• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation

    2018-04-18 02:55:44ZhangLuoLuLiuLiu
    Acta Mechanica Sinica 2018年2期

    X.H.Zhang·D.S.Luo·X.B.Lu·L.L.Liu·C.L.Liu

    1 Introduction

    From the year 2002 to 2013,the trial productions of gas hydrate(GH)were conducted at the formations of the permafrost-Mallik and Alaska[1,2],and the deep marine-Nankai Trough[3].The exploitation of GH leads to the GH dissociation from solid to water and gas,and the loss of bearing capacity of gas hydrate-bearing sediments(GHBS).The decrease in the modulus of GHBS increases the compressibility,and dangers of settlement and sliding,especially when the GH stratum is in a slope.The decrease in the shear strength induces the occurrence of soil failures and local stress concentration surrounding the production well[4–6],which is very peculiar in geotechnical engineering.

    In nature,GHBS consists of four components,i.e.,soil/rock skeleton,GH,water,and gas[7].Triaxial compression tests were conducted when GH formed in pores of the specimen under a non-dissociation condition,simulating the mechanical behavior before GH exploitation[8–15].The results indicated that:different GHBS preparation methods such as gas saturated method and water saturated method lead to obvious differences in the mechanical behavior;the GH existence mode in the pores of sediments varies with the increase of GH saturation,leading to the transition of the deformation from shear shrinkage to shear dilatancy.Constitutive models were established to describe the mechanical behaviors of GHBS by using linear elastic or nonlinear elasto-plastic models,such as the Discrete Element Method,Duncan–Chang model,Cam-clay model[16–20].Those models can consider two or three phases in GHBS,but are incapable of describing the effects of GH dissociation.The knowledge on how the mechanical behaviors change during GH dissociation and the physical mechanism were still insufficient.

    A chemo-thermal-mechanically coupled model was established to simulate the soil deformation during GH dissociation,but needs experimental verification[4].Recent efforts have been made to test the mechanical properties and the softening mechanism of GHBS after complete GH dissociation[21,22].So then Hyodo et al.[21]conducted tests on the mechanical behaviors under the condition of GH dissociation by the thermal and depressurization method.The shear strength was compared between gas hydrate-bearing Toyoura sand after GH dissociation and pure Toyoura sand.The results indicated that the shear strength of GHBS after thermal induced GH dissociation and isotropic consolidation is less than that of pure Toyoura sand,while no collapse of GHBS occurs after depressurization induced GH dissociation.In addition,Li et al.[22]studied the mechanical behaviors of GHBS containing ice after depressurization and thermal induced GH dissociation.The results showed that the shear strength will decrease after GH dissociation,and the shear strength and modulus under drained conditions are much higher than that under undrained conditions.These studies presented the change of shear strength and modulus after complete GH dissociation by the thermal and depressurization method.However,GH dissociation in GHBS is a progressive process,and the mechanical properties change with the GH dissociation degrees.How the dissociation process affects the mechanical properties is not well understood.

    GH dissociation in GHBS brings a new geotechnical problem:(1)the effective porosity and the components varies,and the soil-water characteristic curve depends on the GH dissociation degree;(2)the pore capillary pressure at the pore size of several microns is two orders of magnitude less than both the pore fluid pressure and confining pressure[7,23].That is why it is difficult to determine the constitutive relation during GH dissociation.

    The aim of this paper is to conduct a series of triaxial tests on silt sandy GHBS considering depressurization induced GH dissociation,obtain the shear strength and modulus at different GH dissociation degrees,and present simplified constitutive models for the shear strength and modulus,describing the progressive soil deformation and failure during the GH exploitation.The paper is organized as follows:In Sect.2,the specimen preparation and test setups are introduced to illustrate how to obtain the stress–strain relationship of GHBS during GH dissociation.In Sect.3,the results are compared to show the changes in the mechanical properties at different GH dissociation degrees and effective confining pressures.In Sect.4,the modulus and shear strength during GH dissociation are analyzed based on the mixed model and Mohr–Coulomb model.

    2 GHBS preparation and test setups

    ApparatusThe tests were conducted on the apparatus of GHBS preparation and triaxial compression(Fig.1).The apparatus can provide confining pressure ranging from 0 to 14 MPa with an accuracy of 0.5%and temperature from 253.15 to 293.15 K.The maximum back-pressures from 0 to 10 MPa are provided by a gas supply cylinder.A gas flow meter is used to measure the total gas percolating into the specimen.Then a GHBS specimen with a diameter of3.9 cm and a height of 8 cm can be formed under proper pressure and temperature.The detailed illustration of the apparatus can be referred to Zhang et al.[15].

    Fig.1 Test apparatus for GHBS preparation and triaxial compression

    Soil for preparing specimenSilt sand was used as a skeleton of GHBS whose specific gravity of the sand is 2.69 and the relative density is 54%.The dry density of the specimen is 1.6 g/cm3,and the porosity is about 40%.The grain size distribution is shown as in Fig.2.The radius and height of the specimen are 3.91 and 8 cm,respectively.

    Test setupsThe gas saturated method for GHBS preparation was used[12].The soil skeleton was prepared first with water content according to the designed initial GH saturation(2–3 mL more water was added considering possible non-reacting water),then methane gas percolated into the specimen,and the total supplied gas volume was controlled by the theoretical value of reacted gas in GH and free gas in the specimen.The water content was controlled as follows:First the water was mixed with the silt sand,and then the soil skeleton was prepared(for GH saturation 19%),or first the soil skeleton was prepared,and then the water was injected into pores of the soil(for GH saturation 38%,50%).It should be noted that for the case of GH saturation at 19%,the water volume is about 6 mL,and mixing method was appropriate for uniform water distribution in specimens.In the formation of GHBS,the confining pressures were set as 5 MPa,the pore gas pressure was 4 MPa.The temperature was 275.15 K.After the silt sandy GHBS preparation,it is shown that GHBS specimen consisted of three components as soil skeleton,GH,and gas,and GH distributed uniformly along the height of the specimen[24].

    The GH dissociation process was achieved as follows:The pressure at the top of the GHBS specimen was lowered to the atmospheric pressure.The free gas flowed out and was collected till the gas pressure equaled the atmospheric pressure,then the GH dissociated slowly,and the released gas was collected for calculating the dissociated GH saturation.The pore pressure reduction spread 13 cm in several seconds in GHBS[24],so a uniform pressure could be reached fast in specimens of the same silt sand skeleton during depressurization.Finally,the pore gas pressure was kept at 4 MPa,and the triaxial compression tests were conducted under different confining pressures of 5,7,9 MPa,respectively.The axial loadFand axial deformation?Lwere recorded during the tests,then the stress and strain were calculated byF/Aand?L/L(hereAwas the corrected area considering no volume change,andLwas the initial height of the specimen).Each compression test lasted for about13 min,so the GH reformation was nonexistent.After the tests,the GH saturations were back-calculated according to the total released gas from the specimen during tests.

    Table 1 presents the basic controlling parameters of the tests,including the GH saturations before dissociation and after partial or complete dissociation.It should be noted that the initial GH saturations were the average values,with errors less than 8%.

    The volumetric fraction of each component was measured and calculated after tests.All the water was assumed to form GH in the GHBS preparation.The residual GH volume was obtained by the total GH volume before dissociation minus the dissociated GH volume,and the water volume was calculated by the dissociated GH volume.

    It is noted that in all the tests GH was dissociated in silt sandy GHBS by the depressurization method,while final compression tests were completed at the pore gas pressure 4 MPa.

    Fig.2 Grain size distribution of the silt sand

    Table 1 Basic controlling parameters

    3 Results and discussion

    3.1 Experimental results

    The stress–strain curves present the behavior of plastic failure,reduction of stiffness and shear strength with GH dissociation which is related with the effective confining pressures and dissociation degrees(Fig.3).In the following figures CP represents the effective confining pressure.The developing of the curves can be explained as:During GH dissociation,initial continuous linkage of GH is broken,the cementation between GH and skeleton becomes weaker,the gas and water release from the solid GH,and then the interface enhancement effects in GHBS is reduced,i.e.,the structural properties change greatly.

    The shear strength decreases by 35%–83%when the GH dissociates from saturation 19%to 10%and 0%,50%–90%when GH saturation decreases from 38%to 25%,15%and 0%,respectively,and 30%–90%when GH saturation decreases from 50%to 30%,10%and 0%,respectively.In addition,Winters et al.[9,10]presented similar results that the shear strength of sediments after complete GH dissociation decreases by about 90%of natural GHBS.

    Fig.3 Stress–strain curves during GH dissociation under different initial GH saturations and effective confining pressures.a Initial GH saturation 19%.b Initial GH saturation 38%.c Initial GH saturation 50%

    Figure 4 presents a comparison among the stress–strain curves at effective confining pressure of 3 MPa when the GH saturation decreases by 90%,85%,90%from 50%,38%,19%,respectively.The shear strength reduces more for a higher initial GH saturation,while the difference becomes less with the increase of the GH dissociation degree.The phenomenon can be explained that the cementing effect is stronger at a higher initial GH saturation,the GH dissociation first breaks the linkage and cementation among GH and soil grains,more gas and water is released into the pores of GHBS,and then the structural property and shear strength decrease more quickly.

    With the increase of GH dissociation,the shear strength decreases in a nonlinear way in Fig.5.The reason is that during GH dissociation,the components and phase state in GHBS change:the solid component decreases,while the water in the pores increases.Though the gas is released from GH,drainage is applied fast,thus the volumetric fraction of the gas changes only a little.In another point of view,the effective porosity of GHBS increases during GH dissociation,while the shear strength decreases under the same effective stress.The mechanism should be further investigated and revealed from microscopic measurement during the GH dissociation.

    The modulus was obtained by computing?σ/?εat the strain of0.5%–1%as shown in Fig.6.The modulus decreases by 50%–75%nonlinearly with GH dissociation.It is to be noted,Li et al.[16]obtained that the modulus decreased by about 50%after depressurization induced GH dissociation in permafrost-associated GHBS under undrained condition.The changes in the components and interfaces of GHBS lead to the variation in the transfer path of force.

    Fig.4 The stress–strain curves under effective confining pressure of 3 MPa

    3.2 Models for the modulus and shear strength of GHBS during GH dissociation

    The variation of components during GH dissociation are described as follows:before GH dissociation,the components consist of soil skeleton,GH,and gas;after partial GH dissociation,soil skeleton,GH,gas,and water;and after complete GH dissociation,soil skeleton,gas,and water.After complete GH dissociation,the water saturations in the pores of the sediments are 0.15,0.32,0.40 at initial GH saturation 19%,38%,50%,respectively.

    Fig.5 The change of shear strength under different initial GH saturation.a 19%→10%→0%.b 38%→25%→15%→0%.c 50%→30%→10%→0%

    3.2.1 The modulus of GHBS during the GH dissociation

    The gas is the main component in the pore of GHBS and highly compressible;hence,we consider a two-phase mixed model to describe the modulus of GHBS during GH dissociation[12].The gas,water,and soil skeleton(Phase 1:higher compressibility)are regarded as one phase,and GH(Phase 2:lower compressibility)as the other phase.This model is based on the mechanics of compound materials,considering statistical phenomenological characteristics and a series-parallel stress path in GHBS.λvandλrare introduced to describe the statistical parameters(fractions)of parallel and series modes in GHBS,which satisfyλv+λr=1,λvλr?0.

    Fig.6 The change of modulus under different initial GH saturation.a 19%→10%→0%.b 38%→25%→15%→0%.c 50%→30%→10%→0%

    Fig.7 The modulus of GHBS during the GH dissociation

    In Reuss is the low-bound model(the series mode)

    In Vigot is the upper-bound model(the parallel mode)

    Assuming GHBS as isotropic material,Zhang et al.[12]present the formulation of the modulus as

    The lower and upper bounds of the modulus are

    whereE1andE2represent the modulus of Phase 1 and Phase2,V1andV2represent the volumetric fractions of Phase 1 and Phase 2,respectively.

    Taken the initial GH saturation of 50%as an example,before GH dissociation,the statistical parameterλr=0.5,and can describe the modulus of GHBS.During GH dissociation,the modulus is close to the predicted lower bound of the mixed model(Fig.7).The reason is that during GH dissociation,the linkage between GH and soil grains changes,leading to the change in the arrangement mode of the two phases.The stress transfer path and the statistic fractions of series and parallel modes are changed,and the effect of Phase 1 on the modulus prevailed with the increase of GH dissociation.

    3.2.2 The shear strength of GHBS during the GH dissociation

    According to the Fredlund equation,the shear strength of unsaturated soil can be expressed as

    where,τf,σ,Pg,Pw,??,c?+(Pg?Pw)tanφ??represent shear strength,total stress, pore gas pressure, pore water pressure,effective internal friction angle,and effective cohesion,respectively.

    Dividing both sides of Eq.(5)byPgyields

    The dimensionless cohesion and the internal friction angle can be expressed as follows

    wherechd,?hd,Shdrepresent the cohesion,internal friction angle after partial or complete dissociation,and dissociated GH saturation,respectively.ch,?h,Shrepresent the cohesion,internal friction angle,and GH saturation before dissociation,respectively.

    The cohesion decreases with GH dissociation degree.The dimensionless cohesionchd/chcan be fitted to be a quadratic polynomial ofShd/Shfor the initial GH saturation of 50%,38%,19%,respectively

    The correlation coefficientR2is 0.99.The dimensionless cohesion varies with GH dissociation very closely under different initial GH saturations(Fig.9).The mechanism is interesting and worth further research.

    Fig.8 The cohesion and internal friction angle with the GH dissociation.a Cohesion.b Internal friction angle

    Fig.9 The cohesion with the GH dissociation

    For the initial GH saturation of 50%,38%,19%,respectively,the dimensionless internal friction angle?hd/?hcan be fitted to be a quadratic polynomial ofShd/Sh

    The correlation coefficientR2is 0.94.The dimensionless internal friction angle varies with GH dissociation in a similar way under different initial GH saturations(Fig.10).

    Fig.10 The internal friction angle with GH dissociation

    4 Conclusions

    The mechanical properties of silt sandy GHBS during GH dissociation were investigated under different initial GH saturations of 50%,38%,19%.A series of tests was conducted in a triaxial apparatus in three stages:first,prepare GHBS by using the gas saturated method;second,dissociate GH by depressurization induced GH dissociation;and third,carry on compression tests at the same pore gas pressure.

    The stress–strain relationship presents the behavior of plastic failure.The modulus and shear strength decrease with GH dissociation,and the decreasing percentage is related with the effective confining pressures and dissociation degrees.During the development of GH dissociation,the shear strength decreases by about 30%–90%,and the modulus decreases by about 50%–75%.

    Under different initial GH saturations,the shear strengths reduce more for a higher initial GH saturation due to the stronger structural change,breakage of the linkage and cementation between GH and soil grains,and more release of gas and water.

    The modulus goes to the lower bound of the mixed model due to the solid GH with a high stiffness turning into the fluid phase with higher compressibility.The cohesion and internal friction angle decrease with the GH dissociation.The relation ships between the two dimensionless strength parameters with the relative dissociation degree can be described as quadratic polynomial functions.

    GH dissociation changes the volumetric fraction of each component,the pore fluid pressure,and the interaction among the skeleton’s grains.The microscopic mechanisms are worth investigating in a further study to reveal the unique phenomenon during GH dissociation.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 41376078,51639008,and 51239010)the China Geological Survey(Grant DD20160216),and the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant 2017027).

    1.Hauge,L.P.,Birkedal,K.A.,Ersland,G.,et al.:Methane production from natural gas hydrates by CO2replacement-review of lab experiments and field trial.Society of Petroleum Engineers,SPE-169198-MS(2014)

    2.Lee,S.,Kim,S.:Onshore and offshore gas hydrate production tests.Econ.Environ.Geol.47,275–289(2014)

    3.Terao,Y.,Lay,K.,Yamamoto,K.:Design of the surface flow test system for 1st offshore production test of methane hydrate.In:Offshore Technology Conference-Asia,OTC-24719-MS,Malaysia,March 25–28(2015)

    4.Kimoto,S.,Oka,F.,Fushita,T.:A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation.Int.J.Mech.Sci.52,365–376(2010)

    5.Kwon,T.H.,Oh,T.M.,Choo,Y.W.,et al.:Geomechanical and thermal responses of hydrate bearing sediments subjected to thermal simulation:physical modeling using a geotechnical centrifuge.Energy Fuels 27,4507–4522(2013)

    6.Yoneda,J.,Masui,A.,Konno,Y.,et al.:Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern Nankai trough.Mar.Pet.Geol.66,471–486(2015)

    7.Waite,W.F.,Santamarina,J.C.,Cortes,D.D.,et al.:Physical properties of hydrate-bearing sediments.Rev.Geophys.47,1–38(2009)

    8.Clayton,C.R.I.,Priest,J.A.,Best,A.I.:The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand.Geotechnique 55,423–434(2005)

    9.Winters,W.J.,Pecher,I.A.,Waite,W.F.,et al.:Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate.Am.Mineral.89,1221–1227(2004)

    10.Winters,W.J.,Waite,W.F.,Mason,D.H.,et al.:Methane gas hydrate effect on sediment acoustic and strength properties.J.Pet.Sci.Eng.56,127–135(2007)

    11.Miyazaki,K.,Masui,A.:Tri-axial compressive properties of artificial methane hydrate bearing sediment.J.Geophys.Res.116,B06102(2011)

    12.Hyodo,M.,Li,Y.H.,Yoneda,J.,et al.:Effects of dissociation on the shear strength and deformation behavior of methane hydrate bearing sediments.Mar.Pet.Geol.51,52–62(2014)

    13.Zhang,X.H.,Liu,L.L.,Zhou,J.B.,et al.:A model for the elastic modulus of hydrate-bearing sediments.Int.J.Offshore Polar 25,314–319(2015a)

    14.Zhang,X.H.,Lu,X.B.,Shi,Y.H.,et al.:Study on the mechanical properties of hydrate-bearing silty clay.Mar.Pet.Geol.67,72–80(2015b)

    15.Zhang,X.H.,Lu,X.B.,Zhang,L.M.,et al.:Experimental study on mechanical properties of methane-hydrate-bearing sediments.Acta Mech.Sin.28,1356–1366(2012)

    16.Li,Y.H.,Song,Y.C.,Liu,W.,et al.:Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments.Int.J.Offshore Polar 22,290–296(2012)

    17.Miyazaki,K.,Tenma,N.,Aoki,K.,etal.:A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate bearing sediment samples.Energies 5,4057–4075(2012)

    18.Jiang,M.J.,Sun,Y.G.,Yang,Q.J.:A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed.Granul.Matter 15,209–220(2013)

    19.Pinkert,S.,Grozic,J.L.H.,Priest,J.A.:Strain-softening model for hydrate-bearing sands.Int.J.Geomech.15,04015007(2015)

    20.Pinkert,S.,Grozic,J.L.H.:Experimental verification of a prediction model for hydrate-bearing sand.J.Geophys.Res.Solid Earth 121,4147–4155(2016)

    21.Hyodo,M.,Li,Y.H.,Yoneda,J.,et al.:Mechanical behavior of gas-saturated methane hydrate-bearing sediments.J.Geophys.Res.Solid Earth 118,5185–5194(2013)

    22.Li,Y.H.,Liu,W.G.,Zhu,Y.M.,et al.:Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods.Appl.Energy 162,1627–1632(2016)

    23.Sha,Z.B.,Liang,J.Q.,Zhang,G.X.,et al.:A seepage gas hydrate system in northern South China sea:seismic and well log interpretations.Mar.Geol.366,69–78(2015)

    24.Liu,L.L.:Evolution of gas hydrate dissociation front in hydrate bearing sediment.[Ph.D.Thesis],Institute of Mechanics,Chinese Academy of Sciences,China(2013)

    久久精品aⅴ一区二区三区四区 | 大香蕉97超碰在线| 卡戴珊不雅视频在线播放| 一级毛片我不卡| 9191精品国产免费久久| 男男h啪啪无遮挡| 少妇猛男粗大的猛烈进出视频| 咕卡用的链子| 在线 av 中文字幕| 曰老女人黄片| 在线免费观看不下载黄p国产| 香蕉精品网在线| 日韩视频在线欧美| 国产av一区二区精品久久| 亚洲精品美女久久久久99蜜臀 | 亚洲精华国产精华液的使用体验| 欧美变态另类bdsm刘玥| 免费大片黄手机在线观看| 国产在线免费精品| 欧美激情极品国产一区二区三区 | 日韩av免费高清视频| 久久久久视频综合| av免费观看日本| 成人国产麻豆网| 亚洲综合色惰| 亚洲av福利一区| 国国产精品蜜臀av免费| 久久久久久久精品精品| 午夜免费鲁丝| 大码成人一级视频| 69精品国产乱码久久久| 制服诱惑二区| 国产永久视频网站| 在线天堂最新版资源| 成人亚洲精品一区在线观看| 国产精品.久久久| www.av在线官网国产| 精品酒店卫生间| 边亲边吃奶的免费视频| 女人久久www免费人成看片| 欧美最新免费一区二区三区| 亚洲国产日韩一区二区| 日本免费在线观看一区| 美女大奶头黄色视频| 免费播放大片免费观看视频在线观看| 一级毛片电影观看| 亚洲精品av麻豆狂野| 9色porny在线观看| 丰满迷人的少妇在线观看| 99久久综合免费| 亚洲欧美日韩另类电影网站| 三上悠亚av全集在线观看| 国产日韩欧美在线精品| 久久精品aⅴ一区二区三区四区 | 欧美日韩亚洲高清精品| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人 | 日韩av不卡免费在线播放| 一级毛片黄色毛片免费观看视频| 午夜福利在线观看免费完整高清在| 黑人猛操日本美女一级片| 日韩三级伦理在线观看| 日韩av免费高清视频| 亚洲情色 制服丝袜| 成人漫画全彩无遮挡| 久久综合国产亚洲精品| 色视频在线一区二区三区| 国产1区2区3区精品| 大香蕉97超碰在线| 久久99热6这里只有精品| 午夜精品国产一区二区电影| 伊人久久国产一区二区| 人妻 亚洲 视频| 色网站视频免费| 男女免费视频国产| 国产免费一级a男人的天堂| 日本免费在线观看一区| 欧美xxⅹ黑人| 精品熟女少妇av免费看| 22中文网久久字幕| 免费人妻精品一区二区三区视频| 国产黄频视频在线观看| 中文欧美无线码| 最新中文字幕久久久久| 亚洲国产av影院在线观看| 久久ye,这里只有精品| 久久国内精品自在自线图片| 女的被弄到高潮叫床怎么办| 宅男免费午夜| 亚洲精品aⅴ在线观看| 女人精品久久久久毛片| 日日爽夜夜爽网站| 18禁动态无遮挡网站| 亚洲国产看品久久| 天堂中文最新版在线下载| 亚洲av.av天堂| 精品少妇内射三级| 美女视频免费永久观看网站| 日韩一区二区视频免费看| 久久女婷五月综合色啪小说| 国产精品成人在线| 亚洲av男天堂| 久久热在线av| 99久久综合免费| 在线免费观看不下载黄p国产| 狠狠精品人妻久久久久久综合| 日本欧美视频一区| 国产成人精品一,二区| 国产xxxxx性猛交| 日韩成人伦理影院| 精品国产一区二区三区四区第35| 精品一区二区三卡| 亚洲精品久久成人aⅴ小说| 国产伦理片在线播放av一区| 青春草视频在线免费观看| 熟女av电影| 人人妻人人爽人人添夜夜欢视频| 国产在线免费精品| 精品一区二区三卡| 精品视频人人做人人爽| 日韩视频在线欧美| 国产午夜精品一二区理论片| 日韩欧美一区视频在线观看| 成年人免费黄色播放视频| 国产白丝娇喘喷水9色精品| 国产精品一区二区在线观看99| av.在线天堂| 99精国产麻豆久久婷婷| 夫妻性生交免费视频一级片| 国产在线免费精品| 国产欧美亚洲国产| 精品熟女少妇av免费看| 天堂中文最新版在线下载| 大陆偷拍与自拍| 成人毛片a级毛片在线播放| 亚洲第一区二区三区不卡| 国产成人精品久久久久久| 免费观看在线日韩| 精品人妻偷拍中文字幕| 1024视频免费在线观看| 国产 一区精品| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 精品久久蜜臀av无| 免费久久久久久久精品成人欧美视频 | 久久人人爽人人爽人人片va| 视频中文字幕在线观看| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜爱| www日本在线高清视频| 韩国高清视频一区二区三区| 免费看av在线观看网站| 国产色爽女视频免费观看| 久久精品熟女亚洲av麻豆精品| 又黄又爽又刺激的免费视频.| 美女中出高潮动态图| 大香蕉久久网| 日韩av不卡免费在线播放| 久久久久精品久久久久真实原创| 搡女人真爽免费视频火全软件| 国产男女内射视频| av天堂久久9| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影| 亚洲,欧美,日韩| 成年人免费黄色播放视频| 成年人免费黄色播放视频| 伦理电影大哥的女人| 美女大奶头黄色视频| av在线观看视频网站免费| 精品国产乱码久久久久久小说| www.色视频.com| 午夜久久久在线观看| 在线观看美女被高潮喷水网站| 色视频在线一区二区三区| 久久综合国产亚洲精品| 中文乱码字字幕精品一区二区三区| 99热这里只有是精品在线观看| 男女午夜视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇久久久久久888优播| 我要看黄色一级片免费的| 性色av一级| 国产高清三级在线| 亚洲av电影在线进入| 国产 一区精品| 国产精品女同一区二区软件| 侵犯人妻中文字幕一二三四区| 国产色爽女视频免费观看| 国产探花极品一区二区| 满18在线观看网站| 成人国语在线视频| 欧美日韩国产mv在线观看视频| 美女视频免费永久观看网站| tube8黄色片| 亚洲,欧美,日韩| 午夜福利网站1000一区二区三区| 久久这里只有精品19| 免费观看无遮挡的男女| 少妇 在线观看| 午夜福利视频在线观看免费| 人妻一区二区av| 中文天堂在线官网| 日韩三级伦理在线观看| 一级毛片我不卡| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 99精国产麻豆久久婷婷| 丝袜人妻中文字幕| 精品一区二区免费观看| 观看美女的网站| 成年人午夜在线观看视频| 亚洲精品456在线播放app| 一个人免费看片子| 熟女电影av网| 亚洲av福利一区| 亚洲精品久久午夜乱码| 国产日韩欧美视频二区| 国产色爽女视频免费观看| 成人免费观看视频高清| 天天躁夜夜躁狠狠久久av| 少妇人妻久久综合中文| 国产视频首页在线观看| 性色avwww在线观看| 国产黄色视频一区二区在线观看| 99久久人妻综合| 日韩成人伦理影院| 午夜福利在线观看免费完整高清在| 日韩中字成人| 久久久精品94久久精品| 午夜福利视频精品| 亚洲国产精品成人久久小说| 伊人久久国产一区二区| 久久av网站| 国产女主播在线喷水免费视频网站| 免费高清在线观看视频在线观看| 婷婷色综合大香蕉| 女人精品久久久久毛片| 亚洲综合色网址| 黄色毛片三级朝国网站| 最近2019中文字幕mv第一页| 亚洲精品一区蜜桃| 插逼视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人aa在线观看| 国产探花极品一区二区| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠躁躁| 成人午夜精彩视频在线观看| 亚洲在久久综合| 色网站视频免费| 丝袜人妻中文字幕| 最近最新中文字幕免费大全7| 一级毛片电影观看| 男男h啪啪无遮挡| 九色亚洲精品在线播放| 男人舔女人的私密视频| kizo精华| 免费av不卡在线播放| 日韩av在线免费看完整版不卡| 亚洲av男天堂| xxxhd国产人妻xxx| 免费黄色在线免费观看| 国产乱人偷精品视频| 午夜视频国产福利| 亚洲成人av在线免费| 久久99精品国语久久久| 一本色道久久久久久精品综合| 精品第一国产精品| 成年人午夜在线观看视频| 国产精品蜜桃在线观看| 免费人成在线观看视频色| 亚洲av日韩在线播放| 我的女老师完整版在线观看| 高清不卡的av网站| 少妇人妻精品综合一区二区| 午夜免费观看性视频| 在线天堂最新版资源| 国产精品偷伦视频观看了| 男的添女的下面高潮视频| 老司机影院毛片| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 高清在线视频一区二区三区| 日韩成人伦理影院| 国产一区二区在线观看av| 美女内射精品一级片tv| 伊人久久国产一区二区| 国产成人精品在线电影| 少妇人妻 视频| av卡一久久| 97在线人人人人妻| 亚洲成人av在线免费| 多毛熟女@视频| 国产精品久久久久久精品古装| 色网站视频免费| 亚洲欧洲日产国产| 欧美成人午夜精品| 亚洲成人av在线免费| 亚洲国产欧美在线一区| 丰满饥渴人妻一区二区三| 亚洲中文av在线| xxx大片免费视频| 麻豆乱淫一区二区| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久成人aⅴ小说| 欧美精品人与动牲交sv欧美| 少妇的逼好多水| 麻豆精品久久久久久蜜桃| 国产精品麻豆人妻色哟哟久久| 人妻一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 2022亚洲国产成人精品| 色吧在线观看| 青青草视频在线视频观看| 国产精品久久久久成人av| 亚洲精品中文字幕在线视频| 国产亚洲一区二区精品| 久久久国产欧美日韩av| 国产精品人妻久久久久久| 国产在线免费精品| 久久久久久久久久久久大奶| 美女主播在线视频| 我的女老师完整版在线观看| 国产男女内射视频| 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 国产精品嫩草影院av在线观看| 蜜桃国产av成人99| 美女视频免费永久观看网站| 久久久久久久亚洲中文字幕| 欧美老熟妇乱子伦牲交| 岛国毛片在线播放| 婷婷色麻豆天堂久久| 久久久久人妻精品一区果冻| 国产日韩欧美视频二区| 99re6热这里在线精品视频| 只有这里有精品99| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 男人舔女人的私密视频| 黑丝袜美女国产一区| 亚洲av男天堂| 黄片播放在线免费| 久久99热这里只频精品6学生| 色视频在线一区二区三区| 九九爱精品视频在线观看| 老司机影院毛片| 精品久久蜜臀av无| 久久99热6这里只有精品| 日韩电影二区| 欧美+日韩+精品| 久久久久久久久久久免费av| 国产永久视频网站| 国产 一区精品| 有码 亚洲区| 久久 成人 亚洲| 国产片特级美女逼逼视频| 热re99久久精品国产66热6| videos熟女内射| kizo精华| 婷婷色麻豆天堂久久| 免费av中文字幕在线| 日本欧美国产在线视频| 黑人巨大精品欧美一区二区蜜桃 | 成人综合一区亚洲| 欧美激情国产日韩精品一区| 天天操日日干夜夜撸| 精品久久久久久电影网| 观看美女的网站| 99热这里只有是精品在线观看| 国产免费现黄频在线看| 大码成人一级视频| 久久人人爽人人片av| 看免费成人av毛片| 亚洲av福利一区| 亚洲av综合色区一区| 亚洲av综合色区一区| 久久久久久久久久久免费av| 满18在线观看网站| 午夜日本视频在线| 天天躁夜夜躁狠狠躁躁| 2021少妇久久久久久久久久久| 香蕉丝袜av| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久久电影| 少妇人妻 视频| 亚洲国产精品一区三区| 如日韩欧美国产精品一区二区三区| 性色av一级| 成人午夜精彩视频在线观看| 人成视频在线观看免费观看| 国产 一区精品| 观看美女的网站| 狂野欧美激情性bbbbbb| 日本欧美视频一区| 色网站视频免费| 日本午夜av视频| 亚洲av电影在线进入| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃 | av在线观看视频网站免费| 性色avwww在线观看| 久久久久久久久久成人| 国产一区亚洲一区在线观看| 国产一级毛片在线| 日本免费在线观看一区| 久久午夜综合久久蜜桃| 国产精品一二三区在线看| 大陆偷拍与自拍| 精品第一国产精品| 成人二区视频| 老司机影院毛片| 久久久精品94久久精品| 免费黄网站久久成人精品| 免费黄频网站在线观看国产| 久久久久久久亚洲中文字幕| 亚洲精品视频女| 丰满少妇做爰视频| 午夜视频国产福利| 人人妻人人澡人人看| 免费黄色在线免费观看| 日韩在线高清观看一区二区三区| 日韩精品有码人妻一区| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| 啦啦啦视频在线资源免费观看| 日韩一区二区视频免费看| 国产国语露脸激情在线看| 最近的中文字幕免费完整| 亚洲成人av在线免费| 久久人人爽av亚洲精品天堂| 久久久a久久爽久久v久久| 波多野结衣一区麻豆| 国产精品熟女久久久久浪| 少妇高潮的动态图| 精品久久国产蜜桃| 自线自在国产av| 日本午夜av视频| 九色亚洲精品在线播放| 日韩成人伦理影院| 精品国产一区二区久久| 在线 av 中文字幕| 老女人水多毛片| 亚洲一码二码三码区别大吗| 最近最新中文字幕免费大全7| 久久久久精品性色| 久久女婷五月综合色啪小说| 男女国产视频网站| 亚洲少妇的诱惑av| 这个男人来自地球电影免费观看 | 狠狠婷婷综合久久久久久88av| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 丝袜脚勾引网站| 精品酒店卫生间| 国产国语露脸激情在线看| 亚洲精品色激情综合| 亚洲国产欧美在线一区| tube8黄色片| 免费久久久久久久精品成人欧美视频 | 青春草亚洲视频在线观看| 黄色配什么色好看| 热99国产精品久久久久久7| 国产精品 国内视频| 韩国av在线不卡| 日韩中字成人| 午夜福利视频在线观看免费| 欧美国产精品一级二级三级| 黄色一级大片看看| www日本在线高清视频| 亚洲精品视频女| 中文字幕亚洲精品专区| 桃花免费在线播放| 美女中出高潮动态图| 欧美少妇被猛烈插入视频| 亚洲成av片中文字幕在线观看 | 人成视频在线观看免费观看| 十分钟在线观看高清视频www| 久久99蜜桃精品久久| 黄色毛片三级朝国网站| 人妻 亚洲 视频| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| av福利片在线| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 男人操女人黄网站| 超碰97精品在线观看| 99香蕉大伊视频| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 日日啪夜夜爽| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| 久久久久久久亚洲中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 蜜臀久久99精品久久宅男| 美国免费a级毛片| 久久久国产精品麻豆| 最近中文字幕高清免费大全6| 另类亚洲欧美激情| 午夜激情久久久久久久| 国产精品久久久av美女十八| 亚洲精品色激情综合| 国产成人精品一,二区| 色吧在线观看| 久久久国产欧美日韩av| 久久久久久伊人网av| 精品人妻一区二区三区麻豆| www.色视频.com| 久久久a久久爽久久v久久| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 精品久久国产蜜桃| 熟女av电影| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花| 一区二区三区乱码不卡18| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| 欧美日本中文国产一区发布| 人人妻人人添人人爽欧美一区卜| 精品少妇黑人巨大在线播放| 久久影院123| 国产又色又爽无遮挡免| 欧美性感艳星| 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 亚洲精品第二区| 母亲3免费完整高清在线观看 | 超色免费av| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久成人| 国产精品一区二区在线不卡| 亚洲,欧美,日韩| 亚洲色图综合在线观看| 午夜福利,免费看| 日本爱情动作片www.在线观看| 亚洲成av片中文字幕在线观看 | a级毛片在线看网站| 久久久久国产精品人妻一区二区| av播播在线观看一区| 美女视频免费永久观看网站| 看非洲黑人一级黄片| 乱人伦中国视频| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 亚洲av福利一区| 久久毛片免费看一区二区三区| 天美传媒精品一区二区| 看十八女毛片水多多多| 美国免费a级毛片| 久久久久久久久久久久大奶| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 七月丁香在线播放| 久久精品aⅴ一区二区三区四区 | 亚洲伊人久久精品综合| av黄色大香蕉| 多毛熟女@视频| 久久久久国产网址| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 久久人人爽人人片av| 美女主播在线视频| videos熟女内射| 97在线视频观看| 色5月婷婷丁香| 一区二区三区乱码不卡18| freevideosex欧美| 七月丁香在线播放| 国产高清三级在线| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 一本—道久久a久久精品蜜桃钙片|