Free motion of a rigid body,inertial reference frame Oξηζ and moving reference frame C x yz

    The task is to determine both the accelerationa Cof the center of massC,and the accelerationa Bof an arbitrary pointBof the body,as well as its attitude,expressed in the inertial reference frameOξηζ,on the basis of¨x A,¨y A,¨z Aandωx,ωy,ωzobtained from the IMU.

    Let the position vectors of the center of massC,of the pointAwhere IMU is mounted and of an arbitrary pointBof the rigid body,relative to the moving reference frame be denoted as

    Following considerations of a rigid body kinematics,the acceleration of pointAcan be written as

    where the acceleration of pointArelative toC,using the Rivals theorem,reads

    whereωand˙ωstand for the angular velocity vectorω=ωx i+ωy j+ωz kand angular acceleration vector˙ω=˙ωx i+˙ωy j+˙ωz k,whiler CA=x CA i+yCA j+zCA krepresents the position vector of pointArelative to the mass centerC,expressed by unit vectors of the moving coordinate system.Further,a Creads

    denote the terms multiplying unit vectorsi,j,kwhen the cross productω×r CAfrom Eq.(4)is evaluated.Finally,the acceleration of pointCcan be written as

    where the projections ofa Con the moving axes are

    The acceleration of pointCexpressed in the inertial coor-

    which represent the cosines of the angles between corresponding moving and nonmoving axes.

    Sometimes,it is necessary to determine the acceleration of some other point,which does not coincide either with the center of massCor with the pointA,in which IMU is mounted.For determination of acceleration of such a point,sayB,whose position vector relative toCis known and given asr CB=x CB i+yCB j+zCB k,we can use the expressiona B=a A+a AB,i.e.,the procedure very similar to the one presented by Eqs.(4)–(9).It should be noted that it is possible to determine the accelerationa Busing the calculated acceleration of the center of mass,but in order to achieve higher degree of accuracy in engineering applications,it is better to use data obtained from the IMU directly,which is positioned at pointA.Therefore,the acceleration of pointBcan be expressed as

    and termsIB1,IB2,IB3,similar to Eq.(6),are given as

    Accelerationa Bin a moving reference frame reads

    3 Estimation of rigid body attitude

    In order to determine the acceleration of some point of a rigid body in the inertial coordinate systemOξηζ,in addition to knowing the acceleration of that point in a coordinate system,which moves together with the bodyC x yz,it is necessary to estimate the attitude of the body in three dimensional space,i.e.,the orientation of a moving reference frame relative to the inertial one.For that purpose the theory of quaternions will be applied.It is widely used in various fields due to compactness and simple implementation into numerical algorithms.By using quaternions for a rigid body attitude estimation,the singularity problem(which can arise when Euler angles are used)is avoided,see Ref.[28].The discovery of quaternions is related to William Rowan Hamilton and the middle of XIX century,but their intensive application started more than hundred years later,in classical mechanics,flight simulations,computer graphics,and virtual reality,see Ref.[19].The rotation matrixRwill be determined by the use of that theory.

    There are different ways for interpretation of quaternions.On the one hand,they can be considered as a combination of a scalar valueq0and a vectorv=v1e1+v2e2+v3e3,as follows

    wheree1,e2,e3stand for base vectors of the nonmovable coordinate system,or in a vector form

    in whichq0,q1,q2,q3are often called the Euler parameters[28–30].If Euler’s theorem is taken into account,which states that the rotation of a rigid body about a fixed point may be expressed as a rotation about some axesχwith the unit vectorvfor an angleδ,then the quantitiesqi(i=0,1,2,3)from Eq.(19)can be written as

    The parameterq0refers to the angle of rotation about the axisχ,while the remaining three parametersq1,q2,andq3take into account both the angle of rotation and the orientation of the axisχrelative to the nonmovable reference frame.According to the Euler’s statement that any rotation of a rigid body about a fixed point can be described by three values,then there is a relation between four parametersq0,q1,q2,q3,which reads

    in which case the quantityqis a unit quaternion,with unity norm,see Ref.[28].

    On the other hand,quaternions can be addressed as quadrinomial expressions consisting of a real and an imaginary part.The former can be considered as a scalar value,whose square is always positive,while the square of the latter part is always negative[16].Actually,v1,v2,andv3are real coefficients,whilee1,e2,ande3represent imaginary units,which satisfy the following relations

    More about quaternion algebra can be found in Refs.[18,28].

    In the case when originsOandCof the reference frames from Fig.1 coincide during the motion of a rigid body(rotation about a fixed point),as stated in Euler’s theorem it is possible to bring the moving reference frame into coincidence with the inertial one by a single rotation for an angleδabout axisχ.Ifα,β,γare the angles between the axes of rotationχand nonmovable axesξ,η,ζ,then the rotation matrixR,for the transformation from body to inertial axes

    The set ofbξ,bη,bζorb x,b y,b zin Eq.(23)stands for the projections of a vector of any kind,such as position vector,velocity or acceleration,to corresponding coordinate axes.Note that in the case when the originsOandCdo not coincide,the moving axes become parallel to the axes of the inertial coordinate system,when applying the transformation given by Eq.(23).

    If the following variables are introduced

    the elements of the transformation matrix become

    The time derivative of the Euler parameters read

    Eulerangles(3,2,1)or(ψy?ya w,θp?pitch,?r?roll),whereψydenotes the rotation angle about initial position of axisζ,by whichξandηtake new positionsξ1andη1,θpstands for the rotation angle about axisη1bringingξ1andζ1into new positionsξ2andζ2,while?rdenotes the rotation angle aboutξ2,can be calculated using Euler parameters,see Ref.[29]:

    It is desirable to use the function arctan 2,with two arguments,which takes into account the appropriate quadrant of the computed angle.

    For practical applications of presented considerations,it is useful to perform a time discretization,tn=n·h(n=0,1,2,...),wherehrepresents the time step,while the first derivative of a functionq0(t)over time may be approximated as

    From Eq.(28)followsq0n+1=h˙q0n+q0n,so using Eq.(27)discretized Euler parameters read

    represent the numerical algorithm for determination of the Euler parameters,as well as the rotation matrixRin discrete time instants with time steph.If the movable and the nonmovable reference frames coincide at the initial time instantt=t0,the rotation angleδ0=δ(t0)=0,which implies

    from Eq.(30a).For known elementscijof the rotation matrixR,by the use of Eqs.(9)and(17)it is possible to determine the absolute acceleration of the rigid body mass centerC,or the absolute acceleration of an arbitrary pointBof the body,in the inertial reference frame.Also,angular accelerations about the body axes and positions of pointsAandBrelative toCare considered as known quantities,according to Eqs.(6),(8),(14),and(16).

    4 Numerical algorithm for deriving the acceleration of a point and the attitude of a rigid body

    wheren=0,1,2,....The last four terms enables the calculation of the Euler parameters for the next time step,and the whole procedure repeats.For the rigid body attitude estimation,Euler angles(3,2,1)can be calculated by

    Acceleration of an arbitrary point of a rigid body a BThe algorithm for calculating the absolute acceleration of an arbitrary pointBof the rigid body,expressed in the inertial coordinate system,is presented below.Again,initial values of the Euler parameters are given by Eq.(31)for the case when the reference frames coincide at the beginning of the process.The algorithm is very similar to the previous one.Namely,the algorithm for deriving the acceleration of pointB,and rigid body attitude,is given by the following set of equations

    together with Eqs.(34),(35),(37),and(38),wheren=0,1,2,....

    5 Numerical example:heavy symmetrical gyroscope

    In this section we show an example of application of the presented algorithm given by Eqs.(32)–(37).The acceleration of a pointA(where the IMU is mounted),as well as the pro-jections of the angular velocity,are considered as known in the body reference frame.Both the attitude and acceleration of the center of massCof the rigid body in a nonmovable reference frame will be calculated.For that purpose,without loss of generality, we consider the motion of a heavy symmetrical gyroscope.A homogeneous rectangular cuboid of massmand dimensionsl1,l2,andl3rotates about a fixed pointO,which is in the center of the face with edgesl1andl2,as in Fig.2.Due to the fact that its motion can be completely determined by the use of general theory,see Ref.[32],all necessary kinematical data will be obtained by solving differential equations of motion,instead of using the IMU.Actually,the data obtained from general theory will serve as input data for the numerical algorithm presented by Eqs.(32)–(37),and for the comparison with algorithm output as well.

    LagrangianLfor a heavy symmetrical gyroscope from Fig.2 reads

    Fig.2 Heavy symmetrical gyroscope.a The initial state.b An arbitrary position with Euler angles(3,1,3)

    and projections of the angular velocity to the body axesωx,ωy,ωz,by the use of Euler angles(3,1,3),read(see Fig.2b))

    where the angles of precession,nutation and spin are denoted byψ,θ,and?,respectively.By solving the system of a three second order differential equations,derived using the well known Lagrange’s equations of the second kind

    Accelerations of pointsAandCin the moving coordinate system can be calculated by using the Rivals theorem,as follows

    Fig.3 Absolute acceleration of the center of mass of the heavy symmetrical gyroscope.Results of the numerical algorithm are presented by dots,while the results obtained by solving the system of differential equations of motion are presented by solid lines

    so the acceleration obtained by the use of general theory reads

    This figure shows good agreement between the results of the numerical algorithm presented by Eqs.(32)–(37)and the results obtained by solving the system of differential equations of motion for the heavy symmetrical gyroscope.

    6 Conclusion

    In this paper a free motion of a rigid body is analyzed in order to determine its attitude and the acceleration of an arbitrary point of the body.We proposed the numerical procedures for calculation of the acceleration of the center of mass and any other point of the body,as well as Euler angles(3,2,1)in an inertial coordinate system,on the basis of acceleration data of a certain point of the body,sayA,and the angular velocity expressed in a body reference frame.Input data can be obtained by an IMU attached to the body,measuring kinematical data in the sensor reference frame,with axes parallel to the axes of body reference frame.The quaternion representation is used to form the rotation matrix for transformations from the body to the inertial reference frame.The advantage of application of quaternions for determination of the rotation matrix is that there are no singularities,which can arise when Euler angles are used.The initial values of quaternions are to be chosen according to the initial state of the system. The case in which the movable and nonmovable coordinate systems coincide is considered in the preceding analysis,Eq.(31).Discrete values of quaternions after the initial time instant are calculated by the presented numerical procedure.

    The algorithm is applied to the problem of a heavy symmetrical gyroscope,to calculate the acceleration of the center of mass in an inertial coordinate system.Instead of using IMU,input data are obtained from the solution of the differential equations of motion given by Eq.(45)and using the Rivals theorem.By using the numerical algorithm,the rotation matrix presented by Eq.(24)is calculated during each time step and the acceleration of the center of massCis obtained in the inertial reference frame.The results are compared with the ones obtained by the application of general theory,see Eq.(48),where satisfactory agreement is achieved.The proposed numerical procedure can be applied to a wide class of problems in aerospace and marine engineering,unmanned aerial vehicles and robotic systems.

    AcknowledgementsThe project was supported by the Serbian Ministry of Education,Science and Technological Development(Grant 174016).

    1.Grauer,J.A.,Hubbard Jr.,J.E.:Flight Dynamics and System Identification for Modern Feedback Control.Woodhead Publishing,Philadelphia,USA(2013)

    2.Barshan,B.,Durrant-Whyte,H.F.:Inertial navigation systems for mobiel robots.IEEE Trans.Robot.Autom.11,328–342(1995)

    3.Beard,R.W.:State Estimation for Micro Air Vehicles,Studies in Computational Intelligence,vol.70,173–199.Springer,Berlin(2007)

    4.Marins,J.L.,Yun,X.,Bachmann,E.R.,et al.:An extended Kalman filter for quaternion-based orientation estimation using MARG sensors.In:Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,Maui,Hawaii,USA,October 29–November 03(2001)

    5.Chao,H.,Coopmans,C.,Di,L.,et al.:A comparative evaluation of low-cost IMUs for unmanned autonomus systems.In:2010 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,Salt Lake City,UT,USA,September 5–7(2010)

    6.Rehbinder,H.,Hu,X.:Nonlinear state estimation for rigid-body motion with low-pass sensors.Syst.Control Lett.40,183–190(2000)

    7.Casson,A.J.,Galvez,A.V.,Jarchi,D.:Gyroscope versus accelerometer measurements of motion from wrist PPG during physical exercise.ICT Express 2,175–179(2016)

    8.Wang,X.,Xiao,L.:Gyroscope-reduced inertial navigation system for flight vehicle motion estimation.Adv.Space Res.59,413–424(2017)

    9.Izadi,M.,Sanyal,A.K.:Rigid body pose estimation based on the Lagrange–d’Alembert principle.Automatica 71,78–88(2016)

    10.Luinge,H.J.,Veltink,P.H.:Inclination measurement of human movement using a 3-D accelerometer with autocalibration.IEEE Trans.Neural Syst.Rehabil.Eng.12,112–121(2004)

    11.Ma,J.,Kharboutly,H.,Benali,A.,et al.:Joint angle estimation with accelerometers for dynamic postural analysis.J.Biomech.48,3616–3624(2015)

    12.Madgwick,S.O.H.,Harrison,A.J.L.,Vaidyanathan,R.:Estimation of IMU and MARG orientation using a gradient descent algorithm.In:2011 IEEE International Conference on Rehabilitation Robotics,Rehab week Zurich,ETH Zurich Science City,Switzerland,June 29–July 1(2011)

    13.Sabatini,A.M.:Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.Sensors 11,1489–1525(2011)

    14.Santhiranayagam,B.K.,Lai,D.T.H.,Sparrow,W.A.,et al.:A machine learning approach to estimate minimum toe clearance using inertial measurement units.J.Biomech.48,4309–4316(2015)

    15.Esser,P.,Dawes,H.,Collett,J.,et al.:IMU:inertial sensing of vertical CoM movement.J.Biomech.42,1578–1581(2009)

    16.Hamilton,W.R.:On quaternions.Proc.R.Irish Acad.3,1–16(1847)

    17.Goldman,R.:Rethinking Quaternions:Theory and Computation,Synthesis Lectures on Computer Graphics and Animation.Morgan&Claypool Publishers,San Rafael(2010)

    18.Kuipers,J.B.:Quaternions and Rotation Sequences.Princeton University Press,Princeton(1999)

    19.Mukundan,R.:Quaternions:from clasical mechanics to computer graphics,and beyond.In:Proceedings of the 7th Asian Technology Conference in Mathematics,Melaka,Malaysia,December 17–21(2002)

    20.Spring,K.W.:Euler parameters and the use of quaternon algebra in the manipulation of finite rotations:a review.Mech.Mach.Theory 21,365–373(1986)

    21.Fourati,H.,Manamanni,N.,Afilal,L.,et al.:Rigid body motions estimation using inertial sensors:bio-logging application.In:Proceedings of the 7th IFAC Symposium on Medelling and Control in Biomedical Systems,Aalborg,Denmark,August 12–14(2009)

    22.Fourati,H.,Manamanni,N.,Afilal,L.,et al.:Sensing technique of dynamic marine mammal’s attitude by use of low-cost inertial and magnetic sensors.In:8th IFAC Conference on Control Applications in Marine Systems,Rostock-Warnemünde,Germany,September 15–17(2010)

    23.Chou,J.C.K.:Quaternion kinematic and dynamic differential equations.IEEE Trans.Robot.Autom.8,53–64(1992)

    24.Betsch,P.,Siebert,R.:Rigid body dynamics in terms of quaternions:Hamiltonian formulation and conserving numerical integration.Int.J.Numer.Methods Eng.79,444–473(2009)

    25.Nielsen,M.B.,Krenk,S.:Conservative integration of rigid body motion by quaternion parameters with implicit constraints.Int.J.Numer.Methods Eng.92,734–752(2012)

    26.Xu,X.,Zhong,W.:On the numerical influences of inertia representation for rigid body dynamics in terms of unit quaternion.J.Appl.Mech.83,061006-1–061006-11(2016)

    27.Sherif,K.,Nachbagauer,K.,Stainer,W.:On the rotational equations of motion in rigid body dynamics when using Euler parameters.Nonlinear Dyn.81,343–352(2015)

    28.Diebel,J.:Representing Attitude:Euler Angles,Unit Quaternions,and Rotation Vectors.Stanford University,Stanford(2006)

    29.Durham,W.:Aircraft Flight Dynamics and Control.Wiley,New York(2013)

    30.Goldstein,H.:Classical Mechanics.Addison-Wesley Publishing Company,Boston(1980)

    31.Cooke,J.M.,Zyda,M.J.,Pratt,D.R.,et al.:NPSNET:flight simulation dynamics modeling using quaternions.Presence 1,404–420(1994)

    32.Gantmacher,F.:Lectures in Analytical Mechanics.Mir Publishers,Moscow(1975)

    久久99热这里只有精品18| av福利片在线观看| 亚洲五月天丁香| 九色成人免费人妻av| 亚洲一区二区三区色噜噜| 国产在线精品亚洲第一网站| 欧美日韩一级在线毛片| 丰满人妻一区二区三区视频av | 中出人妻视频一区二区| 嫩草影院入口| 国产三级在线视频| 在线播放无遮挡| 色av中文字幕| 别揉我奶头~嗯~啊~动态视频| 听说在线观看完整版免费高清| 国产精品一及| 999久久久精品免费观看国产| 91九色精品人成在线观看| 一夜夜www| 国产欧美日韩一区二区三| 亚洲国产精品sss在线观看| av中文乱码字幕在线| 三级国产精品欧美在线观看| 国产视频一区二区在线看| 欧美最新免费一区二区三区 | 超碰av人人做人人爽久久 | 91在线精品国自产拍蜜月 | 国产成人a区在线观看| 久久精品国产99精品国产亚洲性色| 久久久国产成人免费| 18禁美女被吸乳视频| 欧美黄色片欧美黄色片| 少妇人妻一区二区三区视频| 精品国产亚洲在线| 国产毛片a区久久久久| 在线观看舔阴道视频| 国产激情偷乱视频一区二区| 国产探花在线观看一区二区| 国产 一区 欧美 日韩| 蜜桃久久精品国产亚洲av| 91在线精品国自产拍蜜月 | 欧美色欧美亚洲另类二区| 免费看十八禁软件| а√天堂www在线а√下载| 欧美日韩综合久久久久久 | 69人妻影院| 日韩欧美 国产精品| 香蕉久久夜色| 天堂影院成人在线观看| 少妇丰满av| 国产精品1区2区在线观看.| 亚洲成av人片免费观看| 亚洲av美国av| 美女免费视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产日本99.免费观看| 性色avwww在线观看| 亚洲18禁久久av| 久久久久国产精品人妻aⅴ院| 亚洲不卡免费看| 欧美一区二区国产精品久久精品| 国产免费一级a男人的天堂| 99热精品在线国产| 在线看三级毛片| 国产99白浆流出| 熟女少妇亚洲综合色aaa.| 一边摸一边抽搐一进一小说| 草草在线视频免费看| 日日夜夜操网爽| 99riav亚洲国产免费| 亚洲片人在线观看| 午夜福利在线观看免费完整高清在 | 久久久久久大精品| 日本五十路高清| netflix在线观看网站| 欧美另类亚洲清纯唯美| www.www免费av| 神马国产精品三级电影在线观看| 国产免费男女视频| 亚洲av不卡在线观看| 久久午夜亚洲精品久久| 女生性感内裤真人,穿戴方法视频| 精品不卡国产一区二区三区| 很黄的视频免费| 欧美日韩中文字幕国产精品一区二区三区| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av涩爱 | 一个人看的www免费观看视频| 女警被强在线播放| 亚洲精品一卡2卡三卡4卡5卡| 精品日产1卡2卡| 无人区码免费观看不卡| 午夜福利18| 熟妇人妻久久中文字幕3abv| 久久6这里有精品| 哪里可以看免费的av片| 亚洲成人精品中文字幕电影| 一级毛片女人18水好多| 亚洲国产精品999在线| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区四那| 亚洲欧美激情综合另类| 青草久久国产| 久久久精品欧美日韩精品| 每晚都被弄得嗷嗷叫到高潮| 91在线观看av| a在线观看视频网站| 宅男免费午夜| 欧美+亚洲+日韩+国产| 欧美精品啪啪一区二区三区| 中文在线观看免费www的网站| 久99久视频精品免费| 亚洲av第一区精品v没综合| 国产野战对白在线观看| 99热精品在线国产| 中文字幕精品亚洲无线码一区| 俄罗斯特黄特色一大片| 欧美午夜高清在线| 久久久久亚洲av毛片大全| 在线十欧美十亚洲十日本专区| 欧美一级a爱片免费观看看| 欧美中文日本在线观看视频| 国产亚洲av嫩草精品影院| 国产精品爽爽va在线观看网站| av国产免费在线观看| 精品国产亚洲在线| 一级毛片女人18水好多| 欧美成人a在线观看| 久久久久久久午夜电影| 18禁国产床啪视频网站| 日韩欧美国产一区二区入口| 悠悠久久av| 男人舔奶头视频| 免费看a级黄色片| 欧美三级亚洲精品| av天堂中文字幕网| 国产免费一级a男人的天堂| av中文乱码字幕在线| 午夜两性在线视频| 欧美乱码精品一区二区三区| 国产av一区在线观看免费| 首页视频小说图片口味搜索| 国产精品久久久久久人妻精品电影| 欧美日韩中文字幕国产精品一区二区三区| avwww免费| 国产成人系列免费观看| 757午夜福利合集在线观看| 中文字幕av在线有码专区| 国产又黄又爽又无遮挡在线| 在线免费观看不下载黄p国产 | 69av精品久久久久久| 九色成人免费人妻av| 变态另类丝袜制服| 久久这里只有精品中国| 国产三级中文精品| 麻豆成人av在线观看| 手机成人av网站| 成人国产综合亚洲| 在线国产一区二区在线| 黑人欧美特级aaaaaa片| 亚洲av电影不卡..在线观看| 一进一出抽搐动态| 欧美色视频一区免费| 久久这里只有精品中国| 在线十欧美十亚洲十日本专区| 久久久久国产精品人妻aⅴ院| 欧美最新免费一区二区三区 | 欧美精品啪啪一区二区三区| 黑人欧美特级aaaaaa片| 欧美日本视频| 国产精品99久久99久久久不卡| 日本成人三级电影网站| 最新中文字幕久久久久| 五月玫瑰六月丁香| 制服丝袜大香蕉在线| 长腿黑丝高跟| 最新中文字幕久久久久| 午夜免费成人在线视频| 亚洲国产高清在线一区二区三| 成人精品一区二区免费| 可以在线观看毛片的网站| 精品一区二区三区av网在线观看| 国产色爽女视频免费观看| 少妇人妻精品综合一区二区 | 1000部很黄的大片| 欧美区成人在线视频| 亚洲精品一卡2卡三卡4卡5卡| 又黄又粗又硬又大视频| 国产成+人综合+亚洲专区| 午夜免费男女啪啪视频观看 | 一区二区三区高清视频在线| 日韩中文字幕欧美一区二区| 亚洲va日本ⅴa欧美va伊人久久| 在线观看日韩欧美| 桃红色精品国产亚洲av| 亚洲精品久久国产高清桃花| 母亲3免费完整高清在线观看| av欧美777| 亚洲国产精品sss在线观看| 色老头精品视频在线观看| 看免费av毛片| 午夜视频国产福利| 内地一区二区视频在线| 久久伊人香网站| 一本精品99久久精品77| 国产麻豆成人av免费视频| aaaaa片日本免费| a在线观看视频网站| 夜夜爽天天搞| 一夜夜www| 久久精品影院6| 国产免费一级a男人的天堂| 欧美不卡视频在线免费观看| 99久久99久久久精品蜜桃| 欧美一级a爱片免费观看看| 中文字幕久久专区| 久久久久久久久中文| 男插女下体视频免费在线播放| 一边摸一边抽搐一进一小说| 狠狠狠狠99中文字幕| 岛国在线免费视频观看| 国产精品爽爽va在线观看网站| 久久久国产精品麻豆| 亚洲国产欧洲综合997久久,| 亚洲自拍偷在线| 亚洲专区中文字幕在线| 国内精品美女久久久久久| 日韩欧美 国产精品| av在线蜜桃| 国产亚洲精品一区二区www| 夜夜躁狠狠躁天天躁| 男女那种视频在线观看| 国产高清三级在线| 国产久久久一区二区三区| 熟女少妇亚洲综合色aaa.| 男插女下体视频免费在线播放| 黄片大片在线免费观看| 一个人免费在线观看电影| 啦啦啦免费观看视频1| 97人妻精品一区二区三区麻豆| 国产精品久久久久久亚洲av鲁大| 日韩人妻高清精品专区| 日韩欧美 国产精品| 夜夜看夜夜爽夜夜摸| 亚洲色图av天堂| 国产精品99久久久久久久久| 99久久99久久久精品蜜桃| 9191精品国产免费久久| 成人高潮视频无遮挡免费网站| 国产午夜精品论理片| netflix在线观看网站| 一区二区三区激情视频| 搞女人的毛片| 中文字幕av在线有码专区| 国产午夜精品论理片| 丰满人妻熟妇乱又伦精品不卡| 国产成人av激情在线播放| 久久久精品大字幕| 手机成人av网站| 亚洲avbb在线观看| 丰满人妻熟妇乱又伦精品不卡| 最近最新中文字幕大全电影3| 精品久久久久久久久久免费视频| 九色国产91popny在线| 日韩欧美在线二视频| 国产高清三级在线| 免费在线观看日本一区| 精品国内亚洲2022精品成人| 欧美一级a爱片免费观看看| 国产av麻豆久久久久久久| 亚洲人成网站高清观看| 两个人看的免费小视频| 国产熟女xx| 国产精品亚洲一级av第二区| 久久香蕉精品热| 国产99白浆流出| 亚洲乱码一区二区免费版| 12—13女人毛片做爰片一| 国产精品综合久久久久久久免费| 色哟哟哟哟哟哟| 精品一区二区三区人妻视频| 三级国产精品欧美在线观看| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| 国内少妇人妻偷人精品xxx网站| 亚洲在线自拍视频| 日日摸夜夜添夜夜添小说| 在线国产一区二区在线| 久久精品亚洲精品国产色婷小说| 啦啦啦韩国在线观看视频| 久久国产精品人妻蜜桃| 欧美中文综合在线视频| 观看免费一级毛片| 国产午夜精品论理片| 老熟妇仑乱视频hdxx| av中文乱码字幕在线| 人人妻人人澡欧美一区二区| 精品电影一区二区在线| 日本与韩国留学比较| 91麻豆精品激情在线观看国产| 波多野结衣高清作品| 国产黄a三级三级三级人| 黄色视频,在线免费观看| 国产精品女同一区二区软件 | 搞女人的毛片| 精品福利观看| 又紧又爽又黄一区二区| 99视频精品全部免费 在线| 国产乱人视频| 亚洲 国产 在线| 欧美+亚洲+日韩+国产| 此物有八面人人有两片| 日韩欧美 国产精品| 亚洲成人久久性| 亚洲乱码一区二区免费版| 国产精品久久久久久亚洲av鲁大| 国产伦在线观看视频一区| 91九色精品人成在线观看| 国产午夜精品论理片| 国产精品1区2区在线观看.| 国产精品综合久久久久久久免费| 日韩人妻高清精品专区| 美女免费视频网站| 久久久久久久久大av| 国产精品一区二区三区四区久久| 最近视频中文字幕2019在线8| 亚洲精品粉嫩美女一区| 亚洲国产欧美人成| 观看美女的网站| 一边摸一边抽搐一进一小说| aaaaa片日本免费| 夜夜爽天天搞| 禁无遮挡网站| 国产69精品久久久久777片| 夜夜躁狠狠躁天天躁| 亚洲 国产 在线| 露出奶头的视频| 免费在线观看亚洲国产| 日韩国内少妇激情av| 91av网一区二区| 亚洲av成人av| 偷拍熟女少妇极品色| 亚洲欧美一区二区三区黑人| tocl精华| 日韩欧美国产在线观看| 亚洲一区二区三区不卡视频| 国产爱豆传媒在线观看| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 性色av乱码一区二区三区2| 男人和女人高潮做爰伦理| 99久久综合精品五月天人人| 精品久久久久久久人妻蜜臀av| 99久久综合精品五月天人人| 麻豆国产av国片精品| 国内精品久久久久久久电影| 国产成人a区在线观看| 国产亚洲精品综合一区在线观看| 一个人看视频在线观看www免费 | 精品人妻偷拍中文字幕| 一二三四社区在线视频社区8| 嫁个100分男人电影在线观看| 成人18禁在线播放| 国产精品一区二区三区四区免费观看 | 欧美zozozo另类| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 亚洲第一欧美日韩一区二区三区| 欧美高清成人免费视频www| 国产乱人视频| 国产精品自产拍在线观看55亚洲| 操出白浆在线播放| 色综合婷婷激情| 在线视频色国产色| 99国产综合亚洲精品| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久一区二区三区 | 两个人看的免费小视频| 国产午夜福利久久久久久| 久久精品综合一区二区三区| 美女cb高潮喷水在线观看| 啦啦啦观看免费观看视频高清| 日韩成人在线观看一区二区三区| 夜夜爽天天搞| 蜜桃久久精品国产亚洲av| 激情在线观看视频在线高清| 九九久久精品国产亚洲av麻豆| 俺也久久电影网| 日日夜夜操网爽| 欧美+亚洲+日韩+国产| 极品教师在线免费播放| 人妻久久中文字幕网| 一级黄色大片毛片| 男女床上黄色一级片免费看| 亚洲国产色片| 免费一级毛片在线播放高清视频| av天堂在线播放| 欧美成人a在线观看| 日日摸夜夜添夜夜添小说| 日韩成人在线观看一区二区三区| 老鸭窝网址在线观看| 内地一区二区视频在线| 欧美三级亚洲精品| 麻豆国产97在线/欧美| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 九色成人免费人妻av| 国产成人aa在线观看| 午夜视频国产福利| 午夜免费成人在线视频| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 欧美日韩综合久久久久久 | 露出奶头的视频| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 亚洲成人中文字幕在线播放| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 精品乱码久久久久久99久播| e午夜精品久久久久久久| 激情在线观看视频在线高清| www.999成人在线观看| 美女高潮的动态| 国产精品一区二区三区四区免费观看 | 中文字幕人妻熟人妻熟丝袜美 | 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 精品人妻偷拍中文字幕| 国内毛片毛片毛片毛片毛片| 成人一区二区视频在线观看| 亚洲美女视频黄频| 国产av不卡久久| 日韩欧美精品免费久久 | 亚洲在线自拍视频| 国产野战对白在线观看| 国产成人影院久久av| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 天天添夜夜摸| 欧美一级a爱片免费观看看| 男女午夜视频在线观看| 国产亚洲av嫩草精品影院| 国产免费男女视频| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区| 免费在线观看影片大全网站| 一夜夜www| 午夜精品一区二区三区免费看| eeuss影院久久| 日韩有码中文字幕| 亚洲最大成人中文| 国产av不卡久久| 成人18禁在线播放| 亚洲精品在线观看二区| 日本 欧美在线| 成人欧美大片| 国产精品久久久久久精品电影| 99久久精品国产亚洲精品| 国产高潮美女av| 嫩草影院入口| 国产激情偷乱视频一区二区| 在线视频色国产色| 一本一本综合久久| 国产成+人综合+亚洲专区| 亚洲激情在线av| 色视频www国产| 熟女电影av网| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 久久精品人妻少妇| 午夜福利在线观看吧| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 国产三级中文精品| 夜夜爽天天搞| a级一级毛片免费在线观看| 久久婷婷人人爽人人干人人爱| 桃红色精品国产亚洲av| 9191精品国产免费久久| 国产91精品成人一区二区三区| 热99re8久久精品国产| 亚洲成人免费电影在线观看| 国产精品三级大全| 欧美极品一区二区三区四区| 欧美+亚洲+日韩+国产| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 三级毛片av免费| 老熟妇仑乱视频hdxx| 中国美女看黄片| 国语自产精品视频在线第100页| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 国产真实乱freesex| 老熟妇乱子伦视频在线观看| 天堂√8在线中文| 亚洲久久久久久中文字幕| av天堂在线播放| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| av在线蜜桃| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 九九热线精品视视频播放| 成人一区二区视频在线观看| 午夜免费观看网址| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 久99久视频精品免费| 亚洲成av人片在线播放无| 中文字幕人妻丝袜一区二区| 欧美成人免费av一区二区三区| 午夜影院日韩av| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 午夜福利在线在线| 天堂动漫精品| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区视频在线 | 岛国视频午夜一区免费看| 蜜桃亚洲精品一区二区三区| 伊人久久大香线蕉亚洲五| 男人和女人高潮做爰伦理| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放| 99精品在免费线老司机午夜| 国产精品久久久久久精品电影| 老司机午夜福利在线观看视频| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 一个人看视频在线观看www免费 | 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| xxxwww97欧美| 亚洲专区中文字幕在线| 青草久久国产| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 免费人成在线观看视频色| 久久久久久久久大av| 亚洲国产中文字幕在线视频| 亚洲国产精品sss在线观看| xxxwww97欧美| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久国产高清桃花| 波野结衣二区三区在线 | 成年人黄色毛片网站| 老司机在亚洲福利影院| 91在线精品国自产拍蜜月 | 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 3wmmmm亚洲av在线观看| 在线看三级毛片| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久com| 麻豆成人av在线观看| 狠狠狠狠99中文字幕| 国产熟女xx| 琪琪午夜伦伦电影理论片6080| 国产成人a区在线观看| 日韩欧美一区二区三区在线观看| 狂野欧美激情性xxxx| 国产午夜精品久久久久久一区二区三区 | 国产毛片a区久久久久| 日日干狠狠操夜夜爽| 免费看光身美女| 日本免费a在线| 亚洲无线观看免费| 亚洲av一区综合| 中文资源天堂在线| 观看美女的网站| h日本视频在线播放| 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 哪里可以看免费的av片| 男女那种视频在线观看| 国产成年人精品一区二区| 观看免费一级毛片| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 久久中文看片网| 国产精品永久免费网站| 久久亚洲精品不卡| 国产久久久一区二区三区| 久久久成人免费电影| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 99久久精品一区二区三区| 麻豆国产97在线/欧美| 看片在线看免费视频| 久久久久久大精品| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 欧美区成人在线视频|