• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement of the flow structures in the wakes of different types of parachute canopies

    2018-04-18 02:55:36SylvioPasqualiniZheyanJinZhigangYang
    Acta Mechanica Sinica 2018年2期

    Sylvio Pasqualini·Zheyan Jin·Zhigang Yang

    1 Introduction

    As a type of aerodynamic decelerator,parachutes have been widely used in life-saving and recovery systems.Based on their geometries,parachutes can be classified into round parachutes,cross-type parachutes,and ribbon parachutes.Because most parachutes use fabric canopies,the fabric flexibility results in apparent changes in the canopy geometry during both inflation and terminal descent phases[1].Moreover,because of the fabric permeability,small air flow can go through the canopy surface.The unsteady flow in the wake,together with the flexible fabric canopy,leads to unavoidable fluid–structure interaction[2].Further insight into the flow fields in the wakes of the flexible canopies not only allows us to have a better understanding of the unsteady aerodynamics pertinent to the parachutes,but offers important knowledge for scientists to develop superior parachutes as well[3].

    Through the years,scientists have carried out extensive investigations into the aerodynamic characteristics of different types of parachutes[4–16].For example,Peterson et al.[7]reported a review on the characteristics of parachute canopies from deployment phase to terminal descent phase.Furthermore,Levin and Shpund[8]changed the geometry of the cross parachute canopies to optimize their aerodynamic performance.In their work,Stein et al.[9]numerically investigated the interactions between two approaching parachute canopies in a cluster of parachutes.Also,Yagiz et al.[10]reported the influence of the geometry of three parachute canopies on the tangential force coefficient.In their work,Johari and Levshin[11]studied the interaction of a line vortex aligned with the axis of fully inflated parachute canopies.Then,Han et al.[12]proposed multi-node models to calculate the shape of full-filled cross parachutes.The study by Xue et al.[13]numerically investigated the effects of suspension lines on the flow field around a rigid supersonic parachute mode.In addition,Xue et al.[14]performed 3-D simulations to investigate the supersonic flow over rigid parachute models and focused on the effects of the trailing distances and the ratio of the diameter of capsule to canopy.The work of Gao et al.[15]presented the fluid–structure interaction(FSI)phenomenon of a parachute during finite mass inflation with low speed and altitude.Moreover,Gao et al.[16]performed the inflation simulations of a full-scale model disk-gapband parachute from the Mars Science Laboratory(MSL)mission.

    Fig.1 Configuration of the parachute models.a Ribbon.b 8-branches.c Cross

    Fig.2 The parachute model and forebody support structure in the wind tunnel

    Fig.4 Illustrations of the laser sheet arrangement behind the cross parachute canopy.a Position A.b Position B

    Fig.3 Experimental setup

    Recently,some researchers have used particle image velocimetry(PIV)to carry out the flow field measurements on several types of parachute models.For example,Desabrais[17]investigated the flow field in the wake of a flexible generic round parachute canopy.Also,Wernet et al.[18]obtained the velocity distributions of the shock locations during the canopy shock oscillations on a rigid supersonic parachute model.In their work,Schairer et al.[19]conducted unsteady flow measurements in the wake of a tension-cone decelerator in the subsonic flow.The study by Sengupta et al.[20]measured the velocity field upstream of the Orion drogue parachute model.More recently,by using stereoscopic particle image velocimetry(stereo-PIV),Jin et al.[21]studied the effect of Reynolds number on flow structures in the wake of a circular parachute canopy.In addition,Jin et al.[22]also investigated the influence of the arm ratio of the cross canopy on the wake structures in terms of velocity,vorticity,and Reynolds stress.

    Although much research has been performed on different parachute models in the past[1–22],the quantitative measurements to reveal the flow structures in the wakes of the parachute canopies with different geometries,but the same surface area have not yet been investigated.Since parachutes can be classified into different types based on their geometries,it would be interesting to know the effects of the geometry of the flexible parachute canopies on the flow structures in their wakes.In this study,an experimental investigation was carried out to characterize the flow structures in the wakes of three different parachute canopies by using stereo-PIV technique.All these three parachute canopies had the same surface area.The objective of this study is to further our understanding of the unsteady aerodynamics related to the flexible parachute canopies.

    Fig.5 Instantaneous vorticity results when Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    2 Experimental

    2.1 Parachute models

    Three parachute models were made of the solid cloth of a used personnel parachute(Fig.1).These models had the same surface area(S=0.015 m2)and were named ribbon canopy,8-branches canopy,and cross canopy,respectively.The constructed length,the thickness,and the cloth density of these canopies was 150.0 mm,0.1 mm,and 34.92 g·m?2,respectively.The arm ratio(i.e.,AR=L/W,whereLis the length andWis the width)of the cross canopy was measured to be 2.10.

    Figure 2 shows the inflated canopy and the supporting mount at the test section of the wind tunnel.Nylon suspension lines were used to attach the canopy to a fore body.The number of nylon suspension lines for ribbon canopy,8-branches canopy,and cross canopy was 28,24,20,respectively.The detailed information of fore body,suspension lines,stainless steel rods,and retention line has been given in our previous studies[21,22].

    2.2 Experimental setup

    Fig.6 Streamlines and the ensemble-averaged normalized z-component of the velocity(Uz/U∞)with Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    The present experimental investigation was performed in a low speed wind tunnel.During the experiments,the speed of the incoming airflow,U∞,changed from 3.36 to 7.50 m·s?1.By using the constructed length of the canopy as the characteristic length,the Reynolds numbers varied in the range 33,314?R e?74,362.The current experimental setup is shown in Fig.3,which has been described in our previous study[21,22].It should be noted that the angle displacement arrangement with the Scheimpflug condition was used in the present stereo-PIV measurements.In addition,in the images obtained by the charge coupled device(CCD)cameras,each pixel represented an actual distance of 0.095 mm.The interested readers are referred to Refs.[21,22]for details.

    3 Results and discussions

    In this study,the room temperature was kept at(21.5±0.5)°C,while the relative humidity of the surrounding air was held at(62.0±2.0)%.In order to avoid the laser lights reflected by the parachute canopies,we did not record the flow field information immediately downstream of the parachute canopies.In addition,as shown in Fig.3,the apex of the parachute was chosen to be the origin of the coordinate system.A parameter,R,was defined as the constructed radius,which was half of the constructed length(L).The region of interest was selected at a region where 0.22R?x?1.85Rand?1.4R?y?0.9R.Figure4 illustrates the laser sheet arrangement behind the cross parachute canopy.Position A represents the flow over arm and position B represents the flow through gap.For each case,the image acquisition rate of the stereo-PIV measurement was chosen at 4.0 Hz and it was different from the frequency of the “breathing”phenomenon of the parachute canopies.In addition,a sequence of 350 stereo-PIV images was captured for each case.

    Fig.7 Ensemble-averaged normalized x-component of the velocity(Ux/U∞)with Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    By following the procedures of the previous studies[21,22],the normalized Reynolds stress(ˉτ)and turbulence kinetic energy(TKE)were defined,the uncertainties of,which were about 5%.In addition,the time-averaged projected areas of these parachute canopies were obtained to be less than 105.0 cm2,which meant that the blockage ratios were less than 4.2%.

    Figure 5 shows the instantaneous vorticity distributions in the wakes of different types of parachute canopies at Reynolds number of 33,314.For all the canopies,vortices of different intensities appeared in their wakes.However,the vortices in the ribbon canopy case were found to have less vorticity than those of the other cases.Such a phenomenon might be because of the many small orifices distributed on the surface of the ribbon canopy.When air flow penetrates the ribbon canopy,they create many small-scale jet flows,which induce vortices with relatively lower intensity.Similar to the observation in Ref.[6],for the cross canopy,a larger turbulent wake was found in the flow through gap(position B)in comparison with the flow over arm(position A).In our results,concentrated vorticity regions could be found near thex-axis,which were because of the existence of retention line and should be neglected.

    Figure 6 shows the streamlines and ensemble-averaged normalizedz-component of the velocity(Uz/U∞)distributions in the wakes of these three parachute canopies at Reynolds number of 33,314.For all cases,a recirculation zone formed in the wake,which was similar to that of the circular parachute canopy case[21].However,the recirculation zone in the wake of the ribbon canopy seemed to be totally different from those of the other cases.It occurred at a further downstream region than the others.In addition,the recirculation zone of the flow over the arm of the cross canopy(position A)was smaller than that of the flow through the gap(position B).Moreover,the distributions of thez-component of the velocity of the ribbon canopy were also dramatically different from those of the other cases.Because of the influence of the gravity of the canopies,the retention line might not hold the parachute canopies perfectly horizontal,which could result in the asymmetry of the recirculation zones in the wakes of these parachute canopies.

    Fig.8 The transverse profiles of ensemble-averaged normalized x-component of the velocity with x=1.5 R.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    The ensemble-averaged normalizedx-component of the velocity results(Ux/U∞)in the wakes of different kinds of parachute canopies at Reynolds number of33,314 are shown in Fig.7.In order to better explain the results,Z Ux=0was used to represent the velocity zone confined byUx/U∞=0.Generally speaking,three features can be observed from these results.Firstly,the center of the velocity zoneZ Ux=0of the ribbon canopy located further downstream than those of the other cases.Secondly,as for the cross canopy,the size of the velocity zoneZ Ux=0of the flow through gap(position B)was much larger than that of the flow over arm(position A).Thirdly,the size of the velocity zoneZ Ux=0of the flow at either position A or position B of the cross parachute in the present study was smaller than that of the circular parachute tested by Jin et al.[21].The possible reason for such a phenomenon might be due to that the cross shape allowed the airflow to move around more easily than the circular shape.

    In the present study,the transverse profiles of the variables in the wakes of different kinds of parachute canopies at different Reynolds numbers were also obtained and analyzed.For example,at location wherex= 1.5R,the transverse profiles ofx-component of the velocity are shown in Fig.8.The results indicated that the effect of the Reynolds number on the transverse profiles of thex-component of the velocity was insignificant for all these canopies.In addition,the minimum values of thex-component of the velocity for the ribbon canopy case were generally lower than those of the other canopies.In addition,the transverse profiles were not symmetrical with respect to thex-axis,which corresponded to the results in Figs.6 and 7.

    Fig.9 Ensemble-averaged normalized vorticity(ωz L/U∞)with Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    Figure 9 shows the ensemble-averaged normalized vorticity distributions(ωz L/U∞)in the wakes of these parachute canopies at a Reynolds number of 33,314.For all cases,the majority of the vorticity appeared near the area wherey≈ ?1.0Rand decayed rapidly.As for the cross canopy,the concentrated vorticity region at position A was located closer to thex-axis when compared to that at position B.Near thex-axis,two parallel concentrated vorticity regions appeared,which were induced by the existence of retention line and should be neglected.However,the error induced by the existence of retention line was more obvious at position B(Fig.9d)than that at position A(Fig.9c).The possible explanation for this phenomenon might be that the combination of the unsteady wake flow and the flexible canopy produced unavoidable fluid–structure interaction between the canopy and the airflow.Since the canopy was restricted by the retention line,the strong interaction between the canopy and the airflow certainly induced the retention line to move.When the canopy was placed at different positions,the fluid–structure interaction between the canopy and the airflow was different,which might induce the retention line to move in a different way.Since our stereo-PIV setup could only measure a fixed vertical region,the movement of the retention line in that region might be different,which led to the different results at the location wherey≈0.

    Fig.10 The transverse profiles of ensemble-averaged normalized vorticity where x=1.5 R.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    Figure 10 shows transverse profiles of ensemble-averaged normalized vorticity at different Reynolds numbers.For all cases,a vorticity protrusion was present near the region withy≈ ?1.0R,which was corresponded to the vorticity concentrated region in Fig.9.When the Reynolds number increases,the ensemble-averaged normalized vorticity distributions change minor.Large fluctuations appear in the normalized vorticity in the area withy≈0,due to the retention line.This should be neglected.Moreover,for all these cases,at the region wherey≈ ?1.4R,the ensemble-averaged normalized vorticity values reduced approximately to 0.It should be noted that the fluctuations appeared in the transverse profiles of the vorticity.This phenomenon might be explained by two factors.Firstly,when Johari and Desabrais[1]studied the vortex shedding in the near wake of a circular parachute canopy,their mean vorticity field was obtained by averaging 1000 instantaneous fields.However,their vorticity results also presented a fluctuated feature.Thus,we think that the highly turbulent and unsteady characteristics of the wake of the canopy might play an important role.Secondly,the geometric difference between the different canopies in the present study and the round canopy[1]might be a reason,which led to a more turbulent flow.

    The normalized Reynolds stress distributions in the wakes of these three canopies at a Reynolds number of 33,314 are shown in Fig.11.As can be seen,the Reynolds stress levels of the ribbon canopy were much lower than those of the other canopies.As for the cross canopy,at position A,the majority of the Reynolds stress appeared within the area where?1.0R?y?1.0Rand decayed rapidly.At position B,the regions with concentrated Reynolds stress were further extended to the locations where|y|>1.0R.Lower values of the Reynolds stress were found at position B,compared to position A.It should be noted that the Reynolds stress distribution of the 8-branches canopy was similar to that of the cross canopy at position A.

    Fig.11 Normalized Reynolds stress distributions when Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    The transverse profiles of normalized Reynolds stress in the wakes of the parachute canopies are shown in Fig.12.As expected,the Reynolds stress levels of the ribbon canopy were much lower than those of the other canopies and the maximum absolute Reynolds stress value was about 0.015.Even though the transverse profiles of Reynolds stress of the 8-branches canopy was similar to those of the cross canopy at position A,the Reynolds stress values were relatively smaller.As for the cross canopy,the absolute Reynolds stress values at position A were relatively higher than those at position B where?1.0R <y<?0.6R.Moreover,for all these cases,at the region wherey≈?1.4R,the Reynolds stress values reduced to be approximately 0.

    Figure 13 shows the normalized turbulent kinetic energy results at a Reynolds number of 33,314.As can be seen,the turbulent kinetic energy levels of the ribbon canopy were much lower than those of the other canopies.In addition,since the flow through gap formed a larger turbulent wake than the flow over arm(Figs.5 and 7),such a phenomenon was also reflected in TKE distributions.The influence region of TKE at position B(Fig.13d)was found to be larger than that at position A(Fig.13c).Moreover,as for the 8-branches canopy,TKE concentrated in the region where?1.1R<y<?0.5R.In our results,dark regions could also be found near thex-axis,which were caused by the retention line and should be neglected.

    The transverse profiles of normalized turbulent kinetic energy are shown in Fig.14.The results also demonstrated that the TKE values of the ribbon canopy were smaller than those of the other canopies.The maximum TKE value for the ribbon canopy was found to be about 0.04,while for other two canopies,the maximum TKE value was about 0.09.As for the 8-branches canopy,the dependence of TKE on Reynolds number was minor,and the largest discrepancies between the case whenRe=74,362 and the other three cases appeared in the region where?1.0R<y<?0.6R.As for the cross canopy,the TKE values at position B were relatively higher than those at position A where?1.2R<y<?0.9R.Moreover,for all these cases,at the region wherey≈ ?1.4R,the TKE values decreased to be less than 0.015.

    Fig.12 The transverse profiles of normalized Reynolds stress where x=1.5 R.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    These results clearly show that the geometry of the parachute canopies has apparent effects on the wake flow structures.Regarding this,when designing a parachute canopy,it is recommended to perform a comprehensive investigation on the flow structures in the wake of the canopy.This helps to obtain a better understanding of the relationship between the change of the canopy shape and the final aerodynamic performance of the parachute.In addition,data obtained in this paper can be used for validations of theoretical models and simulations in computational fluid dynamics.

    Fig.13 Normalized turbulent kinetic energy distributions when Re=33,314.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    4 Conclusions

    Flow structures in the wakes of three types of parachute canopies were investigated using stereo-PIV.These parachute canopies were fabricated with the same surface area,and their geometries included ribbon canopy, 8-branches canopy,and cross canopy.We measured and analyzed both flow through the gap and over the arm of the cross parachute.The obtained results showed that the variation of the geometry of the parachute canopies had significant influences on the flow structures in the turbulent wakes of these canopies.The increase of Reynolds number does not lead to a dramatic variation in the distributions of thexcomponent of the velocity,vorticity,Reynolds stress,and turbulent kinetic energy in the wakes of these parachute canopies.The recirculation zone in the wake of the ribbon canopy formed at a further downstream region than that of the others.In addition,the normalized Reynolds stress and normalized turbulent kinetic energy of the ribbon canopy were found to be less than those of the others.

    Fig.14 The transverse profiles of normalized TKE where x=1.5.a Ribbon.b 8-branches.c Cross(position A).d Cross(position B)

    AcknowledgementsThis work was supported by the Science and Technology Commission of Shanghai Municipality (Grant 15ZR1442700)and the Fundamental Research Funds for the Central Universities.

    1.Johari,H.,Desabrais,K.J.:Vortex shedding in the near wake of a parachute canopy.J.Fluid Mech.536,185–207(2005)

    2.Cockrell,D.J.:The aerodynamics of parachutes,AGARD-AG-295(1987)

    3.Maydew,R.C.,Peterson,C.W.:Design and testing of high performance parachutes,AGARDograph 319(1991)

    4.Jorgensen,D.S.:Cruciform parachute aerodynamics.[Ph.D.thesis],University of Leicester,UK(1982)

    5.Shen,C.Q.,Cockrell,D.J.:Aerodynamic characteristics and flow around cross parachutes in steady motion.J.Aircr.25,317–323(1988)

    6.Shen,C.Q.,Cockrell,D.J.:Flow Field Characteristics Around Cuplike Bluff Bodies,Parachute Canopies,AIAA-91-0855-CP.AIAA,San Diego,CA(1991)

    7.Peterson,C.W.,Strickland,J.H.,Higuchi,H.:The fluid dynamics of parachute inflation.Annu.Rev.Fluid Mech.28,361–387(1996)

    8.Levin,D.,Shpund,Z.:Canopy geometry effect on the aerodynamic behavior of cross-type parachutes.J.Aircr.34,648–652(1997)

    9.Stein,K.,Tezduyar,T.,Kumar,V.,etal.:Aerodynamic interactions between parachute canopies.J.Appl.Mech.70,50–57(2003)

    10.Yagiz,O.E.,Albayrak,K.,Yildirim,R.O.:Experimental investigation of three rotating parachutes.J.Aircr.43,1574–1577(2006)

    11.Johari,H.,Levshin,A.:Interaction of a line vortex with a round parachute canopy.J.Fluid.Struct.25,1258–1271(2009)

    12.Han,Y.H.,Wang,Y.W.,Yang,C.X.,et al.:Numerical methods for analyzing the aerodynamic characteristics of cross parachute with permeability.In:AIAA Aerodynamic Decelerator Systems(ADS)Conference,Florida,AIAA 2013-1283,Mar 25–28(2013)

    13.Xue,X.,Koyama,H.,Nakamura,Y.,et al.:Effects of suspension line on flow field around a supersonic parachute.Aerosp.Sci.Technol.43,63–70(2015)

    14.Xue,X.,Nishiyama,Y.,Nakamura,Y.,et al.:Parametric study on aerodynamic interaction of supersonic parachute system.AIAA J.53,2796–2801(2015)

    15.Gao,X.,Zhang,Q.,Tang,Q.:Fluid-structure interaction analysis of parachute finite mass inflation.Int.J.Aerosp.Eng.28,1438727(2016)

    16.Gao,X.,Zhang,Q.,Tang,Q.:Numerical modelling of Mars supersonic disk-gap-band parachute inflation.Adv.Space Res.57,2259–2272(2016)

    17.Desabrais,K.J.:Velocity field measurements in the near wake of a parachute canopy.[Ph.D.thesis],Mechanical Engineering Department,Worcester Polytechnic Institute,Worcester,MA,USA(2002)

    18.Wernet,M.P.,Locke,R.J.,Wroblewski,A.:Application of stereo PIV on a supersonic parachute model.In:47th AIAA Aerospace Sciences Meeting,AIAA 2007-0070,Jan 5–8(2007)

    19.Schairer,E.T.,Heineck,J.T.,Walker,L.A.,et al.:Simultaneous,unsteady PIV and photogrammetry measurements of a tensioncone decelerator in subsonic flow.In:15th International Sympo-sium on Applications of Laser Techniques to Fluid Mechanics,Lisbon,Portugal,July 5–8(2010)

    20.Sengupta,A.,Longmire,E.,Ryan,M.,et al.:Performance of a conical ribbon drogue parachute in the wake of a subscale Orion command module.In:Aerospace Conference,2012 IEEE,Big Sky,MT,Mar 3–10(2012)

    21.Jin,Z.,Pasqualini,S.,Qin,B.:Experimental investigation of the effect of Reynolds number on the flow structures in the wake of a circular parachute canopy.Acta Mech.Sin.30,361–369(2014)

    22.Jin,Z.,Pasqualini,S.,Yang,Z.:Experimental investigation of the flow structures in the wake of a cross parachute canopy.Euro.J.Mech.B Fluids 60,70–81(2016)

    中文字幕av电影在线播放| av在线播放免费不卡| 男女床上黄色一级片免费看| 国产精品 国内视频| aaaaa片日本免费| 色视频在线一区二区三区| 色婷婷久久久亚洲欧美| 免费少妇av软件| 亚洲av日韩精品久久久久久密| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 久久久精品区二区三区| 欧美黄色片欧美黄色片| 久久精品成人免费网站| 伦理电影免费视频| 欧美人与性动交α欧美软件| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 精品一区二区三区四区五区乱码| 亚洲精品久久午夜乱码| 国产无遮挡羞羞视频在线观看| 国产av一区二区精品久久| 欧美日韩中文字幕国产精品一区二区三区 | 女人久久www免费人成看片| 一本一本久久a久久精品综合妖精| 国产一区二区三区综合在线观看| 国产精品一区二区在线观看99| 99精国产麻豆久久婷婷| 久久人妻熟女aⅴ| 久久99一区二区三区| 久久免费观看电影| 国产色视频综合| 桃红色精品国产亚洲av| 欧美另类亚洲清纯唯美| 97人妻天天添夜夜摸| 亚洲第一av免费看| 国产一区二区三区在线臀色熟女 | 亚洲美女黄片视频| 国产视频一区二区在线看| 久久精品亚洲精品国产色婷小说| 精品午夜福利视频在线观看一区 | 国产成人免费无遮挡视频| 啦啦啦中文免费视频观看日本| 天堂8中文在线网| 国产精品电影一区二区三区 | 一本大道久久a久久精品| 成人永久免费在线观看视频 | 中文字幕人妻丝袜制服| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| 一本久久精品| 亚洲成人免费av在线播放| 91成年电影在线观看| 国产极品粉嫩免费观看在线| 一级毛片女人18水好多| 久久久久久久国产电影| 大香蕉久久网| 99香蕉大伊视频| 人人妻人人添人人爽欧美一区卜| 老熟妇仑乱视频hdxx| 亚洲成av片中文字幕在线观看| tocl精华| 成人精品一区二区免费| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 色婷婷av一区二区三区视频| 又黄又粗又硬又大视频| 国产高清激情床上av| cao死你这个sao货| 久久久精品94久久精品| 国产精品免费视频内射| 高清视频免费观看一区二区| 一区在线观看完整版| 看免费av毛片| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 老司机亚洲免费影院| 国产在线观看jvid| 国产成人精品无人区| 老司机福利观看| www日本在线高清视频| 亚洲第一av免费看| 一区二区三区精品91| 国产一区二区 视频在线| 老汉色∧v一级毛片| www.999成人在线观看| 免费人妻精品一区二区三区视频| 免费在线观看日本一区| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲 | 夜夜骑夜夜射夜夜干| 一个人免费看片子| 日本a在线网址| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 欧美日本中文国产一区发布| 大香蕉久久成人网| av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 亚洲熟女精品中文字幕| 热re99久久国产66热| av线在线观看网站| 男女之事视频高清在线观看| 精品欧美一区二区三区在线| 亚洲成人免费电影在线观看| 色94色欧美一区二区| 免费不卡黄色视频| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 日韩人妻精品一区2区三区| 男女床上黄色一级片免费看| 超色免费av| 怎么达到女性高潮| 精品亚洲成国产av| 中国美女看黄片| 最近最新中文字幕大全电影3 | 亚洲精品在线美女| 99精品欧美一区二区三区四区| 麻豆国产av国片精品| 国产1区2区3区精品| 99久久人妻综合| 精品国产乱码久久久久久男人| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 国产主播在线观看一区二区| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 精品一品国产午夜福利视频| 一区二区三区精品91| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕| 色播在线永久视频| 两个人免费观看高清视频| 桃红色精品国产亚洲av| 一区二区三区乱码不卡18| 99re在线观看精品视频| 免费观看a级毛片全部| 色综合婷婷激情| 三上悠亚av全集在线观看| 亚洲专区中文字幕在线| 可以免费在线观看a视频的电影网站| 日本vs欧美在线观看视频| svipshipincom国产片| 9191精品国产免费久久| 飞空精品影院首页| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 成人国产av品久久久| 午夜精品国产一区二区电影| 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 女警被强在线播放| 人人妻人人添人人爽欧美一区卜| 一级a爱视频在线免费观看| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| 精品熟女少妇八av免费久了| 国产成人啪精品午夜网站| 亚洲专区字幕在线| 日本五十路高清| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| 黄片播放在线免费| 色老头精品视频在线观看| 成人国产一区最新在线观看| 国产91精品成人一区二区三区 | 久久久精品94久久精品| 国产男女内射视频| 国产亚洲欧美精品永久| 一本—道久久a久久精品蜜桃钙片| 三级毛片av免费| 操出白浆在线播放| 午夜精品久久久久久毛片777| 一区二区三区精品91| 99riav亚洲国产免费| 亚洲av国产av综合av卡| 色精品久久人妻99蜜桃| 69av精品久久久久久 | 大片免费播放器 马上看| 在线观看免费高清a一片| 一级毛片精品| 国产精品电影一区二区三区 | 91老司机精品| 欧美久久黑人一区二区| 国产高清videossex| 日韩中文字幕视频在线看片| 成人国语在线视频| 日日爽夜夜爽网站| 精品国产亚洲在线| 免费看a级黄色片| 亚洲av美国av| 精品一品国产午夜福利视频| 啦啦啦 在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 国产日韩一区二区三区精品不卡| 免费在线观看视频国产中文字幕亚洲| 国产精品98久久久久久宅男小说| 精品一区二区三卡| 精品免费久久久久久久清纯 | 日韩一卡2卡3卡4卡2021年| 亚洲综合色网址| 中文字幕av电影在线播放| 成年人午夜在线观看视频| 侵犯人妻中文字幕一二三四区| 狠狠精品人妻久久久久久综合| 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 露出奶头的视频| 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播| 电影成人av| 真人做人爱边吃奶动态| 欧美午夜高清在线| 久久毛片免费看一区二区三区| 嫁个100分男人电影在线观看| 亚洲午夜理论影院| 99国产精品免费福利视频| 欧美黄色淫秽网站| 日本黄色视频三级网站网址 | 一本色道久久久久久精品综合| 午夜两性在线视频| 亚洲国产精品一区二区三区在线| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 成年人午夜在线观看视频| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 一夜夜www| 伦理电影免费视频| 精品国产一区二区三区四区第35| 国产国语露脸激情在线看| 亚洲精品一卡2卡三卡4卡5卡| 女人久久www免费人成看片| 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 日韩人妻精品一区2区三区| 色播在线永久视频| 中文字幕人妻丝袜一区二区| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 久久免费观看电影| 色播在线永久视频| 亚洲久久久国产精品| 精品欧美一区二区三区在线| av天堂在线播放| 超色免费av| 成人永久免费在线观看视频 | 天堂8中文在线网| 久久国产精品男人的天堂亚洲| 超色免费av| 午夜日韩欧美国产| 国产精品免费一区二区三区在线 | 法律面前人人平等表现在哪些方面| 12—13女人毛片做爰片一| 交换朋友夫妻互换小说| 免费一级毛片在线播放高清视频 | 十分钟在线观看高清视频www| 热re99久久精品国产66热6| 在线看a的网站| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 亚洲av国产av综合av卡| 欧美日韩av久久| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人 | 欧美激情极品国产一区二区三区| av天堂久久9| tube8黄色片| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 18禁美女被吸乳视频| 少妇猛男粗大的猛烈进出视频| 欧美午夜高清在线| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 老司机午夜十八禁免费视频| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 啪啪无遮挡十八禁网站| 757午夜福利合集在线观看| 91成年电影在线观看| 91老司机精品| 欧美激情 高清一区二区三区| 大片电影免费在线观看免费| 日韩成人在线观看一区二区三区| aaaaa片日本免费| 成人av一区二区三区在线看| 香蕉国产在线看| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 香蕉久久夜色| 久久中文字幕人妻熟女| 久久精品国产综合久久久| 男女床上黄色一级片免费看| 国产一区二区 视频在线| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 交换朋友夫妻互换小说| 国产精品国产高清国产av | aaaaa片日本免费| 午夜精品国产一区二区电影| 国产精品美女特级片免费视频播放器 | 日本黄色日本黄色录像| 脱女人内裤的视频| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 国产精品免费一区二区三区在线 | 一级毛片女人18水好多| 99国产精品免费福利视频| 国产精品久久电影中文字幕 | 1024香蕉在线观看| 最新美女视频免费是黄的| 国产主播在线观看一区二区| www.精华液| 精品一区二区三卡| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 免费少妇av软件| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 99久久人妻综合| 18禁黄网站禁片午夜丰满| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 丁香六月天网| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 波多野结衣一区麻豆| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 在线观看66精品国产| 男女下面插进去视频免费观看| 免费在线观看视频国产中文字幕亚洲| 国产免费福利视频在线观看| 老司机深夜福利视频在线观看| 99精国产麻豆久久婷婷| 女人爽到高潮嗷嗷叫在线视频| 色94色欧美一区二区| 精品高清国产在线一区| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 久久久国产精品麻豆| 国产av国产精品国产| 国产在线视频一区二区| 国产1区2区3区精品| 国产亚洲欧美在线一区二区| 丁香六月欧美| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 国产有黄有色有爽视频| 亚洲va日本ⅴa欧美va伊人久久| 19禁男女啪啪无遮挡网站| 国产精品免费大片| 国产无遮挡羞羞视频在线观看| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女 | 午夜福利乱码中文字幕| 色精品久久人妻99蜜桃| 黄片播放在线免费| 韩国精品一区二区三区| 国产免费福利视频在线观看| 成人三级做爰电影| 在线观看免费视频日本深夜| 人妻一区二区av| 国产区一区二久久| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 多毛熟女@视频| 999久久久精品免费观看国产| 亚洲,欧美精品.| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 自线自在国产av| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 精品一区二区三区视频在线观看免费 | 午夜福利影视在线免费观看| av有码第一页| av又黄又爽大尺度在线免费看| 黄色成人免费大全| 国产精品香港三级国产av潘金莲| 久久中文字幕人妻熟女| 精品国内亚洲2022精品成人 | 99九九在线精品视频| 亚洲男人天堂网一区| 久久这里只有精品19| 丝袜在线中文字幕| 欧美一级毛片孕妇| 99九九在线精品视频| 一区二区日韩欧美中文字幕| 日本av免费视频播放| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 色综合婷婷激情| 国产又爽黄色视频| 精品久久久久久电影网| 一二三四在线观看免费中文在| 成人免费观看视频高清| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 一区二区av电影网| 成年版毛片免费区| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 大陆偷拍与自拍| 黄片播放在线免费| 国产亚洲精品第一综合不卡| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 在线看a的网站| 精品一区二区三区av网在线观看 | 日韩视频在线欧美| 高清毛片免费观看视频网站 | 12—13女人毛片做爰片一| 男女免费视频国产| av一本久久久久| 一个人免费看片子| 中文欧美无线码| 人人澡人人妻人| 两个人免费观看高清视频| 午夜老司机福利片| 一级a爱视频在线免费观看| 久久中文看片网| 无人区码免费观看不卡 | 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 国产精品国产高清国产av | 天堂中文最新版在线下载| 一级毛片女人18水好多| 国产精品二区激情视频| 久久久久视频综合| 日韩成人在线观看一区二区三区| 欧美成狂野欧美在线观看| 久久国产精品影院| 午夜福利免费观看在线| 制服人妻中文乱码| 亚洲第一av免费看| 精品福利永久在线观看| 久久精品亚洲精品国产色婷小说| 免费在线观看完整版高清| www.精华液| 韩国精品一区二区三区| 亚洲av欧美aⅴ国产| 我的亚洲天堂| 91成人精品电影| 高清毛片免费观看视频网站 | 水蜜桃什么品种好| 捣出白浆h1v1| 国产人伦9x9x在线观看| 精品人妻1区二区| 一区二区三区精品91| 成人永久免费在线观看视频 | av又黄又爽大尺度在线免费看| 不卡av一区二区三区| 亚洲人成77777在线视频| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频日本深夜| a在线观看视频网站| www日本在线高清视频| 国产成人精品久久二区二区91| 一级毛片精品| 亚洲熟妇熟女久久| 国产亚洲午夜精品一区二区久久| h视频一区二区三区| 国产色视频综合| 成年人午夜在线观看视频| 91成年电影在线观看| 高清av免费在线| 免费黄频网站在线观看国产| 日韩有码中文字幕| 免费在线观看影片大全网站| 亚洲精品中文字幕一二三四区 | 不卡一级毛片| av超薄肉色丝袜交足视频| 黄色毛片三级朝国网站| 男女无遮挡免费网站观看| 日本一区二区免费在线视频| 变态另类成人亚洲欧美熟女 | 人妻一区二区av| 久久午夜亚洲精品久久| 亚洲欧美日韩另类电影网站| 成年女人毛片免费观看观看9 | 一进一出抽搐动态| 又紧又爽又黄一区二区| 狠狠婷婷综合久久久久久88av| 我的亚洲天堂| 亚洲久久久国产精品| 国产高清videossex| 黄片小视频在线播放| 亚洲免费av在线视频| 男女午夜视频在线观看| 欧美日韩成人在线一区二区| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 91麻豆av在线| 丝袜喷水一区| 91麻豆av在线| 男女午夜视频在线观看| 成年女人毛片免费观看观看9 | 大片免费播放器 马上看| 国产真人三级小视频在线观看| www.精华液| 精品国产一区二区三区四区第35| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 国产不卡一卡二| 成人国语在线视频| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 无遮挡黄片免费观看| 国产成人一区二区三区免费视频网站| 超碰97精品在线观看| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 精品久久久久久久毛片微露脸| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区| 91老司机精品| 成人免费观看视频高清| 黄色a级毛片大全视频| 女人久久www免费人成看片| 国产99久久九九免费精品| 午夜福利在线免费观看网站| 啦啦啦中文免费视频观看日本| 90打野战视频偷拍视频| 久久99热这里只频精品6学生| 午夜福利免费观看在线| 亚洲成人手机| 精品免费久久久久久久清纯 | 夫妻午夜视频| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 热99久久久久精品小说推荐| av又黄又爽大尺度在线免费看| 国产免费av片在线观看野外av| 国产一区二区在线观看av| 乱人伦中国视频| 日韩有码中文字幕| 男女午夜视频在线观看| 日韩大片免费观看网站| 亚洲精品久久成人aⅴ小说| 成年女人毛片免费观看观看9 | 又紧又爽又黄一区二区| 老鸭窝网址在线观看| 国产精品亚洲一级av第二区| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| videos熟女内射| 三级毛片av免费| 精品视频人人做人人爽| 大片电影免费在线观看免费| 18禁国产床啪视频网站| 亚洲国产中文字幕在线视频| av在线播放免费不卡| av片东京热男人的天堂| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 一本一本久久a久久精品综合妖精| 成人影院久久| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 视频在线观看一区二区三区| 99国产精品一区二区三区| 夜夜爽天天搞| 变态另类成人亚洲欧美熟女 | 亚洲av第一区精品v没综合| 一区二区三区乱码不卡18|