• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and validation of InDel markers for identification of QTL underlying flowering time in soybean

    2018-04-12 03:33:50JilinWngLingpingKongKnchoYuFenggeZhngXinyiShiYnpingWngHiyngNnXiohuiZhoSijiLuDongCoXiomingLiChoFngFeifeiWngTongSuShichenLiXiohuiYunBohuiLiuFnjingKong
    The Crop Journal 2018年2期
    關(guān)鍵詞:冬令潛藏陽氣

    Jilin Wng,Lingping Kong,Kncho Yu,Fengge Zhng,Xinyi Shi,Ynping Wng,Hiyng Nn,Xiohui Zho,b,Siji Lu,b,Dong Co,Xioming Li,e,Cho Fng,e,Feifei Wng,e,Tong Su,e,Shichen Li,e,Xiohui Yun,*,Bohui Liu,b,**,Fnjing Kong,b,**

    a The Key Laboratory of Soybean Molecular Design Breeding,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Harbin 150081,Heilongjiang,China

    b School of Life Sciences,Guangzhou University,Guangzhou 510006,Guangdong,China

    c Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences,Qiqihar 161006,Heilongjiang,China

    d Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences,Mudanjiang 157041,Heilongjiang,China

    e University of Chinese Academy of Sciences,Beijing 100049,China

    f College of Agriculture,Northeast Agricultural University,Harbin 150030,Heilongjiang,China

    1.Introduction

    A functional gene can be identified via forward and reverse genetics strategies[7,8].Positional cloning is widely used as a forward genetics approach to isolate genes in different organisms[9],and its utility can be fully exploited in modern molecular plant breeding systems,such as corn and soybean,when markers linked to genes of interest are discovered[10].The principle of positional cloning is to systematically narrow down the genetic interval containing a causal mutation by sequentially excluding all other regions in the genome[11].All rely on the development of highly dense genetic markers that are polymorphic between the accessions used for generating the mapping population(s)to provide adequate mapping resolution.This dependence is a major limiting factor for the rate of mapping progress.

    With the decreasing cost of next-generation sequencing,there have been several proposals to exploit single-nucleotide polymorphisms(SNPs)and Insertion/Deletions(InDels)for genetic mapping with high-density markers.In contrast to SNPs,InDel polymorphisms,another form of natural genetic variation,have received relatively little attention.Mechanisms such as transposable elements,slippage in simple sequence replication,and unequal crossover events can result in the formation of InDels[12].They can be converted to a user-friendly marker type,show high variation and codominant inheritance,and are relatively abundant and uniformly distributed throughout the genome[13,14].InDel markers are PCR-based and readily genotyped by fragment length polymorphism with minimal laboratory equipment.Recently InDel markers have been widely applied for genotyping,genetic diversity analysis,QTL mapping,map-based cloning,and even marker-assisted selection in Arabidopsis,rice,wheat,turnip,sunflower,pepper,sesame,cotton,and citrus[14–27].However,InDel markers have seldom been identified and used in soybean.A recent study used 73,327 InDels in six soybean cultivars to build a soybean barcode system for comparing data from different sources[28].In another study,165 validated InDel markers were used to develop an InDel-based linkage map for a mapping population between Hedou 12 and Williams 82[29].By exploiting the reference genome sequence of soybean and the large amount of intensive resequencing data available in public databases[30–35],it is now possible to detect genome-wide InDel polymorphisms amongst different accessions using whole-genome resequencing to guide rapid and efficient development of InDel markers for high-resolution genetic analysis.

    In this study,we attempted to develop InDel markers using genomic resequencing data using a series of bioinformatic approaches.In total,these methods yielded 12,619 new markers that were variously polymorphic amongst 56 soybean accessions.An InDel-based genetic map of soybean was constructed with 300 polymorphic InDel markers.QTL analysis was performed to identify genomic regions associated with flowering time.One major QTL(qDTF4)was identified in 2015 and confirmed in 2016.The InDel markers,genetic map,and QTL identified in this study will lay a foundation for the genetic/QTL analysis and isolation of genes underlying variation in flowering time and provide useful information for MAS breeding in soybean.

    2.Materials and methods

    2.1.Plant materials and trait evaluation

    The F7:8seeds for the mapping populations were grown in walk-in plant growth chambers at 22°C,65%relative humidity,and long-day(LD)photoperiod(16 h light/8 h dark)in October 2015 and in the field in Harbin(45°43′N,126°45′E)and Mudanjiang(44°36′N,129°35′E),China in May 2016.

    Days to flowering were recorded at the R1 stage(days from emergence to first open flower appearing on 50%of plants).For chamber experiments,seeds from each line were sown in pots.After germination,the seedlings were thinned until each pot contained five uniform plants.Populations were sown in the field with a single seed every 20 cM in 5-m rows spaced 60 cM apart and 25 seeds per line.All trials received standard cultural practices to control insects and weeds.

    2.2.Mapping populations and sequence data sets

    The BA population,derived from a cross between Mufu12-604×HB-2 and consisting of 156 F2genotypes,was used to test the newly developed markers and construct a high-density InDel linkage map.The DW population(144 RILs),derived from a cross between Dongnong 50(early-flowering in LD photoperiod)and Williams 82(late-flowering in LD photoperiod),was used to evaluate the InDel markers for QTL mapping.

    Fifty six accessions,including 29 from three recent research papers and 27 from this study,were used for InDel polymorphism validation(Table 1).Young leaves from 27 accessions were collected three weeks after planting in growth chambers and separately quick-frozen in liquid nitrogen.Total DNA was extracted by the improved cetyltrimethylammonium bromide(CTAB)method[36].A sequencing library was constructed with at least 6 μg of genomic DNA following the manufacturer's instructions(Illumina Inc.,San Diego,CA).Paired-end sequencing libraries with an insert size of approximately 500 bp were sequenced on an Illumina HiSeq 2000 sequencer.

    Table 1–Soybean accessions used in the study.

    2.3.InDel detection and marker development

    The process used to detect InDel sites involved three steps.(i)Alignment of paired-end (PE) short reads. BWA(Burrows-Wheeler Aligner)software[37]was used to align paired reads to the reference genome with default parameters and Picard(http://broadinstitute.github.io/picard/)to mark duplicate reads.(ii)Detection of InDels.Five software tools:Samtools[38],GATK Unique Genotyper[39],Varscan[40],Pindel[41],and Soapindel[42],were used to identify InDels 5–50 bp in length.(iii)Optimization of InDels.A support vector machine(SVM)filter was trained on simulated data using a library for support vector machines(LIBSVM)[43]and the InDels were filtered with the SVM filter.The InDels with high polymorphism(MAF>0.4)among 56 individuals were chosen as molecular markers.

    此時(shí)養(yǎng)生應(yīng)遵循陽氣潛藏的規(guī)律,以“養(yǎng)藏”為根本,適當(dāng)進(jìn)補(bǔ),所謂“立冬補(bǔ)一冬”。冬令進(jìn)補(bǔ),要注意一個(gè)“藏”字,達(dá)到斂陰護(hù)陽、養(yǎng)精蓄銳的目的。冬補(bǔ)以燉補(bǔ)為佳,燉補(bǔ)制作時(shí)間長,有利于營養(yǎng)消化吸

    Primer 3 software[44]was employed to identify primers for each InDel site with the following parameters:predicted products ranged from 100 to 300 bp;the length of primers was limited to 18–24 bp with an optimum size of 20 bp;the annealing temperature was restricted to 57–62 °C;the GC content was set to 35%,50%,and 65%as the minimum,optimum,and maximum,respectively.Only primers with one hit in the genome assembly were retained.

    2.4.Nomenclature

    In order to provide the user with valuable information on marker distribution,the markers were named using the format IDNNXXXX,where ID represents InDel,NN the chromosome number(01–20),and the Xs the ordered number of each marker on its chromosome.For example,InDel marker ID06006 is the sixth marker on chromosome Gm06.

    2.5.Screening and genotyping of InDel markers

    Total genomic DNA was extracted from young leaves or seed flour of individual samples using the improved CTAB method.PCR amplification was performed in a 10 μL reaction consisting of a final concentration of 1×Easy Taq PCR SuperMix for PAGE(TransBionovo Co.,Ltd.,Beijing,China),0.2 μmol L?1forward/reverse primers,and approximately 30–50 ng of genomic DNA as a template.The amplification protocol comprised an initial denaturation for 2 min at 94°C,35 cycles of denaturation for 30 s at 94°C,annealing for 30 s at 56 °C,and extension for 30 s at 72 °C,followed by a final extension for 5 min at 72°C.PCR products were resolved by 12%SDS-polyacrylamide gel electrophoresis.The gels were stained with ethidium bromide,and the bands were visualized and photographed under ultraviolet light.

    2.6.Construction of a linkage map and QTL analysis of flowering time

    The F2population,BA,was used to evaluate the utility of InDel makers for mapping.JoinMap 4.0[45]was used to build the genetic map with 347 markers that were polymorphic between the two parents.The groups and orders of segregated markers were determined on the basis of an LOD(logarithm of the odds ratio for linkage)score of≥7.0 and a minimum LOD score of 1.0,with the threshold of 0.4 in each LG.Markers were tested for deviation from expected Mendelian segregation using a chi-squared test and sorted on the basis of the test(P<0.05).Both inclusive composite interval mapping(ICIM)and multiple-QTL mapping(MQM)were initially applied to detect QTL(LOD>2.0)for flowering time,using QTL IciMapping 4.0[46]and MapQTL 5[47],respectively.

    3.Results

    3.1.InDel identification and marker development in 56 soybean accessions

    Many accurate strategies with corresponding cost and throughput have been developed to detect SNPs as new polymorphic markers for the success of a map-based cloning project.However,detecting InDels is a more challenging task and requires substantial bioinformatic analysis.Several factors affect the discovery of InDels.The phylogenetic relationship between the genotypes used for InDel discovery is important.In this study,based on the alignment of the sequencing reads to a reference genome,17,613 InDel sites were identified among 56 soybean accessions including nine wild soybeans,four landraces,and 43 cultivars from many countries(Table 1).

    The InDel sites were filtered by size and those with a size of 5–50 bp were retained.In total,12,619 primer pairs were obtained with a dense distribution across each of the 20 soybean chromosomes(Table S1).The frequency of InDel markers varied across the chromosomes,falling within the range of approximately 275–1207 markers per chromosome(Table 2).Based on this distribution of InDel markers,it was possible to construct high-density genetic maps and select InDels within specific regions for fine mapping.

    To evaluate the performance of the InDel markers,1000 random markers were tested by PCR with Williams 82 as the template.A total of 930 markers(93%)generated single and clear bands as expected,and only 70 markers(7%)either yielded no amplification product or were difficult to score.We next examined the distribution of the 12,619 InDels relative to genes of soybean and found that 429(3.4%)were located within the exons of annotated genes,where gene function may be expected to be influenced.Of these,135(1.1%)were non-3-nucleotide InDels,which were predicted to cause frameshift mutations.This finding indicates that the developed InDel markers are useful for identifying the genetic composition of soybean and provide a valuable source of allelic diversity for genetic and molecular dissection of traits.

    3.2.Genetic map construction

    The developed InDel markers should be useful for genetic map construction because there are on average about 630 markers on each chromosome.We used a F2mapping population to illustrate their application to linkage analysis.The F2population consisted of 156 progeny derived from the cross Mufu 12-604×HB-2,which were not included in the 56 soybean accessions.A random subset of 2841 primer pairs were chosen to identify polymorphism between the parental lines,and 347(12.21%)polymorphic markers were validated.This finding shows that these InDel markers have universal applicability of performance and application,and can be expanded to all soybean germplasm,although these InDel markers were designed to capture the variation within 56 soybean accessions.

    A total of 347 polymorphic markers were scored in the genotype analysis of 156 progeny in the BA F2population,with each primer pair yielding polymorphic bands at a single locus.After exclusion of 47 unlinked markers,300 marker loci were grouped into 20 LGs,which matched the 20 consensus LGs.Finally,a genetic map(Fig.1),designated as the BA map,was constructed with 20 LGs covering a total genetic distance of 2347.30 cM with an average density of one marker for every 7.82 cM(Table 2).The number of mapped markers per LG ranged from 10(H and D2)to 23(A2)with an average of 15 markers.The largest and smallest genetic distances between adjacent markers were 52.3 cM and 0.1 cM,respectively.Because of low marker density(Fig.2)and infrequent recombination compared with distal regions,our map did not cover all centromeric blocks,resulting in coverage of only a portion of some chromosomes(N,C2,M,O,H,and F)or of two clusters of markers,one from each arm(K and B1)in the F2mapping study.Six marker orders(N,A1,M,B2,and E)in our genetic map that were in conflict with the physical map could be due to sequence assembly errors,inversions,and segregation distortion.

    Table 2–Statistics of the BA map based on InDel markers.

    3.3.QTL analysis of flowering time

    The DW population(144 RILs)originated from a cross between the Chinese cultivar Dongnong 50 and the American cultivar Williams 82 and was used to evaluate the InDelmarkers for QTL mapping.The F7:8seeds were grown in walk-in plant growth chambers in October 2015.A total of 4 QTL,including one major(qDTF4)and three minor QTL(qDTF20,qDTF13,and qDTF12),were detected on four chromosomes using either ICIM or MQM.These QTL explained from 6.0%to 11.3%of phenotypic variation(PEV),with LOD scores ranging from 2.09 to 2.93(Table 3).

    To confirm the QTL results,the F7:9seeds were grown in the field in Harbin and Mudanjiang on May 2016.The major QTL,which was assumed to be identical to qDTF4,was repeatedly identified by both ICIM and MQM in two environments.This result showed that the effect of qDTF4 was little affected by the environment and was consistent with the characterization of high heritability of flowering time.In addition,another minor QTL(qDTF11)was mapped on chromosome 11,and explained 6.5%and 9.4%of the phenotypic variation,with LOD scores 2.58 and 3.31,by ICIM and MQM,respectively(Table 3).

    4.Discussion

    Genetic diversity in soybean as in other crops has decreased during domestication and improvement[35].The phylogenetic relationship between the genotypes used for InDel discovery is important.In this study,we collected 56 soybean accessions from several regions around the world,including nine wild soybeans,four landraces,and 43 cultivars.The germplasm from wild soybeans and landraces would therefore be useful in broadening the genetic basis and the detection of InDels.This report presents an optimized algorithm with no special requirements for the number of accessions and InDel detection software tools.Additional software can be added to this InDel detection procedure to further improve the performance of the proposed algorithms.

    Fig.1–Genetic linkage map of soybean constructed with InDel markers.Genetic positions and marker names are indicated on the left and right side of each chromosome,respectively.

    InDels identification has become routine with the abundance of next-generation sequence data.The InDel markers developed in this study could be widely used in genotyping with minimum lab equipment and PCR options.The potential utility of InDel markers in multiplex PCR could reduce the cost of genotyping by reducing the quantity of reagents and DNA in PCR reactions.Furthermore,this strategy is efficient when hundreds of markers are screened but DNA availability is limited.Our InDel markers closely match many of the criteria for multiplex PCR.The critical parameters of the primers in multiplex PCR should be 18–34 bp or more in length,GC content of 35%–60%,and annealing at 55–58 °C.In addition,the primer length should be up to 28–30 bp and the annealing temperature should be increased for reducing non-specific PCR products.However,owing to the finite polymerase and DNA resources,many specific loci strongly suppress non-specific amplification.Thus,54°C is the appropriate temperature for amplifying multiple loci at the same time[48].All primers reported here were designed with a length of 18–24 bp and GC content of 35%–65%and were amplified at 56 °C,indicating the potential utility of these markers for multiplex PCR.

    Mapping QTL requires a genetic map covered with a high density of polymorphic markers.However,although reduction in the cost of next-generation sequencing technologies will allow the sequencing of numerous soybean accessions,the specialized expertise and the skilled applications of bioinformatics analysis will become a rate-limiting step in uncovering the molecular basis of natural variation.To avoid map-based cloning,a tedious task beset with complications,several recent papers have reported workflows for next-generation sequencing-based strategies for mutation mapping.The approach we advocate here is using resequenced genomes to rapidly facilitate InDel marker design for application to conventional mapping.Interestingly,Dongnong 50 and Williams 82 carry the same genotype(e1-as/E3/E4)for known major maturity loci,but a large difference of 30 days in R1 between the two cultivars was observed under long-day conditions.Thus,some new genes may be involved in control of flowering time and be strongly associated with photoperiod response.The main-effect QTL(qDTF4)was located in the same region as the E8 locus[49,50]and contained candidate genes E1-like-a and E1-like-b,two E1 homologs,which function similarly to E1 in adjusting flowering time in soybean[51].The frequencies of InDel markers developed in this study varied over chromosomes,falling within the range of 275–1207 markers per chromosome,indicating that it was possible to construct high-density genetic maps and select InDels within specific regions for fine mapping.

    Fig.2–Physical distribution of 12,619 InDel markers across 20 chromosomes of soybean.The x axis shows the chromosome length in Mbp and the y axis the frequency of InDel markers.

    Table 3–QTL of flowering time identified by two mapping methods.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.08.001.

    This work was supported by National Natural Science Foundation of China(31430065,31571686,31371643,31071445),National Key Research and Development Program(2016YFD0100401),“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA08030108),the Open Foundation of the Key Laboratory of Soybean Molecular Design Breeding of Chinese Academy of Sciences,“One-hundred Talents”Startup Funds from Chinese Academy of Sciences,Scientific Research Foundation for Returned Chinese Scholars of Heilongjiang Province,China(LC201417),and the Science Foundation for Creative Research Talents of Harbin Science and Technology Bureau,China(2014RFQYJ046).

    [1]R.G.Palmer,T.C.Kilen,Qualitative genetics and cytogenetics,in:J.R.Wilcox(Ed.),Soybeans:Improvement,Production,and Uses,Agronomy Monographs,2nd Edition,No.16,American Society of Agronomy,Crop Science Society of America,Soil Science Society of America, Madison, Wisconsin, USA 1987,pp.135–209.

    [2]P.Keim,B.W.Diers,T.C.Olson,R.C.Shoemaker,RELP mapping in soybean:association between marker loci and variation in quantitative traits,Genetics 126(1990)735–742.

    [3]J.G.K.Williams,A.R.Kubelik,K.J.Livak,J.A.Rafalski,S.V.Tingey,DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,Nucleic Acids Res.18(1990)6531–6535.

    [4]M.S.Akkaya,A.A.Bhagwat,P.B.Cregan,Length polymorphisms of simple sequence repeat DNA in soybean,Genetics 132(1992)1131–1139.

    [5]M.S.Akkaya,R.C.Shoemaker,J.E.Specht,A.A.Bhagwat,P.B.Cregan,Integration of simple sequence repeat DNA markers into a soybean linkage map,Crop Sci.35(1995)1439–1445.

    [6]Q.J.Song,G.F.Jia,Y.L.Zhu,D.Grant,R.T.Nelson,E.Y.Hwang,D.L.Hyten,P.B.Cregan,Abundance of SSR motifs and development of candidate polymorphic SSR markers(BARCSOYSSR_1.0)in soybean,Crop Sci.50(2010)1950–1960.

    [7]J.M.Alonso,J.R.Ecker,Moving forward in reverse:genetic technologies to enable genome-wide phenomic screens in Arabidopsis,Nat.Rev.Genet.7(2006)524–536.

    [8]C.Alonso-Blanco,M.G.Aarts,L.Bentsink,J.J.Keurentjes,M.Reymond,D.Vreugdenhil,M.Koornneef,What has natural variation taught us about plant development,physiology,and adaptation?Plant Cell 21(2009)1877–1896.

    [9]X.F.Chi,X.Y.Lou,Q.Y.Shu,Progressive fine mapping in experimental populations:an improved strategy toward positional cloning,J.Theor.Biol.253(2008)817–823.

    [10]H.A,Yang,Y.Tao,Z.Q.Zheng,C.D.Li,M.W.Sweetingham,J.G.Howieson,Application of next-generation sequencing for rapid marker development in molecular plant breeding:a case study on anthracnose disease resistance in Lupinus angustifolius L,BMC Genomics 13(2012)318.

    [11]W.Lukowitz,C.S.Gillmor,W.R.Scheible,Positional cloning in Arabidopsis.Why it feels good to have a genome initiative working for you,Plant Physiol.123(2000)795–805.

    [12]R.J.Britten,L.Rowen,J.Williams,R.A.Cameron,Majority of divergence between closely related DNA samples is due to indels,Proc.Natl.Acad.Sci.U.S.A.100(2003)4661–4665.

    [13]R.E.Mills,C.T.Luttig,C.E.Larkins,A.Beauchamp,C.Tsui,W.S.Pittard,S.E.Devine,An initial map of insertion and deletion(INDEL)variation in the human genome,Genome Res.16(2006)1182–1190.

    [14]D.I.Pacurar,M.L.Pacurar,N.Street,J.D.Bussell,T.I.Pop,L.Gutierrez,C.Bellini,A collection of INDEL markers for mapbased cloning in seven Arabidopsis accessions,J.Exp.Bot.63(2012)2491–2501.

    [15]X.Hou,L.Li,Z.Peng,B.Wei,S.Tang,M.Ding,J.Liu,F.Zhang,Y.Zhao,H.Gu,L.J.Qu,A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis,Plant J.63(2010)880–888.

    [16]K.Hayashi,H.Yoshida,I.Ashikawa,Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes,Theor.Appl.Genet.113(2006)251–260.

    [17]P.Liu,X.X.Cai,B.R.Lu,Single-seeded InDel fingerprints in rice:an effective tool for indica-japonica rice classification and evolutionary studies,J.Syst.Evol.50(2012)1–11.

    [18]H.Raman,R.Raman,R.Wood,P.Martin,Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat(Triticum aestivum L.),Mol.Breed.18(2006)171–183.

    [19]B.Liu,Y.Wang,W.Zhai,J.Deng,H.Wang,Y.Cui,F.Cheng,X.W.Wang,J.Wu,Development of InDel markers for Brassica rapa based on whole-genome re-sequencing,Theor.Appl.Genet.126(2013)231–239.

    [20]H.H.Lv,L.M.Yang,J.G.Kang,Q.B.Wang,X.W.Wang,Z.Y.Fang,Y.M.Liu,M.Zhuang,Y.Y.Zhang,Y.Lin,Y.H.Yang,B.Y.Xie,B.Liu,J.S.Liu,Development of InDel markers linked to Fusarium wilt resistance in cabbage,Mol.Breed.32(2013)961–967.

    [21]A.Heesacker,V.K.Kishore,W.X.Gao,S.X.Tang,J.M.Kolkman,A.Gingle,M.Matvienko,A.Kozik,R.M.Michelmore,Z.Lai,L.H.Rieseberg,S.J.Knapp,SSRs and INDELs mined from the sunflower EST database:abundance,polymorphisms,and cross-taxa utility,Theor.Appl.Genet.117(2008)1021–1029.

    [22]S.Tan,J.W.Cheng,L.Zhang,C.Qin,D.G.Nong,W.P.Li,X.Tang,Z.M.Wu,K.L.Hu,Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper(Capsicum spp.),PLoS One 10(2015),e0119389..

    [23]W.P.Li,J.W.Cheng,Z.M.Wu,C.Qin,S.Tan,X.Tang,J.J.Cui,L.Zhang,K.L.Hu,An InDel-based linkage map of hot pepper(Capsicum annuum),Mol.Breed.35(2015)32.

    [24]K.Wu,M.M.Yang,H.Y.Liu,Y.Tao,J.Mei,Y.Z.Zhao,Genetic analysis and molecular characterization of Chinese sesame(Sesamum indicum L.)cultivars using insertion-deletion(InDel)and simple sequence repeat(SSR)markers,BMC Genet.15(2014)35.

    [25]X.M.Li,W.H.Gao,H.L.Guo,X.L.Zhang,D.D.Fang,Z.X.Lin,Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping,BMC Genomics 15(2014)1046.

    [26]F.Ollitrault,J.Terol,A.A.Martin,J.A.Pina,L.Navarro,M.Talon,P.Ollitrault,Development of indel markers from Citrus clementina(Rutaceae)BAC-end sequences and interspecific transferability in Citrus,Am.J.Bot.99(2012)e268–e273.

    [27]A.Garcia-Lor,F.Luro,L.Navarro,P.Ollitrault,Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity:a perspective for genetic association studies,Mol.Gen.Genomics.287(2012)77–94.

    [28]H.B.Sohn,S.J.Kim,T.Y.Hwang,H.M.Park,Y.Y.Lee,K.Markkandan,D.Lee,S.Lee,S.Y.Hong,Y.H.Song,B.C.Koo,Y.H.Kim,Barcode system for genetic identification of soybean[Glycine max(L.)Merrill]cultivars using InDel markers specific to dense variation blocks,Front.Plant Sci.8(2017)520.

    [29]X.F.Song,H.C.Wei,W.Cheng,S.X.Yang,Y.X.Zhao,X.Li,D.Luo,H.Zhang,X.Z.Feng,Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean,G3-Genes Genomes Genet.5(2015)2793–2799.

    [30]J.Schmutz,S.B.Cannon,J.Schlueter,J.X.Ma,T.Mitros,W.Nelson,D.L.Hyten,Q.J.Song,J.J.Thelen,J.L.Cheng,D.Xu,U.Hellsten,G.D.May,Y.Yu,T.Sakurai,T.Umezawa,M.K.Bhattacharyya,D.Sandhu,B.Valliyodan,E.Lindquist,M.Peto,D.Grant,S.Q.Shu,D.Goodstein,K.Barry,M.Futrell-Griggs,B.Abernathy,J.C.Du,Z.X.Tian,L.C.Zhu,N.Gill,T.Joshi,M.Libault,A.Sethuraman,X.C.Zhang,K.Shinozaki,H.T.Nguyen,R.A.Wing,P.Cregan,J.E.Specht,J.Grimwood,D.Rokhsar,G.Stacey,R.C.Shoemaker,S.A.Jackson,Genome sequence of the palaeopolyploid soybean,Nature 463(2010)178–183.

    [31]M.Y.Kim,S.Lee,K.Van,T.H.Kim,S.C.Jeong,I.Y.Choi,D.S.Kim,Y.S.Lee,D.Park,J.Ma,W.Y.Kim,B.C.Kim,S.Park,K.A.Lee,D.H.Kim,K.H.Kim,J.H.Shin,Y.E.Jang,K.D.Kim,W.X.Liu,T.Chaisan,Y.J.Kang,Y.H.Lee,K.H.Kim,J.K.Moon,J.Schmutz,S.A.Jackson,J.Bhak,S.H.Lee,Whole-genome sequencing and intensive analysis of the undomesticated soybean(Glycine soja Sieb.and Zucc.)genome,Proc.Natl.Acad.Sci.U.S.A.107(2010)22032–22037.

    [32]H.M.Lam,X.Xu,X.Liu,W.B.Chen,G.H.Yang,F.L.Wong,M.W.Li,W.M.He,N.Qin,B.Wang,J.Li,M.Jian,J.Wang,G.H.Shao,J.Wang,S.S.Sun,G.Y.Zhang,Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection,Nat.Genet.42(2010)1053–1059.

    [33]Y.H.Kim,H.M.Park,T.Y.Hwang,S.K.Lee,M.S.Choi,S.Jho,S.Hwang,H.M.Kim,D.Lee,B.C.Kim,C.P.Hong,Y.S.Cho,H.Kim,K.H.Jeong,M.J.Seo,H.T.Yun,S.L.Kim,Y.U.Kwon,W.H.Kim,H.K.Chun,S.J.Lim,Y.A.Shin,I.Y.Choi,Y.S.Kim,H.S.Yoon,S.H.Lee,S.Lee,Variation block-based genomics method for crop plants,BMC Genomics 15(2014)477.

    [34]W.H.Chung,N.Jeong,J.Kim,W.K.Lee,Y.G.Lee,S.H.Lee,W.Yoon,J.H.Kim,I.Y.Choi,H.K.Choi,J.K.Moon,N.Kim,S.C.Jeong,Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes,DNA Res.21(2014)153–167.

    [35]Z.K.Zhou,Y.Jiang,Z.Wang,Z.H.Gou,J.Lyu,W.Y.Li,Y.J.Yu,L.P.Shu,Y.J.Zhao,Y.M.Ma,C.Fang,Y.T.Shen,T.F.Liu,C.C.Li,Q.Li,M.Wu,M.Wang,Y.S.Wu,Y.Dong,W.T.Wan,X.Wang,Z.L.Ding,Y.D.Gao,H.Xiang,B.G.Zhu,S.H.Lee,W.Wang,Z.X.Tian,Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean,Nat.Biotechnol.33(2015)408–414.

    [36]M.Murray,W.F.Thompson,Rapid isolation of high molecular weight plant DNA,Nucleic Acids Res.8(1980)4321–4326.

    [37]H.Li,R.Durbin,Fast and accurate short read alignment with Burrows-Wheeler transform,Bioinformatics 25(2009)1754–1760.

    [38]H.Li,A statistical framework for SNP calling,mutation discovery,association mapping and population genetical parameter estimation from sequencing data,Bioinformatics 27(2011)2987–2993.

    [39]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [40]D.C.Koboldt,K.Chen,T.Wylie,D.E.Larson,M.D.McLellan,E.R.Mardis,G.M.Weinstock,R.K.Wilson,L.Ding,VarScan:variant detection in massively parallel sequencing of individual and pooled samples,Bioinformatics 25(2009)2283–2285.

    [41]K.Ye,M.H.Schulz,Q.Long,R.Apweiler,Z.M.Ning,Pindel:a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads,Bioinformatics 25(2009)2865–2871.

    [42]Y.H.Li,S.C.Zhao,J.X.Ma,D.Li,L.Yan,J.Li,X.T.Qi,X.S.Guo,L.Zhang,W.M.He,R.Z.Chang,Q.S.Liang,Y.Guo,C.Ye,X.B.Wang,Y.Tao,R.X.Guan,J.Y.Wang,Y.L.Liu,L.G.Jin,X.Q.Zhang,Z.X.Liu,L.J.Zhang,J.Chen,K.J.Wang,R.Nielsen,R.Q.Li,P.Y.Chen,W.B.Li,J.C.Reif,M.Purugganan,J.Wang,M.C.Zhang,J.Wang,L.J.Qiu,Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing,BMC Genomics 14(2013)579.

    [43]C.C.Chang,C.J.Lin,LIBSVM:a library for support vector machines,ACM Trans.Intell.Syst.Technol.2(2011)27.

    [44]A.Untergasser,I.Cutcutache,T.Koressaar,J.Ye,B.C.Faircloth,M.Remm,S.G.Rozen,Primer3-new capabilities and interfaces,Nucleic Acids Res.40(2012),e115..

    [45]J.W.Van Ooijen,JoinMap4.0,Software for the calculation of genetic linkage maps in experimental populations,Kyazma B.V.,Wageningen,Netherlands,2006.

    [46]H.H.Li,G.Y.Ye,J.K.Wang,A modified algorithm for the improvement of composite interval mapping,Genetics 175(2007)361–374.

    [47]J.W.Van Ooijen,MapQTL 5,Software for the mapping of quantitative trait loci in experimental populations,Kyazma B.V.,Wageningen,Netherlands,2004.

    [48]O.Henegariu,N.A.Heerema,S.R.Dlouhy,G.H.Vance,P.H.Vogt,P.C.R.Multiplex,Critical parameters and step-by-step protocol,BioTechniques 23(1997)504–511.

    [49]E.R.Cober,S.J.Molnar,M.Charette,H.D.Voldeng,A new locus for early maturity in soybean,Crop Sci.50(2010)524–527.

    [50]L.R.Cheng,Y.Wang,C.B.Zhang,C.X.Wu,J.L.Xu,H.Y.Zhu,J.T.Leng,Y.N.Bai,R.X.Guan,W.S.Hou,L.J.Zhang,T.F.Han,Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean,Theor.Appl.Genet.123(2011)421–429.

    [51]M.L.Xu,N.Yamagishi,C.Zhao,R.Takeshima,M.Kasai,S.Watanabe,A.Kanazawa,N.Yoshikawa,B.H.Liu,T.Yamada,J.Abe,The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through downregulation of FLOWERING LOCUS T orthologs,Plant Physiol.168(2015)1735–1746.

    猜你喜歡
    冬令潛藏陽氣
    陽氣,護(hù)佑全身、除痰祛濕!
    中醫(yī)教你冬令如何進(jìn)補(bǔ)
    熱門還是熱鬧?4月加州鱸見漲,但下半年行情潛藏危機(jī)
    陽氣不足該怎么調(diào)理?
    婦女生活(2019年7期)2019-07-16 04:16:19
    Mother's hands
    影 子
    中國詩歌(2018年5期)2018-11-14 20:52:30
    冬令進(jìn)補(bǔ)有膏方
    冬令進(jìn)補(bǔ)藥膳
    手腳冰涼 醋泡生姜
    色播在线永久视频| 国产日韩欧美亚洲二区| 亚洲人成网站在线观看播放| 精品国产露脸久久av麻豆| 别揉我奶头~嗯~啊~动态视频 | 国产精品一区二区在线观看99| 91aial.com中文字幕在线观看| 国产男人的电影天堂91| 一本大道久久a久久精品| 午夜精品国产一区二区电影| 大香蕉久久网| 香蕉国产在线看| av天堂久久9| 曰老女人黄片| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 2018国产大陆天天弄谢| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 色吧在线观看| 亚洲欧美清纯卡通| 欧美在线黄色| 久久久亚洲精品成人影院| 爱豆传媒免费全集在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美 日韩 精品 国产| 深夜精品福利| 少妇被粗大猛烈的视频| 午夜免费鲁丝| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀 | 制服人妻中文乱码| 国产亚洲av高清不卡| 人妻 亚洲 视频| 国产成人精品无人区| 少妇的丰满在线观看| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 久久影院123| 亚洲欧美激情在线| 不卡视频在线观看欧美| 日本wwww免费看| 一二三四中文在线观看免费高清| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 99久久精品国产亚洲精品| 一二三四中文在线观看免费高清| 午夜福利视频在线观看免费| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| 国产 一区精品| 久久综合国产亚洲精品| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| 一本一本久久a久久精品综合妖精| 欧美变态另类bdsm刘玥| 激情视频va一区二区三区| 韩国av在线不卡| 激情视频va一区二区三区| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区国产| 建设人人有责人人尽责人人享有的| 狠狠精品人妻久久久久久综合| 国产日韩欧美亚洲二区| 亚洲精品一区蜜桃| 男女午夜视频在线观看| 国产成人系列免费观看| 日韩视频在线欧美| 欧美人与善性xxx| av有码第一页| 国产伦人伦偷精品视频| 久久精品国产亚洲av涩爱| 狠狠婷婷综合久久久久久88av| 少妇人妻 视频| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一出视频| 亚洲伊人色综图| av在线app专区| 一级爰片在线观看| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 宅男免费午夜| 午夜老司机福利片| 我要看黄色一级片免费的| 国产日韩欧美在线精品| 汤姆久久久久久久影院中文字幕| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 久久国产精品大桥未久av| 女人精品久久久久毛片| 九色亚洲精品在线播放| 不卡视频在线观看欧美| 99久久精品国产亚洲精品| 国产精品久久久久成人av| 在线观看一区二区三区激情| 精品福利永久在线观看| 最近中文字幕高清免费大全6| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 一级片'在线观看视频| 国产 精品1| kizo精华| 在线观看免费午夜福利视频| 国产老妇伦熟女老妇高清| 成年动漫av网址| 十八禁人妻一区二区| 国产精品女同一区二区软件| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 中文字幕色久视频| 欧美成人午夜精品| videosex国产| 亚洲欧洲日产国产| 欧美成人午夜精品| 欧美日韩综合久久久久久| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| 超碰成人久久| 免费看不卡的av| 两性夫妻黄色片| 久久国产亚洲av麻豆专区| videos熟女内射| 国产女主播在线喷水免费视频网站| av一本久久久久| 久热爱精品视频在线9| 免费看av在线观看网站| 国产成人啪精品午夜网站| 桃花免费在线播放| 午夜老司机福利片| 人人妻人人添人人爽欧美一区卜| 亚洲精品av麻豆狂野| 嫩草影院入口| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 90打野战视频偷拍视频| 亚洲精品视频女| 亚洲av男天堂| 久久热在线av| 99久久99久久久精品蜜桃| 婷婷成人精品国产| 欧美 日韩 精品 国产| av在线老鸭窝| 18禁国产床啪视频网站| 高清黄色对白视频在线免费看| 国产精品成人在线| 一本色道久久久久久精品综合| 久久午夜综合久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 亚洲熟女毛片儿| videos熟女内射| 国产精品国产av在线观看| 国产福利在线免费观看视频| 日日撸夜夜添| av卡一久久| 999久久久国产精品视频| 99国产精品免费福利视频| 欧美激情高清一区二区三区 | 黑人猛操日本美女一级片| 美女福利国产在线| 超碰成人久久| 欧美亚洲日本最大视频资源| 久久av网站| 亚洲人成电影观看| 欧美另类一区| 亚洲欧美清纯卡通| 91精品国产国语对白视频| 国产黄色视频一区二区在线观看| 亚洲av在线观看美女高潮| 亚洲,欧美精品.| 国产精品香港三级国产av潘金莲 | 久久精品国产a三级三级三级| 十八禁网站网址无遮挡| av在线观看视频网站免费| 街头女战士在线观看网站| 一本色道久久久久久精品综合| 午夜日韩欧美国产| 性色av一级| 久久精品国产亚洲av涩爱| 久久天躁狠狠躁夜夜2o2o | 久久久久久久久久久免费av| 精品亚洲成a人片在线观看| av在线app专区| 考比视频在线观看| 精品人妻在线不人妻| 国产福利在线免费观看视频| 女人久久www免费人成看片| 欧美人与性动交α欧美软件| 啦啦啦在线观看免费高清www| 在线观看三级黄色| av电影中文网址| 黄网站色视频无遮挡免费观看| 久久精品久久久久久久性| 777久久人妻少妇嫩草av网站| 久久久久久久国产电影| 国产精品香港三级国产av潘金莲 | 国产一区有黄有色的免费视频| 亚洲,欧美精品.| 90打野战视频偷拍视频| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| 国产成人av激情在线播放| 91精品国产国语对白视频| 一级a爱视频在线免费观看| 悠悠久久av| 国产色婷婷99| 啦啦啦 在线观看视频| 国产福利在线免费观看视频| 1024视频免费在线观看| 最黄视频免费看| 亚洲国产欧美在线一区| 青青草视频在线视频观看| 亚洲av综合色区一区| 亚洲国产精品成人久久小说| 中文字幕制服av| 亚洲,欧美精品.| 欧美人与善性xxx| 国产伦人伦偷精品视频| 美女大奶头黄色视频| 精品久久久久久电影网| 国产精品 欧美亚洲| 九色亚洲精品在线播放| 亚洲国产毛片av蜜桃av| 午夜福利在线免费观看网站| 制服丝袜香蕉在线| 亚洲av中文av极速乱| 国产极品天堂在线| 成人国语在线视频| 日韩免费高清中文字幕av| 欧美av亚洲av综合av国产av | 欧美人与性动交α欧美软件| 成年动漫av网址| 街头女战士在线观看网站| 久久韩国三级中文字幕| 97在线人人人人妻| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久 | a级毛片在线看网站| 精品久久久久久电影网| 亚洲国产最新在线播放| 欧美在线黄色| 亚洲av中文av极速乱| xxxhd国产人妻xxx| 久久人人97超碰香蕉20202| 性高湖久久久久久久久免费观看| 99久久精品国产亚洲精品| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播 | h视频一区二区三区| 天天操日日干夜夜撸| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| xxxhd国产人妻xxx| 国产精品久久久久久精品电影小说| 亚洲婷婷狠狠爱综合网| 欧美日韩国产mv在线观看视频| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 大香蕉久久成人网| 久久热在线av| 国产成人欧美| 人体艺术视频欧美日本| 波多野结衣一区麻豆| 精品少妇内射三级| 亚洲伊人色综图| 纵有疾风起免费观看全集完整版| 国产片内射在线| 在线观看www视频免费| 伦理电影大哥的女人| 一本色道久久久久久精品综合| 一边摸一边抽搐一进一出视频| 久久毛片免费看一区二区三区| 在线观看免费午夜福利视频| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 9191精品国产免费久久| 秋霞伦理黄片| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 街头女战士在线观看网站| 国产av国产精品国产| 飞空精品影院首页| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网| 亚洲,欧美精品.| 国产一区亚洲一区在线观看| 婷婷色av中文字幕| 叶爱在线成人免费视频播放| 国产欧美日韩综合在线一区二区| 欧美乱码精品一区二区三区| 久久毛片免费看一区二区三区| 国产黄色免费在线视频| 中文字幕av电影在线播放| 国产又爽黄色视频| 不卡视频在线观看欧美| 少妇人妻 视频| 国产精品免费视频内射| 国产成人精品在线电影| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 在线观看免费日韩欧美大片| 亚洲欧美清纯卡通| 亚洲在久久综合| 亚洲精品国产一区二区精华液| 黄网站色视频无遮挡免费观看| 久久久久久久久久久免费av| 日韩大片免费观看网站| 99热全是精品| 精品免费久久久久久久清纯 | 在线天堂中文资源库| 精品一区二区免费观看| 久久久久人妻精品一区果冻| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 日本一区二区免费在线视频| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 亚洲av中文av极速乱| 亚洲 欧美一区二区三区| 日本欧美视频一区| 亚洲精品aⅴ在线观看| 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 叶爱在线成人免费视频播放| 精品第一国产精品| 国产日韩欧美在线精品| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 一本一本久久a久久精品综合妖精| 中文精品一卡2卡3卡4更新| av线在线观看网站| 又大又爽又粗| www日本在线高清视频| 亚洲精品一二三| bbb黄色大片| 亚洲熟女毛片儿| 岛国毛片在线播放| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 国产一区二区三区综合在线观看| 99香蕉大伊视频| av国产久精品久网站免费入址| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 久久青草综合色| 建设人人有责人人尽责人人享有的| 宅男免费午夜| 日本wwww免费看| 2021少妇久久久久久久久久久| 日韩精品免费视频一区二区三区| 国产精品无大码| 毛片一级片免费看久久久久| av线在线观看网站| 中文天堂在线官网| 亚洲国产中文字幕在线视频| 久久精品久久久久久久性| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 一级黄片播放器| 亚洲精品美女久久av网站| 精品一区二区免费观看| 亚洲国产最新在线播放| 国产精品香港三级国产av潘金莲 | 久久这里只有精品19| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 久久人妻熟女aⅴ| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| a 毛片基地| 久久天躁狠狠躁夜夜2o2o | 熟女av电影| 久久影院123| 国产成人一区二区在线| 久久久久久久久免费视频了| 九草在线视频观看| 嫩草影院入口| 51午夜福利影视在线观看| 在线 av 中文字幕| 久久久亚洲精品成人影院| 777久久人妻少妇嫩草av网站| 日韩av不卡免费在线播放| 一级黄片播放器| 91国产中文字幕| 美女视频免费永久观看网站| 亚洲国产av新网站| av在线app专区| 日韩中文字幕视频在线看片| 日韩欧美一区视频在线观看| 日韩av免费高清视频| 男女无遮挡免费网站观看| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看| 黄色视频不卡| 午夜福利影视在线免费观看| 精品福利永久在线观看| 国产精品一二三区在线看| 波多野结衣一区麻豆| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 巨乳人妻的诱惑在线观看| 国产亚洲午夜精品一区二区久久| a级片在线免费高清观看视频| 久久综合国产亚洲精品| videosex国产| 免费在线观看视频国产中文字幕亚洲 | 精品卡一卡二卡四卡免费| 在线天堂最新版资源| 中文乱码字字幕精品一区二区三区| 日韩人妻精品一区2区三区| 亚洲三区欧美一区| 观看av在线不卡| 老熟女久久久| 可以免费在线观看a视频的电影网站 | 性少妇av在线| 日韩电影二区| 天堂8中文在线网| 啦啦啦 在线观看视频| 好男人视频免费观看在线| 男女之事视频高清在线观看 | 亚洲专区中文字幕在线 | 国产不卡av网站在线观看| 我的亚洲天堂| 成人亚洲精品一区在线观看| 高清欧美精品videossex| 美女大奶头黄色视频| 性色av一级| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 国产男女内射视频| 精品少妇黑人巨大在线播放| 午夜91福利影院| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 免费黄频网站在线观看国产| 午夜av观看不卡| 欧美日韩av久久| 亚洲少妇的诱惑av| 热re99久久国产66热| 国产一卡二卡三卡精品 | 久久97久久精品| 两个人免费观看高清视频| 亚洲av男天堂| 亚洲自偷自拍图片 自拍| 国产福利在线免费观看视频| 精品少妇一区二区三区视频日本电影 | 国产成人91sexporn| 国产一区有黄有色的免费视频| 男女高潮啪啪啪动态图| 大香蕉久久网| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 成年女人毛片免费观看观看9 | 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一出视频| 只有这里有精品99| 十八禁高潮呻吟视频| 国产精品免费大片| 亚洲国产日韩一区二区| 超碰成人久久| 中文欧美无线码| 高清在线视频一区二区三区| 美女扒开内裤让男人捅视频| 国产一区二区三区综合在线观看| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠久久av| 老司机靠b影院| 女人精品久久久久毛片| kizo精华| 热re99久久国产66热| 亚洲精品aⅴ在线观看| 亚洲成人一二三区av| 一级毛片 在线播放| 久热这里只有精品99| av在线播放精品| 一级毛片黄色毛片免费观看视频| 久热爱精品视频在线9| 在线观看免费午夜福利视频| 美女午夜性视频免费| 成人漫画全彩无遮挡| 久久久国产精品麻豆| 女性被躁到高潮视频| 黄片无遮挡物在线观看| 波多野结衣av一区二区av| 制服人妻中文乱码| 最近中文字幕2019免费版| 少妇 在线观看| 日韩不卡一区二区三区视频在线| 秋霞伦理黄片| 美女福利国产在线| 久久久亚洲精品成人影院| 999久久久国产精品视频| 啦啦啦在线观看免费高清www| 熟女av电影| 天天躁日日躁夜夜躁夜夜| 亚洲av国产av综合av卡| 乱人伦中国视频| 国产亚洲午夜精品一区二区久久| 女人久久www免费人成看片| 曰老女人黄片| 中文字幕人妻熟女乱码| 美女午夜性视频免费| 久久99热这里只频精品6学生| 成年美女黄网站色视频大全免费| 国产精品国产三级国产专区5o| 亚洲欧美成人综合另类久久久| 日韩一区二区视频免费看| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 亚洲成人一二三区av| 国产精品人妻久久久影院| 免费在线观看完整版高清| 一区二区三区乱码不卡18| 只有这里有精品99| 少妇精品久久久久久久| 9色porny在线观看| 亚洲第一区二区三区不卡| 黄网站色视频无遮挡免费观看| 七月丁香在线播放| 18禁国产床啪视频网站| 亚洲欧美清纯卡通| 男人操女人黄网站| 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 最近最新中文字幕大全免费视频 | 久久久国产精品麻豆| 一级a爱视频在线免费观看| 亚洲欧洲国产日韩| 久久久欧美国产精品| 丝袜美足系列| 国产精品国产三级专区第一集| 乱人伦中国视频| 久久影院123| 午夜福利在线免费观看网站| 国产日韩欧美视频二区| 亚洲成国产人片在线观看| 亚洲精品美女久久久久99蜜臀 | 久久精品熟女亚洲av麻豆精品| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 午夜激情av网站| av在线观看视频网站免费| 性色av一级| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 在线观看免费视频网站a站| 黑人欧美特级aaaaaa片| 黄色视频不卡| 日韩欧美精品免费久久| 女性生殖器流出的白浆| 我要看黄色一级片免费的| 国产福利在线免费观看视频| 国产精品99久久99久久久不卡 | 99久国产av精品国产电影| 国产成人精品久久二区二区91 | 中文字幕人妻丝袜一区二区 | 老司机影院毛片| 2021少妇久久久久久久久久久| 日韩av不卡免费在线播放| 亚洲精品国产区一区二| 一区二区av电影网| 欧美在线黄色| 精品第一国产精品| 女人久久www免费人成看片| 高清欧美精品videossex| 久久久久久久久久久久大奶| 青春草国产在线视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品久久午夜乱码| 老司机影院毛片| 久久久久精品性色| 91aial.com中文字幕在线观看| 韩国精品一区二区三区| 亚洲av福利一区| 尾随美女入室| 99久久综合免费| 亚洲av欧美aⅴ国产| 飞空精品影院首页| 丰满乱子伦码专区| 成年美女黄网站色视频大全免费| 亚洲精品国产av蜜桃| 精品一区在线观看国产| av.在线天堂| 一级黄片播放器| 亚洲欧美成人综合另类久久久| 国产爽快片一区二区三区| 成年人免费黄色播放视频| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 王馨瑶露胸无遮挡在线观看| 欧美黑人精品巨大| 制服诱惑二区| 国产日韩欧美亚洲二区| av一本久久久久|