• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mobile bed thickness in skewed asymmetric oscillatory sheet flows

    2018-04-18 02:55:42XinChenYongLiFujunWang
    Acta Mechanica Sinica 2018年2期

    Xin Chen·Yong Li·Fujun Wang

    1 Introduction

    Sheet flow happens as an important sediment transport regime when the Shields parameter over a mobile bed is larger than about0.8–1.0,where sediment concentrations are very high and the sediment flux is large.Measurement difficulties exist in the rather thin sheet flow layer with mobile bed thickness from millimeters to centimeters[1],and the actual knowledge is relatively weak in the sheet flow layer compared to the outer layer.The relevant mobile bed thickness is very crucial,because the sediment transport rate is usually obtained by the product of mobile bed thickness and averaged velocity.Both steady and unsteady flow studies about mobile bed thickness have been conducted widely in the recent quarter-century[1–3],and applied in instantaneous sediment transport rate models,but limitations exist,such as suspended sediment,phase-lag effects,and asymmetric boundaries in skewed asymmetric oscillatory flows.Improvement of the instantaneous mobile bed thickness theory is necessary.

    A linear relationship between dimensionless mobile bed thickness and the Shields parameter is widely accepted,but suspended sediment is usually not included,which leads to unrealistic constants or even increasing erosion depth with increments of sediment diameter[4].Furthermore,mobile bed thickness is zero near flow reversal when a linear relationship is applied,and the difference between onshore and offshore flows is always absent in asymmetric flows.However,its non-zero mobile bed thickness can be seen when phase-lag is comparatively large[1],along with obvious differences between onshore and offshore flows in asymmetric development of the flow boundary.For accurate prediction of the instantaneous mobile bed thickness in unsteady flows,it is necessary to consider the suspended sediment,phase-lag effects[1,5,6],and asymmetric development of the boundary layer.

    Figure 1 shows the typical sediment concentration profile in sheet flows.The mobile bed thickness for sediment transport in sheet flow is represented by erosion depthZand sheet flow layer thicknessδ.The immobile bed surface is com-monly defined to be where the volumetric concentrationSis 0.99Sm,wheremdenotes the maximum value.Erosion depth is commonly defined as the distance between initial still bed level and the top of the immobile bed surface,below which is the immobile layer.Sheet flow layer thickness is defined as the distance between the top of immobile bed surface and the level at whichS=0.08,where averaged particle spacing is almost one particle diameter and particle interactions are negligible,above which is the suspension layer.Previous studies can generally be divided into models referring only to the erosion depth[1,6–8],only to the sheet flow layer thickness[3,5,9,10]or referring to both[4].The relationship between erosion depth and sheet flow layer thickness has not been obtained,even though they both represent the mobile bed thickness.Conflict exists between erosion depth and sheet flow layer thickness[4]without mass conservation in previous studies,so mass conservation[5]must be considered.

    Fig.1 Nearbed concentration profile of oscillatory sheet flow

    The present study aims to develop an instantaneous mobile bed thickness model for sediment transport in sheet flow conditions.Special attention is paid to the effects of suspended sediment,mass conservation,phase-lag,and asymmetric boundary development.Finally,the new model is applied to sediment transport rate prediction.In the following,we introduce the new model in Sect.2,and discuss the validity of the new model and its application in sediment transport rate in Sects.3 and 4.After that the conclusions are drawn in Sect.5.

    2 New mobile bed thickness model

    Defined in Fig.2a,the analytical approximation of skewed asymmetric free steam velocity[11]is

    Typical skewed asymmetric flow happens when 0<r<1 and?π/2<χ<0.Otherwise,Eq.(1)reduces to sinusoidal flow whenr=0,to pure velocity-skewed flow whenχ=?π/2 and to pure acceleration-skewed flow whenχ=0 in Fig.2b.

    2.1 New erosion depth

    The new erosion depth,Z,is derived with the consideration of suspended sediment,phase-lag,and asymmetric boundary development.The erosion depth includes a bed load part Zband suspended load partZ s,which are

    Fig.2 Free stream velocity U.a Definition of skewed asymmetric U.b Special flow type

    whereτis the shear stress on the immobile bed surface,ρis the water density,sis the sediment specific gravity,gis the gravitational acceleration,θis the sediment internal friction angle,ηis the energy efficiency for suspended sediment transport,andwis the sediment falling velocity[12].The instantaneous Shields parameter is

    whereDis the sediment diameter,F=(U w f+U0f0)/(U w+U0)is the friction factor for combined wave and current[13],U w=(Uc+Ut)/2,U0is the current velocity,andf0is the current friction factor[13].The wavefis given by Ref.[14]with acceleration modification[3].Considering the asymmetric development of the boundary layer forU,fat the flow peak(U=UcorU=Ut)is given by

    and the flow reversal(U=0)is given with the subscriptabeing replaced bydin Eq.(5);Ais the oscillatory flow orbital amplitude,Aa c,at=2Uc,tTac,a t/π;k N/D=5Θ?1 is the roughness height of mobile bed[14],and iterations are necessary for Eqs.(4)–(5)andkN.InstantaneousAandfare linearly interpolated between flow peak and reversal.

    Sensitivity ofSm,η,andθare not focused on here.Instead we take the widely usedSm=0.6 andη=0.02.Averagedθ=28°is simply given by data from[1,4,7,8,15].The total erosion depth is

    Considering the phase-lag[1],the instantaneous erosion depth is rewritten based on Eq.(6)

    whereβ1andβ2are related to the phase-lag parameterΨ=σ Z m/w,representing the time ratio between sediment falling

    Fig.3 Phase-residual calibration

    down and the wave period,Z mis the maximum erosion depth in Eq.(6).Θmis the maximumΘgiven by Eq.(4);β1Θmrepresents the residual sediment amount after flow reversal,andβ1=exp(?0.2/Ψ)is calibrated by the data[1,8,16]in Fig.3,where“Zmin”is the measured minimal erosion depth,β2denotes the variation inZsatisfyingβ1+β2=3.2.

    2.2 New sheet flow layer thickness

    New sheet flow layer thickness,δ,is obtained by erosion depth due to mass conservation.Considering the mass conservation,the concentration profile is approximated by exponential law or power law[6]

    We can derive the top of the sheet flow layery(0.08)=Zby settingS=0.08 andSm=0.6 in Eq.(8).Noticeδ=y(0.08)+Z,thus theδis

    Conservation of sediment mass requires relationship in Eq.(10)with a downward convex profile ofS<0.3,where triangle areaABC,seen in Eq.(11),is the possible minimum eroded sediment amount given byZandδ.Points“A”and“C”are located at theyaxis and the immobile bed surface in Fig 1,and point“B”is the intersection point of theyaxis and the immobile bed surface.ACis a tangent line ofSacross the initial bed withS0,and“D”is the tangent point located at the top of the sheet flow layer.Equations(10)and(11)show a restriction betweenZandδ.Consideration of mass conservation makesZandδin Eq.(9)compatible for most 0.08<S0<0.3,asZ Sm/ABC>1 seen in Fig.4.ButZ/D=7.8Θmandδ/D=35Θmin Ref.[4]do not match each other for case 0.13 mm(Fig.4),whereZ Sm/A B C<1 for every possibleS0.

    Fig.4 Match performance of Z and δ

    Fig.5 Mobile bed thickness comparison

    3 Validation of mobile bed thickness

    The maximum values(Z/Dandδ/D)are first validated by data in Table 1,which includes the skewed asymmetric flows:pure velocity-skewed flow[1],pure acceleration-skewed flow,and mixed flow].We did not study the characteristic of plug flow[7]when the mobile bed thickness suddenly increases,so data in the range ofσUm/[(s? 1)g]>0.2 are excluded.

    Figure 5 is the comparison ofZ/Dandδ/Dbetween present predictions and measurements,where the dash dotted lines represent the two-fold deviation.Measurement uncertainties exist in the rather thin sheet flow layer of millimeters to centimeters[1],and the sensitivity ofSm,η,andθare neglected.However,data ofZ/Dbetween the dash-dotted lines are 94.39%,which reasonably confirms the validity of suspended sediment and asymmetric boundary development in Eq.(6).Meanwhile,the consideration of mass conservation is also reasonable,because 92.52%data ofδ/Dderived from mass conservation are between the twofold deviation lines.

    Periodic variation of mobile bed thickness is important to understand the sediment pick-up and fall-down processes.Collected instantaneous data for validation are listed in Table 2,which includes 4 types of flows in Fig.2b.Respecting the authors,Uis given by Eq.(1)for sinusoidal flow(W36 and LS1),pure acceleration-skewed flow(A1 and A3)and mixed flow(C1),andU=1.2cos[2π(t/T?0.214)]+0.3cos[4π(t/T?0.214)]in pure velocity-skewed flow(FA7515–MA5010).

    Table 1 Cases for mobile bed thickness validation

    Table 2 Cases for instantaneous sediment transport validation

    The instantaneous mobile bed thickness comparison between present predictions(Pred.)and measurements(Meas.)is shown in Fig.6,where the bottom and top lines,respectively,correspond to the immobile bed surface(?Z)and the top of the sheet flow layer[y(0.08)=Z]in Fig.1.Reasonably good agreement between present predictions and measurements confirms the validity of a phase-residual ofβ1Θmand a phase-shift ofΨin Eq.(7).Again,classicalZ/Z m=Θ/Θm[2,7]is not valid in oscillatory sheet flow due to the phase-lag.For example,in pure velocity skewed flows,Z t/Z c=0.90(Fig.6b)is much larger thanΘt/Θc=0.36(Fig.2b);this is also true in mixed flows(Fig.6f).The minimalZis not 0,even thoughΘ=0,because phase-residual exists,and it occurs a phase-shift aftert/T=0.In sinusoidal flow(Fig.6a),the mobile bed thickness is symmetric betweent/T=0?0.5 andt/T=0.5?1.In pure acceleration-skewed flow(Fig.6d–e),maximumZnear the flow crest(t/T=0.2?0.3)is larger than that near the flow trough(t/T=0.8?0.9)evenUc=Ut,because the acceleration skewness leads to a shear stress near the flow crest larger than that near the flow trough].The effect is considered in Eq.(5),so present predictions can well recognize the difference.Without loss of generality,data of W36,FA5010,and MA5010 are not shown in this section.Instead,their sediment transport rate results are studied in Sect.4.

    4 Sediment transport rate

    Equation(7)provides a solid foundation for developing a unified and summarized instantaneous formula for sediment transport in skewed asymmetric flows.According to Wilson[19],the velocity at the top of the sheet flow layer is found at about 8.2u?.With the averaged sediment velocity being about half its value,the dimensionless sediment transport rate formula is

    In unsteady flow,the instantaneousΦis usually approximated by Sign(U)|U/Um|n.Various velocity power function exponentsn=1?3 can be unified and summarised in the present study by neglecting phase-shift:ndecreases as the phase-residualβ1increases(Fig.8a).If the phase-lag is as small asβ1=0,Eq.(7)reduces toZ∝U2,and Eq.(12)becomes

    Fig.6 Instantaneous erosion depth and sheet flow layer.a LS1.b FA7515.c MA7515.d A1.e A3.f C1

    Table 3 Data for sediment transport rate validation in steady flows

    Fig.7 Sediment transport rate in steady flow.a Φ Against Θ .b Prediction by Eq.(12)

    Table 4 Sediment transport rate errors in steady flows

    Thus,n=3(Fig.8a),which is in agreement with classical instantaneous formulas.If the phase-lag is extremely large,such thatβ1=3.2,the periodicZin Eq.(7)is constant,and Eq.(12)becomes

    n=1(Fig.8a).Equation(14)agrees with the large phase-lag cases[1,2].Furthermore,n=2 can be used for approximation of Eq.(12)whenβ1=1.3(Fig.8a).Other studies,such as W36 in Fig.8b,1.3<β1=1.86<3.2,andn=1.7 is calibrated in agreement with Trow bridge and Young[30].In Figs.8b and 9,the result ofn=1(dashes-dotted)also represents the free streamU;n=3(dashed line)represents classical instantaneous formulas;Nielsen[29](dotted line)represents the bed load formulas.

    In previous studies,most of the formulas are invalid for instantaneous sediment transport rate in skewed asymmetric flow.Figureshows the instantaneous sediment transport rates in pure velocity-skewed flow(Table 2),where only Eq.(12)fits all cases.Nielsen[29]bed load formula always underestimates the results without the suspended sediment,and classical instantaneous formulan=3 fails at the flow trough(t/T=0.5?0.9)when phase-residual is obvious withβ1=2.65 and 2.28(Fig.9a,b).Due to the phase-shiftΨin erosion depth,the maximumΦin the present model is not located att/T=0.214 whenUis maximal,and Eq.(12)is very close ton=1,even thoughβ1=2.65<3.2 in Fig.9a.Since the sediment transport rate is a product of mobile bed thickness,the good agreement between Eq.(12)and the measurements again confirms the validity of instantaneous Eq.(7).However,the periodic integration of Eq.(12)is still not enough for net sediment transport rate in skewed asymmetric flow,because the net current generated by skewed asymmetric flow[1,18]has not been presented,and net current would generate an extra net sediment transport rate.

    Fig.8 Instantaneous sediment transport in sinusoidal flow a Velocity exponents n and β1.b W36,β1=1.86

    Fig.9 Instantaneous sediment transport rate in 2nd Stokes flow.a FA5010,β1=2.65.b FA7515.β1=2.28.c MA5010.β1=1.25.d MA7515.β1=0.60

    5 Conclusions

    This paper develops a new instantaneous mobile bed thickness model for skewed asymmetric oscillatory sheet flows,and derives the relationship between erosion depth and sheet flow layer thickness,both of which represent the mobile bed thickness.The new model is validated by data covering a wide range of sediment diameters,periods, flow strengths and types.Comprehensive consideration of suspended sediment,mass conservation,phase-lag,and asymmetric boundary layer development ensures the model accuracy.In addition,an instantaneous sediment transport formula is obtained based on the new mobile bed thickness model in skewed asymmetric flows.The instantaneous sediment transport rate proportional to various velocity power function exponents 1–3 are unified and summarised by neglecting phase-shift,i.e.,the exponent decreases as the phase-residual increases.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 51609244,11472156,and 51139007)and the National Science-Technology Support Plan of China(Grant 2015BAD20B01)

    1.O’Donoghue,T.,Wright,S.:Concentrations in oscillatory sheet flow for well sorted and graded sands.Coast.Eng.50,117–138(2004)

    2.Dick,J.E.,Sleath,J.F.A.:Sediment transport in oscillatory sheet flow.J.Geophys.Res.97,5745–5758(1992)

    3.Dong,L.,Sato,S.,Liu,H.:A sheet flow sediment transport model for skewed-asymmetric waves combined with strong opposite currents.Coast.Eng.71,87–101(2013)

    4.Dohmen-Janssen,C.M.,Hassan,W.N.,Ribberink,J.S.:Mobilebed effects in oscillatory sheet flow.J.Geophys.Res.106,103–115(2001)

    5.Malarkey,J.,Pan,S.,Li,M.,et al.:Modelling and observation of oscillatory sheet-flow sediment transport.Ocean Eng.36,873–890(2009)

    6.Chen,X.,Niu,X.,Yu,X.:Near-bed sediment condition in oscillatory sheet flows.J.Waterw.Port.Coast.Ocean.Eng.139,393–403(2013)

    7.Zala-Flores,N.,Sleath,J.:Mobile layer in oscillatory sheet flow.J.Geophys.Res.103,12783–12793(1998)

    8.Liu,H.,Sato,S.:Laboratory study on sheet flow sediment movement in the oscillatory turbulent boundary layer based on image analysis.Coast.Eng.J.47,21–40(2005)

    9.Wilson,K.C.:Analysis of bed-load motion at high shear stress.J.Hydraul.Eng.ASCE.113,97–103(1987)

    10.Sumer,B.M.,Kozakiewicz,A.,Freds?e,J.,etal.:Velocity and concentration profiles in sheet-flow layer of movable bed.J.Hydraul.Eng.ASCE.122,549–558(1996)

    11.Abreu,T.,Silva,P.A.,Sancho,F.,et al.:Analytical approximate wave form for asymmetric waves.Coast.Eng.57,656–667(2010)

    12.van Rijn,L.C.:Principles of Sediment Transport in Rivers,Estuaries and Coastal Seas.Aqua Publications,Blokzijl(1993)

    13.Madsen,O.,Grant,W.:Sediment transport in the coastal environment.Technical Report 209,M.I.T.,Cambridge,Massachusetts,USA(1976)

    14.Wilson,K.C.,Andersen,J.S.,Shaw,J.K.:Effects of wave asymmetry on sheet flow.Coast.Eng.25,191–204(1995)

    15.Sawamoto,M.,Yamashita,T.:Sediment transport rate due to wave action.J.Hydrosc.Hydraul.Eng.4,1–15(1986)

    16.Ruessink,B.G.,Michallet,H.,Abreu,T.,et al.:Observations of velocities,sand concentrations,and fluxes under velocity a symmetric oscillatory flows.J.Geophys.Res.Oceans.116,C03004(2011)

    17.van der Zanden,J.,Alsina,J.M.,Cáceres,I.,et al.:Bed level motions and sheet flow processes in the swash zone:observations with a new conductivity-based concentration measuring technique(CCM+).Coast.Eng.105,47–65(2015)

    18.Yuan,J.,Madsen,O.S.:Experimental and theoretical study of wave-current turbulent boundary layers.J.Fluid.Mech.765,480–523(2015)

    19.Wilson,K.C.:Analysis of contact-load distribution and application to deposition limit in horizontal pipes.J.Pipelines.4,171–176(1984)

    20.Gilbert,G.K.,Murphy E.C.:The transportation of debris by running water.Technical Report 86,U.S.Geological Survey(1914)

    21.Guy,H.P.,Simons,D.B.,Richardson,E.V.:Summary of alluvial channel data from flume experiments.J.Biol.Chem.283,5148–5157(1966)

    22.Nnadi,F.N.,Wilson,K.C.:Motion of contact-load particles at high shear stress.J.Hydrol.Eng.118,1670–1684(1992)

    23.Smart,G.:Sediment transport formula for steep channels.J.Hydraul.Eng.ASCE.111,267–276(1984)

    24.Willis,J.C.,Coleman,N.L.,Ellis,W.M.:Laboratory study of transport of fine sand.J.Hydraul.Div.ASCE.98,489–501(1972)

    25.Willis,J.C.:Suspended load from error-function models.J.Hydraul.Div.ASCE.105(7),801–816(1979)

    26.Brownlie,W.:Compilation of alluvial channel data:laboratory and field.Technical Report KH-R-43B,California Institute of Technology,Pasadena(1981)

    27.Meyer-Peter,E.,Müller,R.:Formulas for bed-load transport.In:Report on the 2nd Meeting International Association Hydraulic Structure Research,Stockholm(1948)

    28.Ribberink,J.S.:Bed-load transport for steady flows and unsteady oscillatory flows.Coast.Eng.34,59–82(1998)

    29.Nielsen,P.:Sheet flow sediment transport under waves with acceleration skewed and boundary layer streaming.Coast.Eng.53(9),749–758(2006)

    30.Trowbridge,J.,Young,D.:Sand transport by unbroken water waves under sheet flow conditions.J.Geophys.Res.94,10971–10991(1989)

    自拍偷自拍亚洲精品老妇| 美女大奶头视频| 小说图片视频综合网站| 黄色配什么色好看| 国内毛片毛片毛片毛片毛片| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区| 少妇的逼好多水| 久久久久久久亚洲中文字幕 | 成人av一区二区三区在线看| 又爽又黄无遮挡网站| 观看美女的网站| 禁无遮挡网站| 午夜久久久久精精品| 欧美日韩乱码在线| 国内精品一区二区在线观看| 有码 亚洲区| 日韩亚洲欧美综合| 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 毛片女人毛片| 国产91精品成人一区二区三区| 日韩中文字幕欧美一区二区| 少妇的逼水好多| 美女高潮的动态| 两个人视频免费观看高清| 精品人妻偷拍中文字幕| 色5月婷婷丁香| 狂野欧美白嫩少妇大欣赏| 嫩草影院精品99| 自拍偷自拍亚洲精品老妇| 国产视频一区二区在线看| 午夜日韩欧美国产| 亚洲精品乱码久久久v下载方式| 日本一二三区视频观看| 97超视频在线观看视频| 国产乱人伦免费视频| 直男gayav资源| 亚洲国产欧洲综合997久久,| 亚洲第一区二区三区不卡| 免费人成在线观看视频色| 99久国产av精品| 久久亚洲真实| 亚洲,欧美精品.| 伦理电影大哥的女人| 亚洲精品乱码久久久v下载方式| 日韩有码中文字幕| 免费观看人在逋| 99精品在免费线老司机午夜| 午夜视频国产福利| 久久久久免费精品人妻一区二区| 搞女人的毛片| 在线十欧美十亚洲十日本专区| 少妇熟女aⅴ在线视频| 成年版毛片免费区| 日韩欧美在线二视频| 国产精品98久久久久久宅男小说| 国产成人啪精品午夜网站| 精品99又大又爽又粗少妇毛片 | 精品一区二区免费观看| 婷婷六月久久综合丁香| 99视频精品全部免费 在线| 亚洲人成网站在线播放欧美日韩| 国产探花极品一区二区| 亚洲欧美精品综合久久99| 国产精品爽爽va在线观看网站| 变态另类成人亚洲欧美熟女| 一本精品99久久精品77| 中文字幕免费在线视频6| 国产 一区 欧美 日韩| 欧美日韩福利视频一区二区| 啪啪无遮挡十八禁网站| 国产一区二区激情短视频| 精品午夜福利在线看| 日韩欧美三级三区| 亚洲国产精品sss在线观看| 国产午夜精品久久久久久一区二区三区 | 久久久精品欧美日韩精品| 宅男免费午夜| 久久亚洲精品不卡| 中文字幕av成人在线电影| 伦理电影大哥的女人| 国产成人a区在线观看| 日本在线视频免费播放| 久久久久性生活片| 嫩草影院入口| 欧美成人性av电影在线观看| 色吧在线观看| 嫩草影视91久久| 一区二区三区激情视频| 色5月婷婷丁香| 99热这里只有是精品50| av在线老鸭窝| 国产精品亚洲av一区麻豆| 国产淫片久久久久久久久 | 日韩欧美国产在线观看| 精品人妻一区二区三区麻豆 | 精品99又大又爽又粗少妇毛片 | 蜜桃久久精品国产亚洲av| 欧美极品一区二区三区四区| 午夜福利成人在线免费观看| 日韩欧美在线二视频| 国产精品一区二区免费欧美| 亚洲在线观看片| 窝窝影院91人妻| 757午夜福利合集在线观看| 少妇熟女aⅴ在线视频| 欧美最新免费一区二区三区 | 欧美在线黄色| 宅男免费午夜| 一个人免费在线观看电影| 舔av片在线| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品成人综合色| 欧美性猛交╳xxx乱大交人| 我要看日韩黄色一级片| 亚洲黑人精品在线| 嫩草影院入口| 午夜福利视频1000在线观看| 一本一本综合久久| 精品人妻熟女av久视频| 狂野欧美白嫩少妇大欣赏| 亚洲人成伊人成综合网2020| 色综合欧美亚洲国产小说| 日韩欧美国产在线观看| 中文字幕高清在线视频| 看黄色毛片网站| 黄色一级大片看看| 欧美绝顶高潮抽搐喷水| 亚洲中文日韩欧美视频| 国产在线精品亚洲第一网站| 亚洲欧美日韩高清在线视频| 99国产精品一区二区三区| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 日本黄色视频三级网站网址| 久久久久久九九精品二区国产| 99久久九九国产精品国产免费| 伊人久久精品亚洲午夜| 午夜日韩欧美国产| 赤兔流量卡办理| 国产在线精品亚洲第一网站| 亚洲第一电影网av| 午夜激情欧美在线| 亚洲人与动物交配视频| av女优亚洲男人天堂| 精品一区二区三区视频在线| 成人性生交大片免费视频hd| 国产一区二区三区在线臀色熟女| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 国产乱人视频| 国产午夜精品久久久久久一区二区三区 | av天堂中文字幕网| 日韩大尺度精品在线看网址| 日本在线视频免费播放| 99热这里只有是精品在线观看 | 精品久久久久久久久久免费视频| 日本三级黄在线观看| 又爽又黄a免费视频| 中文字幕久久专区| 日本在线视频免费播放| 国产aⅴ精品一区二区三区波| 国产在线精品亚洲第一网站| 啦啦啦观看免费观看视频高清| 亚洲在线观看片| 色精品久久人妻99蜜桃| 欧美成人性av电影在线观看| 欧美性猛交黑人性爽| 国产黄a三级三级三级人| 国产精品av视频在线免费观看| 自拍偷自拍亚洲精品老妇| 999久久久精品免费观看国产| 网址你懂的国产日韩在线| 国产午夜精品论理片| 亚洲国产精品合色在线| 欧美日韩国产亚洲二区| 亚洲电影在线观看av| 欧美最新免费一区二区三区 | 久久久久久久久中文| 人人妻人人看人人澡| 男女那种视频在线观看| 赤兔流量卡办理| 91狼人影院| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 久99久视频精品免费| 很黄的视频免费| 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 老司机深夜福利视频在线观看| 91九色精品人成在线观看| 国产精品乱码一区二三区的特点| 亚洲中文字幕一区二区三区有码在线看| 两性午夜刺激爽爽歪歪视频在线观看| 国语自产精品视频在线第100页| 国产白丝娇喘喷水9色精品| 麻豆久久精品国产亚洲av| 日韩免费av在线播放| 日韩人妻高清精品专区| 国产高清激情床上av| 97超视频在线观看视频| 免费观看人在逋| 男人的好看免费观看在线视频| 日韩亚洲欧美综合| 国内精品久久久久久久电影| 欧美另类亚洲清纯唯美| 91麻豆av在线| 亚洲不卡免费看| av在线老鸭窝| 小蜜桃在线观看免费完整版高清| 免费观看精品视频网站| 看黄色毛片网站| 淫妇啪啪啪对白视频| 亚洲中文日韩欧美视频| 国产精品伦人一区二区| 亚洲人成网站高清观看| 日本一本二区三区精品| 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产高清国产av| 亚洲国产精品合色在线| 黄色日韩在线| 麻豆一二三区av精品| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 久久久精品大字幕| 在线十欧美十亚洲十日本专区| 国产极品精品免费视频能看的| 国产精品一区二区性色av| 我的老师免费观看完整版| 日韩国内少妇激情av| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看| 欧美日韩黄片免| 亚洲欧美日韩无卡精品| 久久亚洲精品不卡| 高清日韩中文字幕在线| 日韩欧美免费精品| 男女视频在线观看网站免费| 午夜精品久久久久久毛片777| 午夜激情福利司机影院| 毛片女人毛片| 午夜精品久久久久久毛片777| 麻豆成人午夜福利视频| 精品午夜福利视频在线观看一区| 国产激情偷乱视频一区二区| 一区福利在线观看| 久久精品国产清高在天天线| 亚洲国产欧美人成| 69av精品久久久久久| 国产精品嫩草影院av在线观看 | 亚洲国产日韩欧美精品在线观看| 校园春色视频在线观看| 精品久久久久久久末码| 99精品久久久久人妻精品| 丰满人妻熟妇乱又伦精品不卡| 欧美最黄视频在线播放免费| 老熟妇乱子伦视频在线观看| 精品人妻1区二区| 亚洲国产欧美人成| 亚洲欧美日韩卡通动漫| 成年人黄色毛片网站| 一边摸一边抽搐一进一小说| 国产精品美女特级片免费视频播放器| 高清在线国产一区| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 两个人的视频大全免费| 国产不卡一卡二| 九色成人免费人妻av| 午夜福利在线观看吧| 国产成人欧美在线观看| 9191精品国产免费久久| av福利片在线观看| 日韩欧美精品v在线| 俄罗斯特黄特色一大片| 亚洲欧美激情综合另类| 国产乱人伦免费视频| 2021天堂中文幕一二区在线观| 亚洲狠狠婷婷综合久久图片| 亚洲美女搞黄在线观看 | 亚洲国产精品999在线| 国产伦精品一区二区三区视频9| 有码 亚洲区| 亚洲五月婷婷丁香| 最新在线观看一区二区三区| 午夜精品一区二区三区免费看| 午夜两性在线视频| 婷婷六月久久综合丁香| a级毛片免费高清观看在线播放| 69人妻影院| 国产成人欧美在线观看| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 亚州av有码| 久久久国产成人免费| 夜夜躁狠狠躁天天躁| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 舔av片在线| 无人区码免费观看不卡| 夜夜躁狠狠躁天天躁| 免费人成在线观看视频色| 丁香六月欧美| 在线十欧美十亚洲十日本专区| 亚洲真实伦在线观看| 免费av毛片视频| 51午夜福利影视在线观看| 午夜精品在线福利| 精品久久久久久久久久久久久| 欧美激情久久久久久爽电影| 麻豆成人av在线观看| 亚洲自拍偷在线| 极品教师在线免费播放| 99在线视频只有这里精品首页| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 男人舔奶头视频| 亚洲18禁久久av| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 国内精品美女久久久久久| 88av欧美| 99在线视频只有这里精品首页| 色尼玛亚洲综合影院| 成人永久免费在线观看视频| 久久久久久九九精品二区国产| 国产欧美日韩一区二区三| 欧美一区二区国产精品久久精品| 国产成人av教育| 国产伦精品一区二区三区四那| 99国产极品粉嫩在线观看| 国产成人影院久久av| 一本精品99久久精品77| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 最近最新免费中文字幕在线| 99久国产av精品| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 少妇裸体淫交视频免费看高清| 欧美中文日本在线观看视频| netflix在线观看网站| 91午夜精品亚洲一区二区三区 | 伦理电影大哥的女人| 亚洲乱码一区二区免费版| 亚洲欧美清纯卡通| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| 99久久无色码亚洲精品果冻| av在线老鸭窝| 嫩草影视91久久| 欧美性感艳星| 一级作爱视频免费观看| 日韩欧美在线乱码| 久久国产乱子伦精品免费另类| 欧美性感艳星| 国产黄色小视频在线观看| 欧美最新免费一区二区三区 | 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 91狼人影院| 国产成人欧美在线观看| 亚洲国产色片| 国模一区二区三区四区视频| 中国美女看黄片| 美女xxoo啪啪120秒动态图 | 日韩欧美精品v在线| 亚洲黑人精品在线| 97热精品久久久久久| 亚洲五月婷婷丁香| 国产麻豆成人av免费视频| 欧美中文日本在线观看视频| 精品99又大又爽又粗少妇毛片 | 97热精品久久久久久| 国产真实乱freesex| 亚洲人成电影免费在线| 日本撒尿小便嘘嘘汇集6| 老司机福利观看| 国产又黄又爽又无遮挡在线| 免费人成在线观看视频色| 99久久99久久久精品蜜桃| 特级一级黄色大片| 国产精品1区2区在线观看.| .国产精品久久| 中文字幕av成人在线电影| 久久欧美精品欧美久久欧美| 1000部很黄的大片| 亚洲真实伦在线观看| avwww免费| 国产精品久久久久久久电影| 午夜精品在线福利| 免费在线观看成人毛片| 亚洲精品乱码久久久v下载方式| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av涩爱 | 51国产日韩欧美| 久久伊人香网站| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| av视频在线观看入口| 91九色精品人成在线观看| 五月玫瑰六月丁香| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 亚洲欧美清纯卡通| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 男女那种视频在线观看| 国产精品av视频在线免费观看| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 日本一本二区三区精品| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 欧美最新免费一区二区三区 | 免费大片18禁| 亚洲三级黄色毛片| 国产精品一及| 欧美另类亚洲清纯唯美| 精品人妻1区二区| www.www免费av| 国产精品一区二区三区四区免费观看 | 1024手机看黄色片| 国语自产精品视频在线第100页| 我要搜黄色片| 99久久99久久久精品蜜桃| 有码 亚洲区| 日本一本二区三区精品| 99久久精品热视频| 欧美极品一区二区三区四区| av在线观看视频网站免费| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看| 少妇丰满av| 欧美乱妇无乱码| 国产伦在线观看视频一区| 88av欧美| 国产 一区 欧美 日韩| 中文字幕人成人乱码亚洲影| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 一级av片app| 深夜a级毛片| 久久草成人影院| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 久久性视频一级片| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va | 日韩国内少妇激情av| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 丁香欧美五月| 午夜激情欧美在线| 两个人的视频大全免费| 一个人观看的视频www高清免费观看| 国产激情偷乱视频一区二区| 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 午夜福利高清视频| 高清毛片免费观看视频网站| 欧美不卡视频在线免费观看| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 中文字幕人成人乱码亚洲影| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 嫁个100分男人电影在线观看| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 国产亚洲精品av在线| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| av欧美777| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| www.www免费av| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 伦理电影大哥的女人| 亚洲七黄色美女视频| 亚洲国产日韩欧美精品在线观看| 毛片女人毛片| 亚洲美女搞黄在线观看 | 国产精品久久电影中文字幕| 久久精品人妻少妇| 久久性视频一级片| 国产午夜福利久久久久久| 一区二区三区免费毛片| 国语自产精品视频在线第100页| 91久久精品国产一区二区成人| 人人妻人人看人人澡| 一二三四社区在线视频社区8| 直男gayav资源| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 又粗又爽又猛毛片免费看| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 九九在线视频观看精品| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 又粗又爽又猛毛片免费看| 亚洲人成伊人成综合网2020| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| av天堂在线播放| 久久久久性生活片| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 亚洲国产色片| 国内精品美女久久久久久| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 51午夜福利影视在线观看| 色5月婷婷丁香| 久久久久久国产a免费观看| 中文字幕高清在线视频| 18禁在线播放成人免费| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 赤兔流量卡办理| 中文字幕熟女人妻在线| 91狼人影院| 超碰av人人做人人爽久久| netflix在线观看网站| 一二三四社区在线视频社区8| 美女被艹到高潮喷水动态| 少妇被粗大猛烈的视频| 又爽又黄无遮挡网站| 亚洲美女黄片视频| 国内精品久久久久久久电影| 人妻夜夜爽99麻豆av| 亚洲成人久久爱视频| 亚洲精品在线观看二区| 欧美3d第一页| 亚洲精品成人久久久久久| 日韩欧美在线二视频| 他把我摸到了高潮在线观看| 91在线观看av| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 十八禁人妻一区二区| 国产免费一级a男人的天堂| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 真实男女啪啪啪动态图| АⅤ资源中文在线天堂| 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 老鸭窝网址在线观看| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| 97碰自拍视频| 中出人妻视频一区二区| 美女免费视频网站| 内地一区二区视频在线| 亚洲av.av天堂| 欧美最黄视频在线播放免费| 综合色av麻豆| 日本熟妇午夜| 成人无遮挡网站| 成年女人看的毛片在线观看| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| 男人的好看免费观看在线视频| 久久国产精品影院| 好男人在线观看高清免费视频| 99国产极品粉嫩在线观看| 首页视频小说图片口味搜索| 美女免费视频网站| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| 国产黄色小视频在线观看| 九九在线视频观看精品| 很黄的视频免费| 男人舔女人下体高潮全视频|