• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force

    2018-04-18 02:55:51LuZhangSong
    Acta Mechanica Sinica 2018年2期

    S.F.Lu·W.Zhang·X.J.Song

    1 Introduction

    In recent years,axially deploying cantilevered composite structures have been used[1,2]for novel variable-span wings of e.g.long-range missiles,extension of robot arms,and other similar applications.Because these types of structure are often used in high-speed operating environments,external disturbance or even their own axial motion can induce large-amplitude vibrations and cause geometrically nonlinear problems that affect both the stability and accurate operation of the structure.The nonlinear dynamic characteristics of the extension process of such cantilever structures remain unknown and would be interesting to analyze.

    To conduct theoretical dynamic analysis,such structures are usually modeled as axially extendable cantilever laminated composite beams or plates.The nonlinear dynamic equation that describes their extension is usually a time varying partial differential equation or an ordinary differential equation.Unfortunately,in contrast to steady nonlinear dynamic systems,no systematic solutions of such time varying nonlinear dynamic equations are available at present.Therefore,investigations of this problem usually focus on time-varying dynamic modeling and numerical simulation.An equation for the motion of axially deploying cantilever beams was found by Tabarrok et al.[3]based on Newton’s second law,and the group studied the problem of linear vibration of a cantilever beam during its extension for constant speeds.The small-deformation transverse vibrations of cantilever beams of equal annular cross-section during extension at constant speed in an incompressible fluid were investigated by Taleb and Misra[4].They also analyzed the effects of relevant variables on the dynamic stability of the deploying beam.A flexible robot arm was modeled by Wang and Wei[5]as a removable slender cantilever beam,using Newton’s second law,to investigate its dynamic behavior during extension.An equation of motion for extendable flexible beams was deduced by Behdinan et al.[6]using Hamilton’s principle,and the time-varying dynamical behavior of the axially moving system investigated numerically.The dynamic properties of a deploying cantilever beam were investigated by Deng et al.[7]under various deploying laws using a precision integration method.The exact forced response of a translating string of arbitrarily varying length under constant tension with general initial conditions and external excitation was analyzed by Zhu and Zheng[8].The stability of an axially deploying beam in dense liquids was studied by Gosselin et al.[9],who also deduced the equation of motion for flexible slender cantilever beams with equal annular cross-section during axial extension at constant speed in a dense incompressible fluid.Furthermore,they analyzed the effects of extension speed on the structural stability.The vibration and stability of an axially moving cantilever beam in dense liquids were studied by Wang and Ni[10].The nonlinear dynamic response of axially deploying cantilever beams in supersonic flow was studied by Zhang et al.[11].Variable-span wings were modeled by Huang and Qiu[12]as extendable cantilever beams,and their transient aerodynamic response and fluttering characteristics during a morphing process under aerodynamic force investigated numerically.The linear vibration of an extendable cantilever plate model was studied by Wang et al.[13],who deduced the partial differential equation for its motion and analyzed the variations in frequency and dynamic stability during motion.A nonlinear dynamic equation for axially deploying cantilevered laminated composite plates under combined third-order nonlinear aerodynamic load and in-plane excitation was found by Zhang et al.[14].The group used Reddy’s high-order shear theory,and studied the nonlinear dynamical behavior of the time-varying structure using a numerical approach.The equation governing an axially moving viscoelastic plate was derived by Yang et al.[15]based on Newton’s second law,who also studied the complex natural frequencies for linear free vibrations as well as bifurcation and chaos for forced nonlinear vibrations of the plate using the finite difference method.The natural frequencies of nonlinear planar vibration of axially moving beams were investigated numerically by Ding and Chen[16]using Galerkin methods.Various scholars have studied the dynamical behavior of axially movable cantilever beam structures under external loads using experimental techniques[17–19].The results of the above-mentioned studies show that such axially deploying cantilever structures show complex dynamical behavior under external loads,and that nonlinear dynamic phenomena such as vibration amplitude jumps and divergences can readily occur in the vibration process.Therefore,control of large-amplitude vibration of cantilever structures during their extension remains a great challenge,and it would be highly desirable to improve the design and development of such structures.

    Piezoelectric materials are widely used to study vibration suppression for plate–shell structures[20].A piezoelectric laminated composite plate made of piezoelectric material and fiber-reinforced composite benefits from the advantages of the latter,including high specific strength and stiffness and excellent fatigue resistance.Such structures also exhibit improved controllability because the fiber-reinforced composite and piezoelectric materials can be stacked in many ways in the laminated composite plate structure.Studies of the nonlinear dynamics of such piezoelectric laminated composite plates have been carried out for many years.The stretching and bending motions of piezoelectric laminated composite plates were studied by Reddy and Mitchell[21]using two different models.They developed a geometrically nonlinear theory for laminated composite plates with piezoelectric laminates. The nonlinear free and forced vibrations of piezoelectric functionally graded shells under electrothermal and third-order aerodynamic loads were studied by Rafiee et al.[22].The nonlinear dynamic response of a damaged piezoelectric laminated composite plate was investigated by Fu et al.[23]using a finite difference method.A dynamic equation based on high-order shear deformation theory and the von Karman equation wasfound by Huang and Shen[24].They investigated the nonlinear free and forced vibrations of a laminated composite plate with embedded piezoelectric actuators under electrothermomechanical loads using an improved perturbation method.A nonlinear vibration equation for a laminated composite plate with an embedded piezoelectric laminate was deduced by Dash and Singh[25]by applying high-order shear deformation theory.A control equation for piezoelectric functionally graded shells in a thermomagnetic environment was found by Wang et al.[26].The group used Reddy’s high-order shear plate theory and Hamilton’s principle.The one-to-two internal resonance problem of a piezoelectric laminated composite plate under external load was studied by Zhang et al.[27].The dynamic behavior of axial and transverse vibrations of a piezoelectric laminated composite plate was studied numerically by Zhang and Shen[28].Smart control of the vibration of a piezoelectric laminated composite plate was investigated by Wang et al.[29]using first-order shear deformation theory.Active control of the vibration of laminated composite shells containing piezoelectric fiber-reinforced composites was studied by Ray and Reddy[30].Some experimental and theoretical studies on vibration control of piezoelectric laminated composite plate structures were conducted by Qiu et al.[31]and Dong et al.[32]using several methods.In the present work,piezoelectric materials were used in an axially extendable cantilever laminated composite plate structure,and the nonlinear dynamic behavior of the deploying cantilever piezoelectric laminated composite plate,under the combined action of aerodynamic load and piezoelectric excitation,was studied.Using Reddy’s high-order shear deformation theory for laminates and Hamilton’s principle,a partial differential nonlinear model for the dynamics of the deploying cantilever was obtained.Considering the displacement boundary conditions of the structure,a time dependent modal function for structural vibration was found.The ordinary differential form of the time-varying nonlinear dynamic equation for the extendable cantilevered laminated composite plate was obtained by truncating the partial differential form of the nonlinear dynamic equation using the Galerkin method.Then,the effects of variables such as piezoelectric excitation and extension speed on the time-varying nonlinear dynamic stability of the cantilevered piezoelectric laminated composite plate during the extension process were analyzed,considering the characteristic of the piezoelectric material.

    2 Equation of motion for deploying piezoelectric laminated composite plate

    We consider a model of an axially deploying rectangular cantilevered piezoelectric laminated composite plate formed by bonding a polyvinylidene fluoride(PVDF)piezoelectric membrane with fiber-reinforced composites(Fig.1).Theinitial length of the plate isl0,the width isb,the thickness ish,and the Cartesian coordinate centerOxyis located at the center of the plate.The rectangular cantilever piezoelectric laminated composite plate extends along thex-axis at a time-varying speed with the formV=V0+Vdcos(Ω1t).The external piezoelectric excitation can be described asVe=Vzcos(Ω2t).The structure is also subjected to a transverse aerodynamic load?p;first-order linear piston theory was employed to study the effect of the aerodynamic load on the nonlinear dynamical behavior of the deploying cantilever piezoelectric laminated composite plate.

    Based on Reddy’s[33]third-order shear theory for laminates,the displacement field of the laminated composite plate can be described as

    whereu0,v0,andw0are the displacements of an arbitrary point on the middle surface inx,y,andzdirections,andφxandφyare angles along they-andx-axis,respectively.

    Using von Karman’s geometry theory for the large deformation of a plate,the relationship between the strain displacementεi(i=x x,y y)and curvature displacementγi(i=x y,yz,zx)can be expressed as

    When introducing a piezoelectric laminate into the laminated composite plate,the relationships between the strain displacementεi(i=x x,y y)and curvature displacementγi(i=x y,yz,zx)become

    Fig.1 Model of axially deploying piezoelectric cantilever plate

    whereeijis the piezoelectric constant andE kis the electric field strength.The stiffness coefficientQ ijcan be expressed as

    According to Hamilton’s principle,the nonlinear dynamic equation for the deploying cantilevered piezoelectric laminated composite plate can be expressed as

    In Eq.(6),the variation of the kinetic energy can be written as

    The potential energy of the piezoelectric laminate is

    whereQ ijkl,eijk,ζij,andE iare the Young’s modulus,piezoelectric constant,permittivity,and electric field strength,respectively.

    The relationship between the electric field strength,electric potential energy,stress,and electric displacement can be described by the following formulas[21]

    Thus,the variation of the potential energy for a piezoelectric laminated composite plate is

    The virtual work of the external force on the system is

    whereγis the structural damping coefficient.

    By substituting Eqs.(7),(10),and(11)into Eq.(5)and considering Hamilton’s principle,the nonlinear dynamic equation for the deploying cantilevered piezoelectric laminated composite plate can be obtained as

    where?pin Eq.(12c)denotes the transverse aerodynamic load obtained by first-order piston theory[34].Since the length of the plate varies with time,the expression for the first-order aerodynamic force applied on the deploying cantilevered plate can be formulated as

    The moment of inertia can be calculated using the following equation

    For an orthotropic piezoelectric laminated composite plate,the internal forces can be expressed as

    whereeijis the piezoelectric constant,kis the number of the piezoelectric laminate,andE zis the electric field strength.The relationship between the electric field strength and applied voltageVeisE z=Ve/h z,whereh zis the thickness of the piezoelectric laminate.

    Inserting Eqs.(15)and(16)into Eq.(12),the nonlinear dynamic equation for the deploying cantilever piezoelectric laminated composite plate,expressed in terms of generalized displacement variables,can be obtained as

    3 Galerkin discretization

    Due to the difficulty in finding an analytical solution to these partial differential equations describing the vibration of the system,they are usually discretized into equations of ordinary differential form for analysis.Moreover,as lower frequency vibrations are dominant in nonlinear vibration systems,truncation at the first two modes is accurate enough in this case.In this work,the Galerkin method was employed to perform second-order truncation of the nonlinear dynamics in Eq.(17)in partial differential form,selecting the following time-dependent modal function satisfying the displacement boundary conditions

    whereX i(x)is the clamped–free beam function along thexaxis,Y j(y)is the free–free beam function along they-axis,andkiandk jare roots of the characteristic equation with the following relationship

    wherelis an abbreviation forl(t).

    Considering the effect of the change in the length of the plate along thex-axis as time varies,in the process of substituting the vibration mode function into the relevant equations to perform the Galerkin discretization,the accompanying compound derivative argument should be considered.Therefore,the following relational expressions are used for the derivation

    Substituting the modal function Eq.(18)into Eq.(17),the Galerkin method is employed to perform the second-order discretization to obtain normalized ordinary differential equations.Because the main structural vibration is out of plane,u0,v0,φx,andφyare expressed using the transverse variablesw1andw2.The dimensionless two-degree of freedom(DOF)nonlinear dynamic equations describing the transverse vibration of the deploying cantilever piezoelectric laminated composite plate can then be formulated as

    where the coefficientsαiandβi(i=1,2,...,10)consider timetexplicitly.

    4 Numerical simulations

    We selected as a model a deploying symmetric cross-ply piezoelectric laminated composite cantilever plate with the following parameters,constructed from PVDF membrane and fiber-reinforced laminates:l0=2.0 m,b=1.5 m,h=0.004 m,f0=2000 N/m2,Vd=0.005 m/s,Ω1=15,Ma=3.0 in hypersonic flow,Va=900 m/s,κ=1.4,and air densityρa(bǔ)=0.65 kg/m3at height of 10,000 m.The material properties of the fiber-reinforced composite composed of graphite–epoxy HT3/QY8911 include:E1=125.0 GPa,E2=7.2 GPa,G12=G13=4.1 GPa,G23=1.43 GPa,ν12=0.33,ν21=ν12E2/E1,ρ=1570 kg/m3,γ=350 N·s/m,with thickness of the piezoelectric layerh z=0.00015 m.Based on the time-varying two-DOF nonlinear dynamic Eq.(23),the nonlinear dynamical behavior of the cantilever piezoelectric laminated composite plate, extending from 2 to 4 m at various extending speeds under first-order aerodynamic force,was investigated numerically.

    4.1 Nonlinear dynamical behavior of plate for extension speed V0=0.05

    Figures 2–7 show the time history curves for the transverse first-and second-order modal vibration of the cantilever piezoelectric laminated composite plate during the extension process for different piezoelectric excitations.For better observation of the second-order vibration of the structure,the seemingly stable parts in sub figure b are magnified and shown in subfigure c.The effects of the applied voltage on the stability of the time-varying nonlinear dynamics can be observed in the time-domain plots.

    The obtained time history curves well reflect the effects of changing the applied voltage on the stability of the time varying nonlinear dynamics.For applied voltage of0(Fig.2),the structural nonlinear dynamic behavior is consistent with that of the fiber-reinforced laminated composite plate without piezoelectric laminates,consistent with Ref.[14].More specifically,during the extension process to 2 m length,three different phases present either the first-or second-order vibration of the structure,including two jumps of vibration amplitude and a stable motion phase between them.Throughout the process,the vibration amplitude of the structure changes greatly,and the structure easily becomes unstable and divergent.For excitation voltage ofVz=130 V(Fig.3),the period of the two jumps in vibration amplitude increases,while the period of stable motion between them decreases.As the excitation voltage increases(Fig.4),the stable motion phase in both the first-and second-order vibrations of the structure gradually decreases and eventually vanishes.Hence,the nonlinear dynamical behavior is very unstable,as the structure experiences a second jump in vibration amplitude immediately after the first one.

    On changing the polarity of the excitation voltage,we observe a change in the structural dynamical behavior.When the excitation voltage isVz=?40 V(Fig.5),it is found that the increasing trend in amplitude is slowed in both the first and second-order vibration.When the excitation voltage is increased toVz=?45 V(Fig.6)and the dimensionless time is aroundt=250,the first-and second-order jumps of the vibration amplitude are suppressed.On further increasing the excitation voltage toVz=?50 V(Fig.7),the cantilevered piezoelectric laminated composite plate accomplishes the extension from 2 to 4 m without a second vibration amplitude jump in the first-or second-order vibration.

    Fig.2 Time history curves for Vz=0 V

    Fig.3 Time history curves for Vz=130 V

    Fig.4 Time history curves for Vz=150 V

    Fig.5 Time history curves for Vz=?40 V

    Fig.6 Time history curves for Vz=?45 V

    Fig.7 Time history curves for Vz=?50 V

    Overall,the piezoelectric excitation has a significant impact on the stability of the structural nonlinear vibration.During the extension of the cantilever piezoelectric laminated composite plate from 2 to 4 m,when the excitation voltage is positive,the structural stability of the first and second-order vibrations gradually decreases.The stable motion phase of the system gradually shrinks in time,and the structure is liable to exhibit a second jump immediately after the first jump of the vibration amplitude.When the voltage is increased further,the vibration of the structure gradually deviates from the equilibrium position until the structure eventually diverges.On changing the polarity of the voltage,as the voltage increases in the negative direction,even though the first jump of the first two vibration amplitudes is not suppressed,the second jump in the first-and second-order vibrations is avoided.As a result,the scale of the vibration amplitude in the stable motion phase is reduced.By calculating the coefficients of the in-plane stiffness terms in Eq.(23),we note that the in-plane stiffness of the plate was improved with increase of the applied negative voltage.This increase of the in-plane stiffness leads to a corresponding increase of the structural vibration frequency,which explains why the nonlinear vibration amplitude was suppressed.

    4.2 Nonlinear dynamic behavior of plate for extension speed of V0=0.10

    To study the effects of changing the extension speed on the structural stability of the nonlinear dynamics,the time history response curves of the deploying cantilever piezoelectric laminate,extending from 2 to 4 m at extension speed ofV0=0.10 m/s,are shown in Figs.8–11.When the amplitude of the excitation voltage is increased from 0 to 150 V,the time-varying first-and second-order nonlinear vibrations gradually lose their stability,and the instability of the extension process is exacerbated.On gradually adjusting the negative excitation voltage,it was found that,when the excitation voltage wasVz=?150 V,the second jump of the structural vibration amplitude in the first-and second order vibrations was avoided.However,the first jump was not suppressed,although the scale of the vibration amplitude in the stable motion phase was suppressed.At the same time,the vibration amplitude during the stable motion phase was suppressed.In other words,choice of an appropriate excitation voltage can effectively suppress the nonlinear vibration of the system during the extension process.In addition,on comparison with Sect.4.1,it is found that the stability of the system gradually decreased during the extension process as the extension speed was increased.When the structure extended at higher speed,the negative applied voltage necessary to avoid the second jump of the amplitude of the first-and second-order structural vibrations also increased correspondingly.

    Fig.8 Time history curves for Vz=0 V

    Fig.9 Time history curves for Vz=100 V

    Fig.10 Time history curves for Vz=150 V

    Fig.11 Time history curves for Vz=?150 V

    5 Conclusions

    Considering the piezoelectric material characteristics,the time-varying nonlinear dynamic behavior of a deploying laminated composite plate,under the combined action of first-order aerodynamic load and piezoelectric excitation,was investigated.The effect of the introduction of the piezoelectric material on the stability of the nonlinear dynamics of the composite piezoelectric laminate during the extension process was investigated numerically.The following conclusions can be drawn:

    (1)Using Reddy’s third-order shear theory for laminates and von Karman’s geometric relation for large deformation,and applying Hamilton’sprinciple,a nonlinear dynamic model in partial differential form for the deploying laminated composite plate,considering the combined action of aerodynamic load and piezoelectric excitation,was developed.Based on a selected time-dependent modal function,we performed second-order discretization using the Galerkin method,resulting in the derivation of a time-varying nonlinear dynamic model describing the transverse vibration of the deploying cantilever piezoelectric laminated composite plate.

    (2)Using the obtained ordinary differential equation,the time-varying nonlinear dynamic behavior of the deploying cantilever piezoelectric laminated composite plate was simulated numerically,and the effect of the piezoelectric effect on the time-varying nonlinear dynamical behavior discussed.The results reveal that,when the applied voltage is positive,the extension process becomes more unstable,and the time varying structural divergence is exacerbated.As a result,the piezoelectric laminated composite plate is more liable to failure and destruction.When the applied voltage was set to a negative value,the polarity of the voltage changed,and it was found that not only was the increasing trend of the vibration amplitude of the time-varying structure suppressed,but also the vibration amplitude was suppressed.Thus,the piezoelectric material has a significant impact on the nonlinear dynamic stability of the fiber-reinforced laminated composite plate,and choice of a suitable voltage and polarity can effectively suppress the nonlinear vibration of the deploying cantilever laminate.The applied negative voltage enhances the in-plane stiffness of the time-varying structure,which leads to a corresponding increase of the structural vibration frequency and suppression of the nonlinear vibration amplitude.It is also found that increasing the extension speed can decrease the nonlinear dynamic stability of the structure during the extension process.Therefore,the applied excitation voltage required to suppress the divergence of the nonlin-ear vibration amplitude should be increased correspondingly when the structure extends at higher speed.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 11402126,11502122,and 11290152)and the Scientific Research Foundation of the Inner Mongolia University of Technology(Grant ZD201410).

    1.Lee,B.H.K.,Price,S.J.,Wong,Y.S.:Nonlinear aeroelastic analysis of airfoil:bifurcation and chaos.Prog.Aerospace Sci.35,205–334(1999)

    2.Arrison,M.,Birocco,K.,Gaylord,C.,et al.:2002–2003 AE/ME morphing wing design.Virginia Tech Aerospace Engineering Senior Design Project Spring Semester Final Report.(2003)

    3.Tabarrok,B.,Leech,C.M.,Kim,Y.I.:On the dynamics of an axially moving beam.J.Frankl.Inst.297,201–220(1974)

    4.Taleb,I.A.,Misra,A.K.:Dynamics of an axially moving beam submerged in a fluid.J.Hydronaut.15,62–66(1981)

    5.Wang,P.K.C.,Wei,J.D.:Vibration in a moving flexible robot arm.J.Sound Vib.116,149–160(1987)

    6.Behdinan,K.,Stylianou,M.,Tabarrok,B.:Dynamics of flexible sliding beams non-linear analysis.Part I:formulation.J.Sound Vib.208,517–539(1997)

    7.Deng,Z.C.,Zheng,H.J.,Zhao,Y.L.,et al.:On computation of dynamic properties for deploying cantilever beam based on precision integration method.J.Astronaut.22,110–113(2001).(in Chinese)

    8.Zhu,W.D.,Zheng,N.A.:Exact response of a translating string with arbitrarily varying length under general excitation.J.Appl.Mech.75,519–525(2008)

    9.Gosselin,F.,Paidoussis,M.P.,Misra,A.K.:Stability of a deploying/deploying beam in dense fluid.J.Sound Vib.299,124–142(2007)

    10.Wang,L.,Ni,Q.:Vibration and stability of an axially moving beam immersed in fluid.Int.J.Solids Struct.45,1445–1457(2008)

    11.Zhang,W.,Sun,L.,Yang,X.D.,etal.:Nonlinear dynamic behaviors of a deploying-and-retreating wing with varying velocity.J.Sound Vib.332,6785–6797(2013)

    12.Huang,R.,Qiu,Z.P.:Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process.Chin.J.Aeronaut.26,1430–1438(2013)

    13.Wang,L.H.,Hu,Z.D.,Zhong,Z.:Dynamic analysis of an axially translating plate with time-variant length.Acta Mech.215,9–23(2010)

    14.Zhang,W.,Lu,S.F.,Yang,X.D.:Analysis on nonlinear dynamics of a deploying cantilever laminated composite plate.Nonlinear Dyn.76,69–93(2014)

    15.Yang,X.D.,Zhang,W.,Chen,L.Q.,et al.:Dynamical analysis of axially moving plate by finite difference method.Nonlinear Dyn.67,997–1006(2012)

    16.Ding,H.,Chen,L.Q.:Nonlinear dynamics of axially accelerating viscoelatic beams based on differential quadrature.Acta Mechanica Solida Sinica 22,267–275(2009)

    17.Matsuzaki,Y.,Torii,H.,Toyama,M.:Vibration of a cantilevered beam during deployment and retrieval:analysis and experiment.Smart Mater.Struct.4,334–339(1995)

    18.Liu,K.F.,Deng,L.Y.:Experimental verification of an algorithm for identification of linear time-varying systems.J.Sound Vib.279,1170–1180(2005)

    19.Liu,K.F.,Deng,L.Y.:Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm.Mech.Syst.Signal Process.20,94–113(2006)

    20.Fuller,C.R.,Elliott,S.J.,Nelson,P.A.:Active Control of Vibration.Academic Press,San Diego(1996)

    21.Reddy,J.N.,Mitchell,J.A.:On refined nonlinear theories of laminated composite structures with piezoelectric laminae.Sadhana 20,721–747(1995)

    22.Rafiee,M.,Mohammadi,M.,Sobhani Aragh,B.,et al.:Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells,PartI:Theory and analytical solutions.Compos.Struct.103,179–187(2013)

    23.Fu,Y.M.,Wang,X.Q.,Yang,J.H.:Nonlinear dynamic response of piezoelastic laminated plates considering damage effects.Compos.Struct.81,353–361(2007)

    24.Huang,X.L.,Shen,H.S.:Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators.Int.J.Mech.Sci.47,187–208(2005)

    25.Dash,P.,Singh,B.N.:Nonlinear free vibration of piezoelectric laminated composite plate.Finite Elem.Anal.Des.45,686–694(2009)

    26.Wang,Y.,Hao,Y.X.,Wang,J.H.:Nonlinear vibration of a cantilever FGM Rectangular plate with piezoelectric layers based on thirdorder plate theory.Adv.Mater.Res.415–417,2151–2155(2012)

    27.Zhang,W.,Yao,Z.G.,Yao,M.H.:Periodic and chaotic dynamics of laminated composite plated piezoelectric rectangular plate with one-to-two internal resonance.Sci.China Ser.E Technol.Sci.52,731–742(2009)

    28.Zhang,H.Y.,Shen,Y.P.:Vibration suppression of laminated plates with 1–3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes.Compos.Struct.79,220–228(2007)

    29.Wang,S.Y.,Quek,S.T.,Ang,K.K.:Vibration control of smart piezoelectric composite plates.Smart Mater.Struct.10,637–644(2001)

    30.Ray,M.C.,Reddy,J.N.:Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites.Compos.Sci.Technol.65,1226–1236(2005)

    31.Qiu,Z.C.,Zhang,X.M.,Wu,H.X.,et al.:Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate.J.Sound Vib.301,521–543(2007)

    32.Dong,X.J.,Meng,G.,Peng,J.C.:Vibration control of piezoelectric smart structures based on system identification technique:Numerical simulation and experimental study.J.Sound Vib.297,680–693(2006)

    33.Reddy,J.N.:Mechanics of Laminated Composite Plates and Shells:Theory and Analysis.CRC Press LLC,Boca Raton(2004)

    34.Ashley,H.,Zartarian,G.:Piston theory-a new aerodynamic tool for the aeroelastician.J.Aeronaut.Sci.23,1109–1118(1956)

    国内精品久久久久精免费| 18禁裸乳无遮挡免费网站照片| 成人av在线播放网站| 欧美国产日韩亚洲一区| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| 成在线人永久免费视频| 美女 人体艺术 gogo| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 色综合亚洲欧美另类图片| 制服丝袜大香蕉在线| 国产美女午夜福利| 精品久久久久久久久久久久久| 搞女人的毛片| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 一级毛片高清免费大全| 此物有八面人人有两片| 淫秽高清视频在线观看| 很黄的视频免费| 国产欧美日韩精品一区二区| 国产爱豆传媒在线观看| a级毛片a级免费在线| 精品熟女少妇八av免费久了| 99国产精品99久久久久| 亚洲真实伦在线观看| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 日韩欧美国产一区二区入口| 午夜福利免费观看在线| 三级毛片av免费| 丁香六月欧美| 午夜福利在线在线| 偷拍熟女少妇极品色| 人妻夜夜爽99麻豆av| 国产91精品成人一区二区三区| 男女视频在线观看网站免费| 婷婷丁香在线五月| 免费av不卡在线播放| 少妇丰满av| 两个人视频免费观看高清| 欧美中文日本在线观看视频| 欧美乱码精品一区二区三区| 久久久国产欧美日韩av| 欧美成人性av电影在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 色综合亚洲欧美另类图片| 国产精品久久视频播放| 99热这里只有是精品50| 午夜福利高清视频| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 国产成人av激情在线播放| 精品国产亚洲在线| 19禁男女啪啪无遮挡网站| 青草久久国产| 欧美最黄视频在线播放免费| av天堂在线播放| 最近视频中文字幕2019在线8| 无人区码免费观看不卡| 亚洲av成人一区二区三| av国产免费在线观看| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| av福利片在线观看| 亚洲激情在线av| 久久亚洲真实| 久久人妻av系列| 亚洲成人免费电影在线观看| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 欧美高清成人免费视频www| 人人妻,人人澡人人爽秒播| or卡值多少钱| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产淫片久久久久久久久 | 午夜福利视频1000在线观看| 国产精品野战在线观看| 久久精品人妻少妇| av视频在线观看入口| 亚洲avbb在线观看| 午夜福利在线观看免费完整高清在 | 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 欧美成狂野欧美在线观看| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合一区二区三区| 亚洲精品色激情综合| av女优亚洲男人天堂 | 51午夜福利影视在线观看| 亚洲精品456在线播放app | 欧美成狂野欧美在线观看| 国产精品电影一区二区三区| 嫩草影视91久久| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 精品欧美国产一区二区三| 成人欧美大片| 巨乳人妻的诱惑在线观看| 日韩av在线大香蕉| 一级毛片女人18水好多| 久久精品人妻少妇| cao死你这个sao货| 国内精品久久久久精免费| 好男人电影高清在线观看| 成在线人永久免费视频| 级片在线观看| 国产精品久久久久久亚洲av鲁大| 午夜福利在线观看吧| 两个人看的免费小视频| 亚洲一区二区三区色噜噜| 久久久久久久午夜电影| 亚洲精品456在线播放app | 午夜精品在线福利| 国产成人精品久久二区二区免费| 国内揄拍国产精品人妻在线| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 18禁黄网站禁片午夜丰满| 亚洲无线观看免费| 精品乱码久久久久久99久播| 熟女人妻精品中文字幕| 亚洲午夜精品一区,二区,三区| 久久久成人免费电影| 国产精华一区二区三区| 看片在线看免费视频| 欧美日本亚洲视频在线播放| 久久性视频一级片| 国产精品99久久久久久久久| 亚洲av免费在线观看| 国产美女午夜福利| www日本在线高清视频| 国产精品久久久人人做人人爽| 青草久久国产| 9191精品国产免费久久| 最新中文字幕久久久久 | 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 精品无人区乱码1区二区| 亚洲欧美日韩东京热| 99久久精品热视频| 可以在线观看的亚洲视频| 久久精品亚洲精品国产色婷小说| 他把我摸到了高潮在线观看| 日本黄色片子视频| 999精品在线视频| 极品教师在线免费播放| 日本一本二区三区精品| 久久久久亚洲av毛片大全| 欧美激情在线99| 亚洲在线自拍视频| 久久久久久大精品| 国产成人啪精品午夜网站| 成年女人看的毛片在线观看| 视频区欧美日本亚洲| 老司机福利观看| 欧美三级亚洲精品| а√天堂www在线а√下载| 中文字幕最新亚洲高清| 日本免费一区二区三区高清不卡| 老鸭窝网址在线观看| 久久久精品大字幕| 最新中文字幕久久久久 | 国产熟女xx| 九九久久精品国产亚洲av麻豆 | 国产精品99久久99久久久不卡| 国产av不卡久久| 久久久国产成人精品二区| 一级黄色大片毛片| 久久久精品欧美日韩精品| 美女扒开内裤让男人捅视频| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 国产亚洲精品av在线| 国产精品香港三级国产av潘金莲| 美女 人体艺术 gogo| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 国产单亲对白刺激| 精品电影一区二区在线| 亚洲国产欧美一区二区综合| 国产精品野战在线观看| 美女黄网站色视频| 成年女人毛片免费观看观看9| 小说图片视频综合网站| 免费看美女性在线毛片视频| 最新美女视频免费是黄的| www.自偷自拍.com| 俺也久久电影网| 黑人操中国人逼视频| 搡老岳熟女国产| 禁无遮挡网站| 国产精品一区二区三区四区免费观看 | 丁香欧美五月| 一进一出抽搐动态| 国产乱人伦免费视频| 久久久久久国产a免费观看| 老司机福利观看| 悠悠久久av| 亚洲av第一区精品v没综合| xxx96com| 一a级毛片在线观看| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| 床上黄色一级片| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 一二三四社区在线视频社区8| av片东京热男人的天堂| 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 午夜免费观看网址| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 亚洲专区国产一区二区| 久久中文字幕一级| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 国产成人欧美在线观看| 午夜视频精品福利| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 精品国产三级普通话版| 成年女人毛片免费观看观看9| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 国产伦在线观看视频一区| 中文字幕人妻丝袜一区二区| 日本在线视频免费播放| 丁香欧美五月| 日本黄色片子视频| 又粗又爽又猛毛片免费看| 丝袜人妻中文字幕| 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 91九色精品人成在线观看| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 999精品在线视频| 亚洲欧美一区二区三区黑人| 久久久久免费精品人妻一区二区| 九九热线精品视视频播放| 国产综合懂色| 午夜a级毛片| 两人在一起打扑克的视频| 999精品在线视频| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 综合色av麻豆| 国产伦精品一区二区三区四那| 色综合亚洲欧美另类图片| e午夜精品久久久久久久| 老汉色∧v一级毛片| 亚洲国产欧美一区二区综合| 婷婷亚洲欧美| 岛国在线免费视频观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久av网站| 亚洲国产精品久久男人天堂| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 亚洲专区中文字幕在线| av女优亚洲男人天堂 | 国产成人aa在线观看| 九九在线视频观看精品| 亚洲国产欧美一区二区综合| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美人成| 国产av麻豆久久久久久久| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 99精品久久久久人妻精品| 久久国产精品影院| 欧美xxxx黑人xx丫x性爽| 无限看片的www在线观看| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 亚洲av美国av| xxx96com| 岛国视频午夜一区免费看| 法律面前人人平等表现在哪些方面| 色在线成人网| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| www国产在线视频色| 欧美又色又爽又黄视频| 国产美女午夜福利| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 嫩草影院入口| 国产毛片a区久久久久| 偷拍熟女少妇极品色| 国产精品野战在线观看| 琪琪午夜伦伦电影理论片6080| 天堂网av新在线| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 久久99热这里只有精品18| 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 最好的美女福利视频网| 桃色一区二区三区在线观看| 男人舔女人的私密视频| 99久久国产精品久久久| 神马国产精品三级电影在线观看| 亚洲第一电影网av| 美女大奶头视频| 亚洲成a人片在线一区二区| www.自偷自拍.com| 国内精品久久久久久久电影| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 99久久久亚洲精品蜜臀av| 欧美成狂野欧美在线观看| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 久久性视频一级片| 国产一级毛片七仙女欲春2| 久久精品91无色码中文字幕| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 欧美日本视频| 偷拍熟女少妇极品色| 91九色精品人成在线观看| 舔av片在线| 亚洲成av人片在线播放无| 久久久国产精品麻豆| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 国产精品日韩av在线免费观看| 免费在线观看日本一区| 视频区欧美日本亚洲| 一级毛片高清免费大全| av在线天堂中文字幕| 国产亚洲精品av在线| 久久久精品欧美日韩精品| 脱女人内裤的视频| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 黑人操中国人逼视频| 国产精品精品国产色婷婷| 91在线观看av| а√天堂www在线а√下载| 日本熟妇午夜| 一个人观看的视频www高清免费观看 | av国产免费在线观看| 99久久综合精品五月天人人| 午夜a级毛片| 亚洲国产精品久久男人天堂| 美女黄网站色视频| 欧美最黄视频在线播放免费| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 国产视频内射| 97人妻精品一区二区三区麻豆| 狂野欧美激情性xxxx| 美女大奶头视频| 精品午夜福利视频在线观看一区| 草草在线视频免费看| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| 久久午夜综合久久蜜桃| 国产av不卡久久| 亚洲欧洲精品一区二区精品久久久| 国产私拍福利视频在线观看| 国产探花在线观看一区二区| 久久久久久大精品| 两性午夜刺激爽爽歪歪视频在线观看| 男女视频在线观看网站免费| 夜夜看夜夜爽夜夜摸| 亚洲色图 男人天堂 中文字幕| 一区二区三区高清视频在线| 中文字幕精品亚洲无线码一区| 亚洲av成人不卡在线观看播放网| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱码久久久v下载方式 | 免费观看的影片在线观看| 999久久久精品免费观看国产| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 在线免费观看的www视频| 看免费av毛片| 久久中文字幕人妻熟女| 国产精品国产高清国产av| 天天躁日日操中文字幕| 成年女人看的毛片在线观看| 三级毛片av免费| 日韩欧美精品v在线| 老司机福利观看| 久久久成人免费电影| 男女那种视频在线观看| 在线a可以看的网站| 亚洲18禁久久av| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 一个人看视频在线观看www免费 | 国内久久婷婷六月综合欲色啪| 美女黄网站色视频| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| 曰老女人黄片| 俺也久久电影网| 日韩欧美 国产精品| 99久久国产精品久久久| 国产成人系列免费观看| 黄色丝袜av网址大全| 深夜精品福利| 少妇的逼水好多| 免费大片18禁| 国语自产精品视频在线第100页| 久久久久九九精品影院| 国产乱人视频| aaaaa片日本免费| 国产成人系列免费观看| 精品久久久久久久久久久久久| 亚洲av成人av| 国产亚洲精品一区二区www| 国产成人精品久久二区二区91| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx黑人xx丫x性爽| 不卡av一区二区三区| 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 国产成人精品无人区| 国产免费男女视频| 一个人免费在线观看电影 | 在线观看日韩欧美| 欧美日本亚洲视频在线播放| 久久伊人香网站| 深夜精品福利| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 亚洲人与动物交配视频| 国产一区二区在线观看日韩 | 99国产精品99久久久久| 日本a在线网址| 久久香蕉精品热| bbb黄色大片| 少妇人妻一区二区三区视频| 国产综合懂色| or卡值多少钱| 黄色日韩在线| 亚洲成人久久爱视频| 欧美av亚洲av综合av国产av| 欧美大码av| 亚洲18禁久久av| 韩国av一区二区三区四区| 母亲3免费完整高清在线观看| 久久精品91蜜桃| 午夜激情欧美在线| avwww免费| 免费观看精品视频网站| 在线观看美女被高潮喷水网站 | 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 白带黄色成豆腐渣| 99精品久久久久人妻精品| 亚洲国产精品999在线| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产精品久久久不卡| 国产免费男女视频| 免费观看的影片在线观看| 精品人妻1区二区| 欧美国产日韩亚洲一区| 欧美日韩中文字幕国产精品一区二区三区| www日本在线高清视频| 久久九九热精品免费| 男女午夜视频在线观看| 中文在线观看免费www的网站| 九九热线精品视视频播放| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线| 窝窝影院91人妻| 狠狠狠狠99中文字幕| 欧美日韩黄片免| 又爽又黄无遮挡网站| 国产精品,欧美在线| netflix在线观看网站| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 日本在线视频免费播放| 午夜福利免费观看在线| 久久国产精品影院| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| 波多野结衣巨乳人妻| 亚洲国产欧美一区二区综合| 又粗又爽又猛毛片免费看| 国产成人啪精品午夜网站| 身体一侧抽搐| 亚洲一区高清亚洲精品| 国产成年人精品一区二区| 欧美日韩国产亚洲二区| 男插女下体视频免费在线播放| 女人高潮潮喷娇喘18禁视频| www.熟女人妻精品国产| 舔av片在线| 午夜两性在线视频| 欧美3d第一页| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩东京热| 精品一区二区三区视频在线 | 69av精品久久久久久| 成人av一区二区三区在线看| 成人亚洲精品av一区二区| 19禁男女啪啪无遮挡网站| 手机成人av网站| 在线观看日韩欧美| 国产精品av视频在线免费观看| 小蜜桃在线观看免费完整版高清| 18美女黄网站色大片免费观看| 亚洲精品在线观看二区| 观看免费一级毛片| 51午夜福利影视在线观看| 悠悠久久av| 国产激情久久老熟女| 久久久国产精品麻豆| 小说图片视频综合网站| 美女高潮的动态| 中文字幕人妻丝袜一区二区| 成人高潮视频无遮挡免费网站| 在线观看日韩欧美| 久久99热这里只有精品18| 黑人操中国人逼视频| 日本一二三区视频观看| 巨乳人妻的诱惑在线观看| 国产欧美日韩精品一区二区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 亚洲国产精品久久男人天堂| 天天添夜夜摸| 国产午夜福利久久久久久| 精品日产1卡2卡| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 国产69精品久久久久777片 | 一本综合久久免费| 国产亚洲精品久久久com| 亚洲国产精品999在线| 国产精品电影一区二区三区| 亚洲五月天丁香| 国产av在哪里看| 欧美一级a爱片免费观看看| 免费人成视频x8x8入口观看| 国产精品久久久久久亚洲av鲁大| 久久国产精品人妻蜜桃| а√天堂www在线а√下载| 日韩人妻高清精品专区| 级片在线观看| 亚洲欧美一区二区三区黑人| 国产乱人视频| 真实男女啪啪啪动态图| 观看美女的网站| 国产高潮美女av| 高清在线国产一区| 我要搜黄色片| ponron亚洲| 久久午夜综合久久蜜桃| 国产高清有码在线观看视频| www.自偷自拍.com| 国产在线精品亚洲第一网站| 日韩av在线大香蕉| 亚洲真实伦在线观看| 国产高清三级在线| 免费人成视频x8x8入口观看| av中文乱码字幕在线| 免费在线观看日本一区| 成人无遮挡网站| 亚洲成人中文字幕在线播放| 中文字幕高清在线视频| 亚洲成av人片免费观看| avwww免费| 国产伦在线观看视频一区| 在线观看免费午夜福利视频|