• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized mixed finite element method for 3D elasticity problems

    2018-04-18 02:56:05GuanghuiQingJunhuiMaoYanhongLiu
    Acta Mechanica Sinica 2018年2期

    Guanghui Qing·Junhui Mao·Yanhong Liu

    1 Introduction

    In standard finite element displacement methods,the displacements are usually computed first,then the stresses or/and strains are calculated by numerically differentiating,based upon the constitutive relations and compatible equations at element level,usually resulting in loss of accuracy.Meanwhile,the values of the strain component computed from different elements connected at a node are different.Consequently,a smoothing or recovery procedure for nodal stresses may be carried out over the local or whole finite element domain.The boundary nodal stresses obtained from such finite element analysis are inconsistent with the prescribed stresses in displacement methods[1,2].

    For equilibrium finite element methods,stresses are equilibrated within the element and tractions are balanced at interelement boundaries.However,equilibrium methods have been found to have limited use in general-purpose computer codes because of their behavior without judicious choice of basis functions[2].

    Numerous mathematical models result from physical problems in the form of systems of partial differential equations involving several physically disparate quantities that need to be approximated simultaneously.The finite element approximations of such problems are well known as mixed finite element methods.Generally,the dual variable is computed as a fundamental unknown in mixed methods.Early contributions towards mixed methods can be found in Refs.[3–10].More recent developments can be found in Refs.[11–25].As a class of numerical methods,mixed models are widely used in the field of fluid mechanics;For example,displacement models are impractical for the Stokes problem.For such problems,mixed methods represent the simplest and most direct alternative[25].Several main advantages and disadvantages of mixed methods can be summarized as follows:

    (1)Linear interpolation functions are often sufficient to give satisfactory results for practical applications.Boundary and interelement conditions can be represented properly,and no difficulties arise due to higher derivatives;

    (2)The stress or strain variables,as the main design parameters of a structure,are the direct results of the finite element governing equation without requiring differentiation of displacements.This is also advantageous for physically nonlinear analysis,in which yield conditions etc.are expressed in terms of stresses[8,11];

    (3)It is well known that,for nearly incompressible and incompressible materials,finite element computations based on the standard displacement formulation fail due to the onset of the locking phenomenon.Classical mixed formulations are a valid alternative to locking-affected methods,since they provide mathematical models capable of treating both compressible and incompressible elasticity problems in a unified framework[8,26];

    (4)Compared with displacement methods,the mathematical theory of mixed methods is relatively complex.For mixed methods based on the Hellinger–Reissner(H–R)variational principle alone,stability is paramount.The stability of numerical results is related to the invertibility of the coefficient matrix of the finite element governing equation.A main drawback of mixed methods is the indefiniteness of the resulting system matrix[20].It is not easy to construct a pair of finite elements for the displacement vector and symmetric stress tensor which satisfies the stability conditions of Brezzi’s theory[4].

    Some representative studies on mixed methods published in recent years should be mentioned here:Arnold and Winther[16]suggested some stable elements for a two dimensional problem,while the corresponding method in three-dimensional space was first characterized by Adams and Cockburn[17],and thorough analyses of the finite elements were provided in Ref.[19].The construction of these elements is not convenient for computer programs, since they are of high polynomial order,implying high cost even for the lowest-order scheme.A family of symmetric tensor-valued finite elements of arbitrary order was constructed using the tangential-displacement normal-normal-stress(TDNNS)formulation in Ref.[10].However,the mathematical theory and the process of construction of the TDNNS formulation are not simple and not suitable for engineers.

    No doubt,some open questions remain in connection with displacement methods,equilibrium methods,and mixed methods for two-or three-dimensional elasticity problems.For mixed methods,some questions of stable elements require further study.

    The objective of this work is to propose two simple generalized mixed methods without any stable element schemes but with automatically stable numerical results.

    2 Variational principles for elasticity

    Consider a body under static loading.The body occupies the volumeV.Sis the surface of the body.S=Su∪Sσ,whereSuandSσare the segments ofSwhere displacements and surface tractions are prescribed,respectively;the outward unit normal onSis denoted byN≡ni.Let?be the gradient operator in the deformed body which,under the assumption of infinitesimal deformation,is indistinguishable from the deformed body.

    Assuming the displacement boundary conditionsu?u=0 is satisfied a priori for all variational principles in the following.

    The minimum potential energy principle for elasticity problems has the form

    whereCis the symmetric stiffness matrix of a material.

    The H–variational principle [27] for elasticity problems contains both displacement and stress fields

    whereS=C?1is the compliance matrix.

    Like the H–R variational principle,there are also both displacement and stress fields in the generalized variational principle[28].This principle can be expressed in the following form

    It should be pointed out that Felippa[29,30]constructed a one-parameter family of mixed variational principles for linear elasticity in 1989.Equation(3)is such a one-parameter family of mixed variational principles.

    Generally,we expect to take 0?λ?1 in Eq.(3).Values of the parameterλ<0 orλ>1 are not of practical interest.It is clear that,lettingλ=0,Eq.(3)becomes the H–R variational principle.Meanwhile,lettingλ=1,one obtains the minimum potential energy principle in Eq.(1).

    It is interesting that the generalized variational principle above is one-half of the sum of the minimum potential energy principle and H–R variational principle.Our practice shows that,indeed,only forλ=1/2 can good accuracy and stability of the generalized mixed method be obtained.

    Note that the H–R variational principle in Eq.(2)and generalized variational principle in Eq.(4)are the principles of stationarity.For the principles in Eqs.(2)and(4),the nonvariational constraint is the constitutive relations.The equilibrium equations,the tractions boundary condition can be satisfied a posteriori.

    3 Element formulations

    3.1 Compatible mixed element formulations

    Without loss of generality,consider first ann-node compatible linear element for 3D problems.Both the displacement vectoruand stress vectorσare expressed using the same shape functions

    It is well known that,inserting Eqs.(5)and(6)into Eq.(2)and performing the energy integration,one obtains the discrete form of the H–R variational principle

    In what follows,the superscript“i”will be dropped for clarity.

    Considerpeandqeas independent variables.ByδΠHR(pe,qe)=0,one has two Euler–Lagrange(EL)equations

    It can be seen that the classical formulation in Eq.(8)resulting from the H–R variational principle of various physical problems is symmetric,but it possesses zeros on the diagonal.Indeed,the coefficient matrix of Eq.(8)is non-positive definite.If stable elements[16,20,26]are not employed,it is very difficult to obtain stable solutions directly from Eq.(8).

    3.2 Compatible displacement element formulations

    In the same way,using Eq.(5),the discrete form of the minimum potential energy principle in Eq.(1)is

    3.3 Compatible generalized mixed element formulations

    It is of interest to see that adding Eq.(10)to the second equation of Eq.(8)yields

    In the above equation,the coefficient matrix is not only symmetric,but also there are no zeros on the diagonal.This is a main difference from Eq.(8).Equation(11)is termed the compatible generalized mixed element with 8 nodes(CGME8)for 3D problems in this work.

    Certainly,Eq.(11)can be proved by the generalized variational principle in Eq.(4).Using Eqs.(5)and(6),the discrete form of Eq.(4)can be written as

    In Eq.(12),the integral expressions ofKpp,Kpq,andfqare the same as those in Eq.(7),respectively;the integral expressionKqqis identical to theKqqin Eq.(9).

    Taking the variation of Eq.(12)with respect to variablespeandqeleads immediately to Eq.(11).

    The summation of Eq.(11)on all elements gives a novel algebraic system for finite element analysis

    In general,at system level,the whole coefficient matrix has a structure equivalent to that of an element.It is clear that the coefficient matrix of Eq.(13)is characterized by symmetry with respect to the stress and displacement variables of all nodes.Certainly,the coefficient matrix of Eq.(13)is invertible,which implies that its numerical results will be stable[26,31].

    3.4 Noncompatible generalized mixed element formulations

    On the basis of Refs.[32,33],for a noncompatible element,the element displacementucan be expressed as a sum of the compatible partNqqeand the noncompatible partNrre

    Here,Nris the shape function matrix with respect to points within elements;reis the displacement vector corresponding to points within elements.

    In a similar way,substituting Eq.(14)into Eq.(1)results in

    The result of the variation of Eq.(15)with respect toreis given by

    Here,Krris an invertible matrix[32,33].From this,one obtains

    Eliminatingrein Eq.(15)using Eq.(17),the following EL equation can be derived from the new form of Eq.(15)

    In a similar way,on substitution of Eqs.(6)and(14)into Eq.(2),the resulting noncompatible finite element functional has the form

    Using Eq.(17),one can also eliminaterefrom the above equation to yield

    Considering the combination of the result ofδΠHR(pe,qe)= 0 of Eq.(20)with respect topeand Eq.(18),one has

    Therefore,the simplified noncompatible generalized mixed element with 8 nodes(NCGME8)for 3D problems is given by

    The algebraic system for the finite element analysis corresponding to Eq.(22)has the form

    4 Imposing boundary conditions

    For common finite element problems with prescribed but nonzero values atvarious locations,one approach in practice is to add a large number or penalty term,for instance 1020,to the leading diagonal of the stiffness matrix in the row corresponding to the prescribed value.The term in the same row of the right-hand side vector is then set to the prescribed value multiplied by the augmented stiffness coefficient[33].

    Such a procedure is only successful if small terms are indeed very small relative to 1020.Another prerequisite may be required,i.e.,that the coefficient matrix of the algebraic system is a bandwidth matrix.Our practice shows that this procedure is not suitable for Eqs.(13)and(23),which involve known nonzero stress values(e.g.,the prescribed surface tractions)since the submatrixK12in Eq.(13)orK12in Eq.(23)is not a zero matrix.

    Taking Eq.(23)as an example,interchanging rows and columns,it can be recast into the following form

    Therefore,one has

    Of course,Eq.(25c)is redundant.Consequently,the final governing equation for the solutions of unknown nodal displacements and stresses is

    The simple technique presented above for imposing stress and displacement boundary conditions is employed in our program.In the next section,numerical examples show that the boundary nodal stresses are consistent with the prescribed stresses onSσ.

    5 Numerical examples and discussion

    5.1 A thick rectangular plate with simply supported edges

    Consider a thick rectangular plate with in-plane dimensionsa=b=1.0 and total thicknessh=0.10(Fig.1).Here,we assume that the edgesx=0,aandy=0,bare simply supported,and use material propertiesE11=10E22=10E33,G12=G13=0.6E33,G23=0.5E33,andν12=ν13=ν23=0.25.Uniform normal load of 1.0 is applied on the upper surface of the plate[34].

    Fig.1 A thick rectangular plate

    Using the symmetry about thex1-andx2-axes,only one quarter of the plate(Fig.1b)is analyzed with uniform meshes.The convergence rate and accuracy of displacements and stresses at specific locations are depicted in Figs.2–12.The results for the noncompatible displacement element with 8 nodes(NCDE8)were obtained using commercially available software ABAQUS?.

    For Figs.2–10,Table 1 presents the size of each mesh using the notationl×mforlsubdivisions along thex1-axis andmsubdivisions along thex2-axis with the same type of elements,with four subdivisions in thex3direction for all models.

    On the basis of the results for the 12×12×4 mesh,the errors presented in the legends to Figs.2–10 were computed using the formula(Exact? Numerical)/Exact× 100%.

    Fig.2 Comparison of displacement

    Fig.3 Comparison of displacement

    Fig.4 Comparison of displacement

    Fig.5 Comparison of stress

    Fig.6 Comparison of stress

    Fig.7 Comparison of stress

    Fig.8 Comparison of stress

    In the present computer program,two Gauss quadrature points in each direction were employed for CGME8 and NCGME8.

    Fig.9 Comparison of stress

    Fig.10 Comparison of stress

    Fig.11 Distribution along thickness of

    Fig.12 Distribution along thickness of

    Table 1 Mesh sizes

    5.2 A classical cantilever beam problem

    Consider a cantilever beam[35]under pure bending or acted upon by shear forces at the tip(Fig.13a,b),with geometric dimensions of2×2×10 and material properties ofE=1500 andν=0.25.The vertical displacement at point A and the bending stressσ11at point B for different meshes(as shown in Figs.14–19)are presented in Tables 2–4,respectively,compared withQ S11?1[35],Q S11?2[35],and exact solutions.

    Based on the results in Tables 2–5,it can be concluded that:

    Most of the displacement and stress results obtained using NCGME8 appear to be more accurate than those obtained using the hybrid stress elementsQ S11?1,Q S11?2,and CGME8.NCGME8 is less sensitive to geometric distortions(see Figs.14–19,in which the elements are severely distorted).It is also very obvious that the accuracy of CGME8 was very poor due to the geometric distortion of the elements.

    Fig.13 Two load cases for a cantilever beam

    Fig.14 Mesh a

    Fig.15 Mesh b

    Fig.16 Mesh c

    Fig.17 Mesh d

    Fig.18 Mesh e

    Fig.19 Mesh f

    Table 2 Displacement u3 at point A(load case 1)

    Table 3 Stress σ11 at point B(load case 1)

    5.3 Cook’s skew beam

    Table 4 Displacement u3 at point A(load case 2)

    Table 5 Stress σ11 at point B(load case 2)

    Table 6 Results for Cook’s skew beam(Fig.20)

    Fig.20 Cook’s skew beam

    The numerical results in Table 6 show that NCGME8 was softer than the other elements in Ref.[36].Without doubt,the results obtained using NCGME8 are closer to the best known answers.

    6 Conclusions

    Generally,classical mixed methods yield the simplest and most flexible system of equations for finite element analysis of some problems.However,the corresponding mathematical theory is relatively complex due to the requirement for stable elements.

    Applying usual linear interpolation functions,two novel and simple generalized mixed elements were developed by combining two variational principles.As mentioned in Sect.3,one of the most prominent advantages of the generalized mixed methods(GMMs)corresponding to the present mixed elements for the 3D problems presented in this work is that symmetry with respect to both displacement and stress variables is guaranteed in the finite element governing equations.On the other hand,the GMMs are preferable for introduction of displacement and tractions boundary conditions simultaneously.The convergence rates of stress and displacement variables using NCGME8 were balanced,stable,and with fine precision.

    This noncompatible generalized mixed method should be extended to important applications in a wide range of engineering structures,including treatment of the combination with other structural members and investigation of the possible advantages in stress singularity problems and nonlinear applications which may result for special structures.The pertinent theories of the generalized mixed elements should also be explored deeply,for instance,investigation of local error bounds or practical estimates for variables in threedimensional problems.

    If one starts from the generalized variational principles of plate and shell theories,simple corresponding generalized element formulations and generalized mixed methods can also be constructed.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grant 11502286).

    1.Tian,S.Z.,Pian,T.H.:Variational Principles with Multi-variables and Finite Elements with Multi-variables.Science Press,Beijing(2011).(in Chinese)

    2.Hoa,S.V.,Wei,F.:Hybrid Finite Element Method for Stress Analysis of Laminated Composites.Springer Science&Business Media,New York(2013)

    3.Herrmann,L.R.:Finite element bending analysis for plates.J.Eng.Mech.Div.ASCE 98,13–26(1967)

    4.Brezzi,F.:On the existence,uniqueness and approximation of saddle-point problems arising from lagrangian multipliers.Rev.Fr.Autom.Inf.Rech.Opér.Anal.Numér.8,129–151(1974)

    5.Reddy,J.N.,Oden,J.T.:Mathematical theory of mixed finite element approximations.Quart.Appl.Math 33,255–280(1975)

    6.Oden,J.T.,Reddy,J.N.:On mixed finite element approximations.SIAM J.Numer.Anal.13,393–404(1976)

    7.Strang,G.,Fix,G.J.:An Analysis of the Finite Element Method.Prentice-Hall,Englewood Cliffs(1973)

    8.Atluri,S.N.,Gallagher,R.H.,Zienkiewicz,O.C.:Hybrid and Mixed Finite Element Methods.Wiley,New York(1983)

    9.Hughes,T.J.:The Finite Element Method:Linear Static and Dynamic Finite Element Analysis.Courier Corporation,North Chelmsford(2012)

    10.Morley,M.E.:A family of mixed finite elements for linear elasticity.Numer.Math.55,633–666(1989)

    11.Brezzi,F.,Fortin,M.:Mixed and Hybrid Finite Element Methods.Springer Science&Business Media,New York(2012)

    12.Belytschko,T.,Liu,W.K.,Moran,B.,et al.:Nonlinear Finite Elements for Continua and Structures.Wiley,New York(2013)

    13.Bonet,J.,Wood,R.D.:Nonlinear Continuum Mechanics for Finite Element Analysis.Cambridge University Press,London(1997)

    14.Zienkiewicz,O.C.,Taylor,R.L.:The Finite Element Method:Solid Mechanics.Butterworth,London(2000)

    15.Arnold,D.N.:Differential complexes and numerical stability.Preprint.arXiv:math/0212391(2002)

    16.Arnold,D.N.,Winther,R.:Mixed finite elements for elasticity.Numer.Math.92,401–419(2002)

    17.Adams,S.,Cockburn,B.:A mixed finite element method for elasticity in three dimensions.J.Sci.Comput.25,515–521(2005)

    18.Arnold,D.N.,Falk,R.,Winther,R.:Mixed finite element methods for linear elasticity with weakly imposed symmetry.Math.Comput.76,1699–1723(2007)

    19.Arnold,D.N.,Awanou,G.,Winther,R.:Finite elements for symmetric tensors in three dimensions.Math.Comput.77,1229–1251(2008)

    20.Sinwel,A.:A new family of mixed finite elements for elasticity.[Ph.D.Thesis],Johannes Kepler University,Austria(2009)

    21.Qiu,W.,Demkowicz,L.:Variable order mixedh-finite element method for linear elasticity with weakly imposed symmetry.II.Affine and curvilinear elements in 2D.Mathematics 11,510–539(2010)

    22.Gopalakrishnan,J.,Guzm,J.N.:Symmetric nonconforming mixed finite elements for linear elasticity.SIAM J.Numer.Anal.49,1504–1520(2011)

    23.Qiu,W.:Mixed variable orderh-finite element method for linear elasticity with weakly imposed symmetry.Curvilinear elements in 2D.Comput.Methods Appl.Math.11,510–539(2011)

    24.Hu,J.,Man,H.G.,Zhang,S.G.:The simplest mixed finite element method for linear elasticity in the symmetric formulation onnrectangular grids.Comput.Math.Appl.71,1317–1336(2013)

    25.Liu,Z.D.:Basis of Mixed Finite Element Methods and Its Application.Science Press,Beijing(2006).(in Chinese)

    26.Arnold,D.N.:Mixed finite element methods for elliptic problems.Comput.Methods Appl.Mech.Eng.82,281–300(1990)

    27.Reissner,E.:On a variational theorem in elasticity.J.Math.Phys.29,90–95(1950)

    28.Chien,W.Z.:Method of high-order lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals.Appl.Math.Mech.4,143–157(1983)

    29.Felippa,C.A.:Parameterized multifid variational principles in elasticity:I.Mixed functionals.Commun.Appl.Numer.Methods 5,79–88(1989)

    30.Felippa,C.A.:Parametrized multifid variational principles in elasticity:II.Hybrid functionals and the free formulation.Commun.Appl.Numer.Methods 5,89–98(1989)

    31.Zhong,W.X.:Force,Work,Energy and Symplectic Mathematics.Dalian University of Technology Press,Dalian(2007).(in Chinese)

    32.Chen,W.J.:A high preccision eight-node hexahedron element.Chin.J.Theor.Appl.Mech.10,1211–1219(1976)

    33.Taylor,R.L.,Beresford,P.J.,Wilson,E.L.:A non-conforming element for stress analysis.Int.J.Numer.Methods Eng.10,1211–1219(1976)

    34.Fan,J.R.:Exact Theory of Laminated Thick Plates and Shells.Science Press,Beijing(1996).(in Chinese)

    35.Cheung,Y.K.,Chen,W.J.:Isoparametric hybrid hexahedral elements for 3-D stress analysis.Int.J.Numer.Methods Eng.26,677–693(1988)

    36.Cook,R.D.:A plane hybrid element with rotational DOF and adjustable stiffness.Int.J.Numer.Methods Eng.24,1499–1508(1987)

    18禁美女被吸乳视频| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 久热这里只有精品99| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 搡老熟女国产l中国老女人| 免费在线观看影片大全网站| 免费av毛片视频| 国产亚洲精品久久久久5区| 精品欧美国产一区二区三| 亚洲国产精品久久男人天堂| 成年版毛片免费区| 男女做爰动态图高潮gif福利片 | 午夜老司机福利片| 国产激情欧美一区二区| 成人av一区二区三区在线看| 国产精品二区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 九色国产91popny在线| 老司机深夜福利视频在线观看| 神马国产精品三级电影在线观看 | 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 夜夜夜夜夜久久久久| 国产成人免费无遮挡视频| 身体一侧抽搐| 亚洲熟妇中文字幕五十中出| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| av天堂在线播放| 久久久久久国产a免费观看| tocl精华| 免费一级毛片在线播放高清视频 | 国产单亲对白刺激| 色老头精品视频在线观看| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 精品一区二区三区视频在线观看免费| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 可以在线观看毛片的网站| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 亚洲成人久久性| 91麻豆精品激情在线观看国产| 一级片免费观看大全| 欧美成人免费av一区二区三区| 亚洲一区二区三区不卡视频| 美女午夜性视频免费| 日本免费a在线| 桃色一区二区三区在线观看| 国产成人精品久久二区二区免费| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 国产亚洲欧美精品永久| 一边摸一边做爽爽视频免费| 亚洲av成人av| 很黄的视频免费| 色播在线永久视频| 91成人精品电影| 成在线人永久免费视频| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 国产三级在线视频| 久久精品国产亚洲av高清一级| 欧美中文日本在线观看视频| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| bbb黄色大片| 看黄色毛片网站| 黑人巨大精品欧美一区二区蜜桃| а√天堂www在线а√下载| www国产在线视频色| 欧美乱色亚洲激情| 丰满的人妻完整版| 麻豆国产av国片精品| 脱女人内裤的视频| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 人妻久久中文字幕网| 欧美激情久久久久久爽电影 | 国产99久久九九免费精品| 少妇粗大呻吟视频| 叶爱在线成人免费视频播放| 亚洲国产精品久久男人天堂| 成人av一区二区三区在线看| 日本免费a在线| 成熟少妇高潮喷水视频| 国产精品98久久久久久宅男小说| 18禁国产床啪视频网站| 午夜精品在线福利| 成人欧美大片| 国产在线观看jvid| 一本久久中文字幕| 啦啦啦观看免费观看视频高清 | 精品欧美一区二区三区在线| 9热在线视频观看99| 两个人免费观看高清视频| 一边摸一边抽搐一进一小说| 两个人看的免费小视频| 亚洲国产欧美日韩在线播放| 久久人妻福利社区极品人妻图片| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 女人被狂操c到高潮| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 91麻豆av在线| 亚洲一区二区三区不卡视频| 最近最新免费中文字幕在线| 桃红色精品国产亚洲av| 校园春色视频在线观看| 黄色毛片三级朝国网站| 亚洲成人久久性| 亚洲精品久久成人aⅴ小说| 国产亚洲精品久久久久5区| 国产精品美女特级片免费视频播放器 | 美女高潮喷水抽搐中文字幕| av有码第一页| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| 91麻豆av在线| 女人爽到高潮嗷嗷叫在线视频| 丝袜在线中文字幕| 日韩欧美三级三区| 一级,二级,三级黄色视频| 精品久久久久久成人av| 精品国内亚洲2022精品成人| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| 午夜免费观看网址| 国产精品日韩av在线免费观看 | 人妻丰满熟妇av一区二区三区| 国产精品国产高清国产av| 国产一级毛片七仙女欲春2 | 久久中文看片网| 99国产综合亚洲精品| 人成视频在线观看免费观看| 免费不卡黄色视频| 黄色a级毛片大全视频| 岛国在线观看网站| av中文乱码字幕在线| 久久久久久久午夜电影| 久久九九热精品免费| 成人欧美大片| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区 | 欧美色视频一区免费| 99国产精品99久久久久| 丁香欧美五月| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 啦啦啦 在线观看视频| 最新在线观看一区二区三区| 国语自产精品视频在线第100页| 日韩欧美三级三区| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 一个人免费在线观看的高清视频| 伦理电影免费视频| 午夜免费成人在线视频| 久久九九热精品免费| 亚洲国产日韩欧美精品在线观看 | 欧美成人一区二区免费高清观看 | 国产成人精品久久二区二区91| av天堂久久9| 大型黄色视频在线免费观看| 一级,二级,三级黄色视频| 国产99久久九九免费精品| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 一本综合久久免费| 免费av毛片视频| 三级毛片av免费| 日韩精品中文字幕看吧| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 亚洲中文字幕日韩| 欧美成人性av电影在线观看| 国产日韩一区二区三区精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 操出白浆在线播放| 又紧又爽又黄一区二区| 制服丝袜大香蕉在线| 国产人伦9x9x在线观看| 欧美av亚洲av综合av国产av| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 久久精品国产亚洲av香蕉五月| 69精品国产乱码久久久| 一二三四在线观看免费中文在| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 亚洲全国av大片| 亚洲黑人精品在线| 久久精品国产综合久久久| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 搞女人的毛片| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 国产欧美日韩一区二区三区在线| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 俄罗斯特黄特色一大片| 久久青草综合色| 美女大奶头视频| 久久午夜亚洲精品久久| 少妇 在线观看| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美一区二区综合| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 大码成人一级视频| 午夜视频精品福利| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 亚洲第一av免费看| 国产精品美女特级片免费视频播放器 | 亚洲精品美女久久av网站| 精品久久蜜臀av无| av天堂在线播放| 亚洲五月婷婷丁香| 国语自产精品视频在线第100页| 久久久国产精品麻豆| 正在播放国产对白刺激| 午夜福利欧美成人| 性少妇av在线| 日韩中文字幕欧美一区二区| 久久精品影院6| 久99久视频精品免费| 在线国产一区二区在线| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 欧美国产日韩亚洲一区| 激情视频va一区二区三区| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 18禁观看日本| 欧美黄色片欧美黄色片| 成人手机av| 黑人欧美特级aaaaaa片| 亚洲五月色婷婷综合| 美女午夜性视频免费| cao死你这个sao货| 国产av一区在线观看免费| 九色亚洲精品在线播放| 成人手机av| 国产成人免费无遮挡视频| 久久精品91蜜桃| 中文字幕人妻丝袜一区二区| 中文字幕人妻熟女乱码| 脱女人内裤的视频| 亚洲伊人色综图| 亚洲av电影在线进入| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 十八禁网站免费在线| 免费不卡黄色视频| 美女国产高潮福利片在线看| 婷婷六月久久综合丁香| 丝袜人妻中文字幕| 九色国产91popny在线| 999久久久国产精品视频| 中文字幕另类日韩欧美亚洲嫩草| 久久伊人香网站| 成人特级黄色片久久久久久久| 一进一出好大好爽视频| tocl精华| 国产1区2区3区精品| 此物有八面人人有两片| 色综合站精品国产| 亚洲人成伊人成综合网2020| 成人永久免费在线观看视频| 国产一区在线观看成人免费| 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 午夜福利视频1000在线观看 | 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 一级毛片高清免费大全| 成人免费观看视频高清| 亚洲情色 制服丝袜| 自线自在国产av| av视频在线观看入口| 精品第一国产精品| ponron亚洲| 日本a在线网址| 看片在线看免费视频| 亚洲激情在线av| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲| 亚洲av电影不卡..在线观看| 亚洲第一av免费看| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 久久久国产成人精品二区| 亚洲专区中文字幕在线| 无人区码免费观看不卡| 国产精品久久久久久亚洲av鲁大| 在线观看日韩欧美| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| or卡值多少钱| 午夜久久久在线观看| 亚洲熟女毛片儿| 欧美日韩中文字幕国产精品一区二区三区 | 真人一进一出gif抽搐免费| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久人人做人人爽| 一区二区三区精品91| 欧美一级a爱片免费观看看 | 午夜成年电影在线免费观看| 精品国产亚洲在线| 99国产综合亚洲精品| 久久国产精品人妻蜜桃| 国产激情欧美一区二区| 高清在线国产一区| 亚洲一区二区三区色噜噜| 18禁美女被吸乳视频| 级片在线观看| 国产av在哪里看| av超薄肉色丝袜交足视频| 免费一级毛片在线播放高清视频 | 国产精品精品国产色婷婷| 99久久综合精品五月天人人| 在线观看www视频免费| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 97人妻精品一区二区三区麻豆 | 国产一卡二卡三卡精品| 91成人精品电影| 免费人成视频x8x8入口观看| 久久热在线av| 91成人精品电影| 国产色视频综合| 亚洲午夜精品一区,二区,三区| 露出奶头的视频| 人人澡人人妻人| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 国产99白浆流出| 国产高清有码在线观看视频 | www.999成人在线观看| 欧美色视频一区免费| 欧美性长视频在线观看| 99热只有精品国产| 美女 人体艺术 gogo| 9191精品国产免费久久| 黄色女人牲交| 狂野欧美激情性xxxx| 日本五十路高清| 波多野结衣一区麻豆| av免费在线观看网站| 99国产综合亚洲精品| 淫妇啪啪啪对白视频| 美女免费视频网站| 精品无人区乱码1区二区| 不卡一级毛片| 日本 欧美在线| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 亚洲av电影不卡..在线观看| 一进一出抽搐gif免费好疼| 国产成人精品久久二区二区91| 久久 成人 亚洲| 一区二区日韩欧美中文字幕| 国产麻豆成人av免费视频| 国产亚洲av高清不卡| 亚洲狠狠婷婷综合久久图片| 亚洲欧美激情综合另类| 中文字幕高清在线视频| 国产不卡一卡二| 美女 人体艺术 gogo| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 一区福利在线观看| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 国产av精品麻豆| 国产精品亚洲美女久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产乱人伦免费视频| 久久久久国内视频| 身体一侧抽搐| 性少妇av在线| 一区福利在线观看| 久久久久久久久免费视频了| 久久久国产精品麻豆| 国产熟女xx| 国产亚洲精品久久久久5区| 成人国产综合亚洲| 午夜福利视频1000在线观看 | 十分钟在线观看高清视频www| 国产真人三级小视频在线观看| 亚洲国产精品久久男人天堂| 国产精品二区激情视频| 久久久久久久久中文| av在线天堂中文字幕| www日本在线高清视频| 两个人视频免费观看高清| 亚洲欧美精品综合一区二区三区| 一a级毛片在线观看| 最新在线观看一区二区三区| 欧美黑人精品巨大| 色av中文字幕| 色在线成人网| 老司机午夜十八禁免费视频| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 少妇粗大呻吟视频| 性欧美人与动物交配| 在线观看免费视频网站a站| 欧美大码av| 国产午夜精品久久久久久| 在线国产一区二区在线| 69av精品久久久久久| 女同久久另类99精品国产91| 免费在线观看黄色视频的| 91成人精品电影| 欧洲精品卡2卡3卡4卡5卡区| 免费高清视频大片| 国产伦一二天堂av在线观看| 一个人观看的视频www高清免费观看 | 男女下面进入的视频免费午夜 | 国产亚洲精品av在线| 两个人视频免费观看高清| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| 国产三级在线视频| 在线播放国产精品三级| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 18禁裸乳无遮挡免费网站照片 | 91九色精品人成在线观看| 国产一区二区在线av高清观看| av电影中文网址| 中亚洲国语对白在线视频| 久久婷婷成人综合色麻豆| 亚洲成a人片在线一区二区| avwww免费| 淫妇啪啪啪对白视频| 日韩视频一区二区在线观看| 国产精品一区二区精品视频观看| 久久久国产成人免费| 99国产极品粉嫩在线观看| 熟女少妇亚洲综合色aaa.| 亚洲av美国av| netflix在线观看网站| 男女下面插进去视频免费观看| 国产精品98久久久久久宅男小说| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 亚洲第一电影网av| АⅤ资源中文在线天堂| 99国产精品一区二区三区| 一本久久中文字幕| 波多野结衣高清无吗| 免费在线观看黄色视频的| 老熟妇仑乱视频hdxx| 人人妻人人爽人人添夜夜欢视频| 中亚洲国语对白在线视频| av电影中文网址| 51午夜福利影视在线观看| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 色av中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月天丁香| 亚洲最大成人中文| 午夜亚洲福利在线播放| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 国产1区2区3区精品| 国产一区二区激情短视频| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 亚洲久久久国产精品| 国产精品一区二区免费欧美| 久久中文看片网| 91大片在线观看| 1024香蕉在线观看| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 多毛熟女@视频| 男女做爰动态图高潮gif福利片 | 久久精品国产综合久久久| 免费高清在线观看日韩| 91九色精品人成在线观看| 久久中文字幕一级| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品久久久久5区| 老司机深夜福利视频在线观看| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 国产精品久久久久久人妻精品电影| 国产精品99久久99久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产又色又爽无遮挡免费看| 日日摸夜夜添夜夜添小说| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 色尼玛亚洲综合影院| 90打野战视频偷拍视频| 精品少妇一区二区三区视频日本电影| 黄色片一级片一级黄色片| 一区福利在线观看| 男男h啪啪无遮挡| 啪啪无遮挡十八禁网站| www.自偷自拍.com| 午夜久久久久精精品| av在线天堂中文字幕| 亚洲欧美激情在线| 性欧美人与动物交配| 亚洲成av片中文字幕在线观看| 欧美 亚洲 国产 日韩一| 好男人在线观看高清免费视频 | 男女下面插进去视频免费观看| 国产高清视频在线播放一区| www.精华液| 露出奶头的视频| 国产亚洲精品久久久久久毛片| 最新在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 757午夜福利合集在线观看| 精品熟女少妇八av免费久了| 午夜福利一区二区在线看| 亚洲午夜理论影院| www.www免费av| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区在线不卡| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看 | 天堂√8在线中文| 一级毛片精品| 国产三级黄色录像| 香蕉久久夜色| 免费人成视频x8x8入口观看| 亚洲成人免费电影在线观看| 国产熟女午夜一区二区三区| 精品电影一区二区在线| 亚洲人成伊人成综合网2020| 国产一区在线观看成人免费| 天堂影院成人在线观看| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 免费看美女性在线毛片视频| 成人国产综合亚洲| 午夜福利视频1000在线观看 | 女性被躁到高潮视频| 国产精品久久视频播放| 欧美亚洲日本最大视频资源| 成人国语在线视频| 99国产精品免费福利视频| 亚洲色图av天堂| 免费不卡黄色视频| 免费高清视频大片| 国产精品免费视频内射| 欧美黄色淫秽网站| 久久精品影院6| 变态另类成人亚洲欧美熟女 | 亚洲,欧美精品.| 超碰成人久久| 国产麻豆成人av免费视频| 国产精品,欧美在线| 天天一区二区日本电影三级 | 国产真人三级小视频在线观看| 亚洲精品av麻豆狂野| www.www免费av| 美女午夜性视频免费| 精品卡一卡二卡四卡免费| 亚洲色图 男人天堂 中文字幕| 亚洲第一av免费看| 久久 成人 亚洲| 91国产中文字幕| 日韩精品免费视频一区二区三区| 韩国av一区二区三区四区|