• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences

    2018-04-12 03:33:55HoumioWngYongLeiLiyingYnLiyunWnYnCiZefengYngJinweiLvXiojieZhngChenwuXuBoshouLio
    The Crop Journal 2018年2期

    Houmio Wng,Yong Lei,Liying Yn,Liyun Wn,Yn Ci,Zefeng Yng,Jinwei Lv,Xiojie Zhng,Chenwu Xu,*,Boshou Lio,*

    a Key Laboratory of Oil Crop Biology of the Ministry of Agriculture,CAAS-ICRISAT Joint Laboratory for Groundnut Aflatoxin Management,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Wuhan 430062,Hubei,China

    b Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops,Key Laboratory of Plant Functional Genomics of the Ministry of Education,Yangzhou University,Yangzhou 225009,Zhejiang,China

    1.Introduction

    The cultivated peanut(Arachis hypogaea L.)is an important oilseed and cash crop in most tropical and subtropical areas of the world,and one of the primary sources of vegetable oil and protein for human consumption.The species is a self-pollinating allotetraploid(AABB)with two different genomes(A and B),and the genome size is estimated to be 2.8 Gb[1].The most likely wild diploid progenitors of A.hypogaea are A.duranensis(AA,2n=2x=20)and A.ipaensis(BB,2n=2x=20)[2].Reference genomes of A.duranensis(A genome)and A.ipaensis(B genome)have been released recently in a public database(http://peanutbase.org/).However,a reference genome of A.hypogaea is not yet available.

    Molecular markers are valuable tools for linkage map construction,quantitative trait locus(QTL)analyses,genomic selection,gene discovery,and marker-assisted selection for crop improvement[3].They are also useful for estimating diversity and discriminating among genotypes[4].Progress has been made in the development of molecular markers and genetic resources in A.hypogaea[3,5–7].However,the application of molecular markers is more advanced in the legume species Glycine max and Medicago truncatula than in A.hypogaea,primarily because of the genome complexity and the narrow genetic base of A.hypogaea.Simple sequence repeats(SSRs)and single-nucleotide polymorphisms(SNPs)are currently the standard DNA markers used for gene mapping and marker-assisted selection in many crops[8].SSR and SNP markers share similar advantages,as both are codominant,abundant throughout genomes,and highly polymorphic.However,SSRs are often multi-allelic,whereas most SNPs are biallelic.SSRs can be easily detected by polymerase chain reaction(PCR)and gel electrophoresis[9].SSRs have been widely applied in A.hypogaea for verification of cultivar identity,diversity studies[7,10–15],linkage map construction[16–18],and QTL analysis[19–23].SSRs are classified into genomic SSRs and expressed sequence tag-SSRs(EST-SSRs)depending on the origin of the sequences used for the initial identification of these markers.Genomic SSRs are not necessarily expected either to have genetic functions or to be closely linked to transcribed regions of the genome,whereas EST-SSRs are tightly linked with functional genes that may influence important agronomic characters.Because of these advantages,EST-SSRs have been developed and used in many plant species[3,8,24–31].Although a major disadvantage of EST-SSRs is sequence redundancy,resulting in multiple sets of markers at the same locus,the problem can be circumvented by assembling the ESTs and short reads of RNA transcripts into unigenes.With a large number of EST resources of A.hypogaea in public databases,it is advisable to fully exploit the EST-SSRs within these sequences.Since Arachis species SSRs were first reported in 1999,a total of 14,390 A.hypogaea SSRs have been deposited to date in the public database(Peanut Marker Database,http://marker.kazusa.or.jp/Peanut/).However,the number of SSR markers reported for A.hypogaea is still far fewer than that reported for Glycine max[32].

    The application of next-generation sequencing technologies has efficiently and cost-effectively generated a massive amount of genetics sequence data.Additionally,new techniques have enabled whole-transcriptome sequencing[i.e.,RNA sequencing(RNA-seq)]and analysis of crops[33].RNA-seq is an effective approach for detecting functional genes and characterizing gene expression patterns and associated regulatory networks.This technique has been used successfully to analyze the transcriptome of A.hypogaea under different conditions[34–39].RNA-seq has also allowed the rapid identification of SSR loci derived from ESTs in many crops[3,8,24–31].

    We previously reported the first study of the post-harvest A.hypogaea transcriptome using RNA-seq and de novo assembly via Illumina paired-end sequencing[40].The raw sequencing data from that study were deposited in the National Center for Biotechnology Information(NCBI)Sequence Read Archive database(SRP061959),and 128,725 unigenes of A.hypogaea were obtained[40].In this study,these 128,725 unigene sequences were used to detect SSRs for the large-scale development and characterization of SSR markers.

    2.Materials and methods

    2.1.Plant materials and DNA extraction

    Twenty-four A.hypogaea varieties from 14 provinces in China were used for analyzing the polymorphism of SSR markers(Table S1).All 24 varieties were planted in the experimental greenhouses of the Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences(CAAS-OCRI),Wuhan,China.Genomic DNA was extracted from fresh leaves of each variety following the hexadecyltrimethyl ammonium bromide(CTAB)method[41].The quality and integrity of the extracted DNA were evaluated by 1.0%agarose gel electrophoresis and the concentrations were determined with a Beckman DU-650 spectrophotometer(Beckman Coulter,Inc.,Brea,CA,USA).

    2.2.Expressed sequence tag simple sequence repeat detection and primer design

    SSRs present in the 128,725 unigenes were detected using the MIcroSAtellite program(MISA,http://pgrc.ipk-gatersleben.de/misa/misa.html)[31].The default criteria were based on the minimum number of repeats,which were set as follows:10 repeating units for mononucleotides,six repeating units for dinucleotides,and five repeating units for tri-,tetra-,pentaand hexanucleotides.The maximum distance between two SSRs was specified as 100 bases.Primer pairs specific for the flanking regions of potential SSRs were designed for each SSR locus using Primer3(http://primer3.sourceforge.net/releases.php)[25].Primers were designed based on the following criteria:1)GC content between 40%and 60%,2)primer length between 18 and 27 bp,3)melting temperature between 57°C and 63°C,and 4)expected PCR product sizes from 100 to 280 bp.

    2.3.Functional classification of simple sequence repeatcontaining unigenes

    All unigenes containing an SSR motif were classified into Clusters of Orthologous Groups(COG)categories according to the results of National Center for Biotechnology Information(NCBI)BLAST(version 2.2.28+)searches against amino acid sequences in the Eukaryotic Orthologous Groups(KOG)database with an E-value threshold of 10?3(http://www.ncbi.nlm.nih.gov/COG/)[42].To comprehensively characterize the biological functions and interactions of these SSR-containing unigenes,pathways were assigned based on the KEGG database[43]using BLASTX with an E-value threshold of 10?5.

    2.4.Validation of simple sequence repeats

    Two hundred and ten SSR markers(Table S2)were validated using 24 A.hypogaea varieties(Table S1).PCR reactions were performed as previously described[41].The PCR-amplified products were separated by nondenaturing 6.0%polyacrylamide gel electrophoresis and then visualized by silver staining as described by Ren et al.[7]and Zhou et al.[44].The fragment sizes of the PCR products were estimated by comparison with a 50-bp DNA ladder.

    2.5.Genetic diversity analysis

    The number of alleles,genetic diversity(expected heterozygosity,He)and polymorphic information content(PIC)were estimated for each SSR using PowerMarker version 3.25[44,45].A genetic similarity matrix based on the proportion of shared alleles among the 24 A.hypogaea varieties was generated with PowerMarker.An unrooted neighbor-joining tree based on the shared allele distances was constructed using MEGA 6[44]to reveal the genetic relationships among the 24 varieties.

    3.Results

    3.1.Development and characterization of simple sequence repeats mined from the A.hypogaea transcriptome

    All 128,725 unigenes assembled de novo from the A.hypogaea transcriptome(NCBI Sequence Read Archive database,SRP061959)with a total length of 98.47 Mb were used to identify potential SSR loci using MISA.A total of 29,357 potential SSRs were identified in 22,806 unigenes,with 4883 unigenes containing more than one SSR locus(Table 1).The distribution density was one SSR locus per 3355 bp,and the number of repeat units ranged from one to six.The number of SSRs with each repeat motif varied widely.SSRs with mononucleotide repeat motifs were most abundant(19,065;64.94%),followed by tri-(5033;17.14%),di-(4927;16.78%),tetra-(303;1.03%),penta-(18;0.061%),and hexanucleotide(11;0.037%)repeat motifs(Table 1,Fig.S1).Additionally,1710 SSRs were present in compound forms(Table 1).The iteration number of repeat units in SSRs ranged from 4 to 22 and the occurrence frequencies of SSRs with different iteration numbers were unequal.The most common iteration number was 10(8467;28.84%),followed by 11(3959;13.49%),five(3634;12.38%)and six(3507;11.95%)(Table S3,Fig.S1).For the SSRs with>10 repeat units,mononucleotide repeat motifs were most abundant,accounting for 99.82%of the SSRs,whereas motifs with>16 repeats were rare(5.79%).The repetition of sequences also varied.Sixty-nine SSR motifs were identified,including two mono-,four di-,10 tri-,24 tetra-,18 penta-,and 11 hexanucleotide repeating units(Table S3).The dominant motif identified in the SSRs was A/T(18,358;62.54%),followed by AG/CT(2804;9.55%),AAG/CTT(1396;4.76%),AT/AT(1390;4.73%),AAT/ATT(1075;3.66%),ATC/ATG(725;2.47%)and AC/GT(720;2.45%).The remaining 62 motifs were relatively rare,accounting for only 9.84%of the total number of SSRs(Fig.1).

    Comparisons with known sequences in Kyoto Encyclopedia of Genes and Genomes(KEGG)and Eukaryotic Orthologous Groups(KOG)databases were used to categorize the SSR-containing unigenes based on functions.A search using the KEGG Orthology(KO)database revealed 1883(8.26%)SSR-containing unigenes with significant matches.These unigenes were assigned to five main categories,including 32 subcategories and 252 KEGG pathways(Fig.2,Table S4).The majority of the SSR-containing unigenes were assigned to“carbohydrate metabolism”(479;25.44%), “signal transduction”(385;20.45%),“overview”(314;16.68%)and “amino acid metabolism”(305;16.20%).Additionally,4103 SSR-containing unigenes were annotated using the KOG database and assigned to 26 KOG functional categories(Fig.3,Table S4).Among the 26 KOG categories,“general function prediction only”(693;16.89%)was the largest group,followed by“posttranslational modification,protein turnover,chaperones”(477;11.63%),“signal transduction mechanisms”(339;8.26%)and “transcription”(257;6.26%).The SSR-containing unigenes were functionally classified and characterized to enable molecular marker development for studying genetic diversity of A.hypogaea in the future.

    Table 1–Summary of EST-SSRs identified in transcriptome sequences.

    3.2.Primer design and identification of new simple sequence repeats

    A total of 56,451 PCR primer pairs specific for the unique sequences flanking 18,817 SSR loci in 15,739 unigenes were designed(Table S5).For each SSR locus,three alternative primer pairs were designed.The flanking sequences of the other 10,540 SSRs did not fulfill the primer design criteria,which permitted no suitable PCR primer pairs for them.The 11,785 mononucleotide SSRs(10,585 unigenes)were the most common ones for which primers were successfully designed,followed by 3076 trinucleotide SSRs(2868 unigenes),2786 dinucleotide SSRs(2690 unigenes),980 complex SSRs(962),173 tetranucleotide SSRs(173 unigenes),12 pentanucleotide SSRs(12 unigenes),and five hexanucleotide SSRs(five unigenes)(Table 2).In total,primers for 5514 SSRs with di-to hexanucleotide motifs were designed.

    In the Peanut Marker Database(http://marker.kazusa.or.jp/Peanut/,2016-01-27),14,390 primer pairs of the publicly available SSRs in A.hypogaea were searched(Table S6).Mononucleotide and complex SSRs were excluded during the identification of new SSRs.All 14,390 publicly available SSR primer pair sequences were aligned to the 22,806 unigenes as paired-end sequences,and 4340 new SSRs in 4064 unigenes were obtained for further analysis(Table S7).The proportions of new SSRs were not evenly distributed.The largest fraction of identified new SSRs consisted of di-and trinucleotide repeats,which accounted for 96.59%(4192)of all new SSRs.The other three types of new SSRs were rare(148,3.41%).

    The novel SSR motifs were grouped into classes I and II based on their length[15,46].Among the new SSRs,the length of 228(5.25%)SSR motifs were≥20 bp(class I),whereas the other 4112 consisted of<20 bp(class II)(Table 3,Table S5).Thus,the number of class II SSRs was much greater than that of class I,a result consistent with previous reports in A.hypogaea[15,46,47].The number of tetranucleotides(133)was greater than that of other repeat motifs in the class I SSRs,whereas the proportion of trinucleotide was higher than those of di-,hexa-,tetra-,and pentanucleotides in class II SSRs(Table 3).Interestingly,tetra-,penta-,and hexanucleotide repeat motifs were detected only in class I(Table 3).

    Fig.1–Frequency distribution of simple sequence repeats based on motif type.

    3.3.Validation of novel simple sequence repeat markers

    To validate the identified novel SSR markers,we attempted to amplify the predicted SSRs via PCR.A total of 210 primer pairs(Table S2)were randomly selected for validation using DNA from 24 A.hypogaea varieties(Table S1).The numbers of these selected SSRs with di-,tri-,and tetranucleotide repeats were 35,153,and 22,respectively.Among the 210 primer pairs,191(90.95%)were able to amplify genomic DNA and the containing SSRs with di-,tri-,and tetranucleotide repeats were 32(16.75%),140(73.30%),and 19(9.95%),respectively,whereas the remaining 19 primer pairs failed to generate PCR products at the same annealing temperatures(Table S2).Most of the selected markers appeared as single alleles in all 24 A.hypogaea genotypes,except for a few multilocus SSRs,suggesting that these novel SSR markers possess a specific amplification in A.hypogaea.

    Fig.2–Functional classification of simple sequence repeat-containing unigenes based on Kyoto Encyclopedia of Genes and Genomes Ortholog searches.

    Among the validated markers,37(17.62%)showed polymorphism between at least two A.hypogaea varieties,including new SSRs with di-(11;29.73%),tri-(25;67.57%),and tetranucleotide(1;2.70%)repeats(Table S2).Based on the polymorphism rate,about 765 polymorphic SSR markers were expected for the 4340 new SSRs.The 37 polymorphic SSR markers detected 146 alleles in total(N=24),with 2–10 alleles per locus(average,3.95 alleles per locus)(Table 4).Of the 37,25(67.57%)were observed in more than three A.hypogaea genotypes and four(10.81%)showed polymorphism among>10 A.hypogaea varieties.

    Fig.3–Functional classification of simple sequence repeat-containing unigenes based on the Eukaryotic Orthologous Groups of proteins database.A,RNA processing and modification;B,chromatin structure and dynamics;C,energy production and conversion;D,cell cycle control,cell division,chromosome partitioning;E,amino acid transport and metabolism;F,nucleotide transport and metabolism;G,carbohydrate transport and metabolism;H,coenzyme transport and metabolism;I,lipid transport and metabolism;J,translation,ribosomal structure and biogenesis;K,transcription;L,replication,recombination and repair;M,cell wall/membrane/envelope biogenesis;N,cell motility;O,posttranslational modification,protein turnover,chaperones;P,inorganic ion transport and metabolism;Q,secondary metabolite biosynthesis,transport and catabolism;R,general function prediction only;S,function unknown;T,signal transduction mechanisms;U,intracellular trafficking,secretion,and vesicular transport;V,defense mechanisms;W,extracellular structures;X,unnamed protein;Y,nuclear structure;Z,cytoskeleton.

    Table 2–Summary statistics of the simple sequence repeat(SSR)motifs designed with primers and distribution of new SSRs.

    3.4.Evaluation of genetic diversity among 24 A.hypogaea varieties

    The 37 polymorphic SSRs developed in this study were used to assess the genetic diversity and relationships among 24 A.hypogaea varieties cultivated across the A.hypogaea growing region in China (Table S1).The expectedheterozygosity(He)was 0.449(0.0799 to 0.8370)(Table 4),and the average polymorphic information content(PIC)value was 0.403(0.077 to 0.819)(Table 4).

    Table 3–Classification of novel simple sequence repeats based on their motif lengths.

    An unrooted neighbor-joining tree based on shared allele distance grouped the 24 A.hypogaea varieties into four main clusters(Fig.S2).The largest cluster included 13 genotypes,with eight(61.54%)from var.vulgaris(Table S1,Fig.S2).A few discrepancies were observed during the neighbor-joining tree analysis because of the relatively small number of validated polymorphic SSRs.Nevertheless,our results might suggest an association between genetic relationships of A.hypogaea varieties and their botanical species.

    Table 4–Characteristics of 37 polymorphic simple sequence repeat markers in 24 peanut genotypes.

    4.Discussion

    The development of polymorphic genetic markers is an important task in studying the genetic basis of agronomic traits and population genetic structures, molecular marker-assisted selection,and QTL analysis.SSR markers are among the most useful molecular markers and have been applied for evaluating A.hypogaea genetic diversity and constructing several A.hypogaea genetic maps[3,7,41].Expressed sequence tags(ESTs)have become an important resource for developing SSR markers that are associated with biological function[3,8,24–31].In this study,we identified 29,357 potential SSRs based on the previously assembled A.hypogaea unigenes from our transcriptome sequencing study[40].Additionally,we detected 4340 new SSRs and designed corresponding primer pairs.Of the unigenes,17.7%contained SSRs,a proportion slightly higher than those reported in previous studies involving Arachis species(6.80%–16.95%)[3,15,36,48,49].Our observed proportion is also consistent with that reported for 49 dicotyledonous species(2.65%–10.62%)[50].The detection of SSRs is affected by several factors,including genome structure[50],dataset size for unigene assembly,and the criteria used for SSR mining[9].

    The relative frequencies of di-,tri-,tetra-,penta-,and hexanucleotide motifs should decrease according to the relative probabilities of replication slippage events[51].The mononucleotide repeat motif was the most common among the analyzed A.hypogaea unigenes in this study.However,most studies have excluded mononucleotide repeat motifs because they may result from sequencing errors[52],and their polymorphism rate is very low.We observed similar proportions of di-and trinucleotide motifs in A.hypogaea transcript sequences,and these motifs were much more abundant than the tetra-,penta-,or hexanucleotide repeats.As previously reported[9,52],di-and trinucleotide motifs are generally most common in the SSRs of both dicotyledons and monocotyledons.The abundance of trinucleotide motifs observed in our study was consistent with the results of previous studies involving A.hypogaea[15,36,49,53]and other legumes[18,51,54,55].Trinucleotide repeat motifs are common for SSRs,as insertions or deletions within translated regions do not disturb open reading frames,whereas frameshift mutation may limit the expansion of other motif types[8,56].

    In addition to the mononucleotide repeat motifs(19,065),>57.83%of the other 10,292 identified SSRs were matched with sequences in the Peanut Marker Database.These results suggest that our method is highly reliable for SSR development.Correspondingly,we identified 4340 new SSRs,which might be useful for constructing high-density genetic linkage maps,mapping QTL and using in crop breeding along with previously discovered molecular markers.The 91%validation rate observed in this study is consistent with the 85%–94%amplification rates of previous reports[3,15,44,46],indicating that the SSRs from the A.hypogaea transcriptomic data from high-throughput RNA-seq were suitable for SSR primer design.

    Of the new SSRs,18(37)revealed polymorphism among the 24 A.hypogaea cultivars.These 37 polymorphic SSRs generated 146 alleles,and their PIC values varied from 0.077 to 0.819 with an average of 0.403(Table 4).The PIC value is used mainly to assess the utility of a marker for linkage analysis.The average PIC value(0.403)of the 37 polymorphic SSRs in our study was higher than those in two previous reports in A.hypogaea [15,44],suggesting that these informative markers may play vital roles in accelerating molecular genetics,marker-assisted selection breeding,germplasm polymorphism assessment,and functional genetics studies in A.hypogaea.

    5.Conclusions

    A total of 4030 novel SSR markers were identified and characterized in genomic data of A.hypogaea using high-throughput transcriptome sequencing.A set of 210 novel markers were validated in 24 A.hypogaea varieties.Of these,191(90.95%)yielded PCR products,and 37 polymorphic markers were identified among the 24 varieties.These new SSRs developed in this study will expand the current marker resources of A.hypogaea and may also be useful for functional genomics research and molecular breeding in A.hypogaea.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.09.007.

    This research was funded by the National Basic Research Program of China(2013CB127803,2011CB109304),National High Technology Research and Development Program of China(2013AA102602),National Natural Science Foundation of China (31371662,31461143022),China Agriculture Research System(CARS-14),and Shandong Agricultural Industrialization Project for New Variety Development(2014–2016).

    [1]S.Feng,X.Wang,X.Zhang,P.M.Dang,C.C.Holbrook,A.K.Culbreath,Y.Wu,B.Guo,Peanut(Arachis hypogaea)expressed sequence tag project:progress and application,Comp.Funct.Genomics 2012(2012)373768.

    [2]G.Kochert,H.T.Stalker,M.Gimenes,L.Galgaro,C.R.Lopes,K.Moore,RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut,Arachis hypogaea(Leguminosae),Am.J.Bot.83(1996)1282–1291.

    [3]Z.Peng,M.Gallo,B.L.Tillman,D.Rowland,J.Wang,Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut(Arachis hypogaea L.),Mol.Gen.Genomics.291(2016)363–381.

    [4]M.Kirst,C.M.Cordeiro,G.Rezende,D.Grattapaglia,Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations,J.Hered.96(2005)161–166.

    [5]T.Iwashina,Flavonoid function and activity to plants and other organisms,Biol.Sci.Space 17(2003)24–44.

    [6]R.K.Varshney,S.M.Mohan,P.M.Gaur,N.V.P.R.Gangarao,M.K.Pandey,A.Bohra,S.L.Sawargaonkar,A.Chitikineni,P.K.Kimurto,P.Janila,K.B.Saxena,A.Fikre,M.Sharma,A.Rathore,A.Pratap,S.Tripathi,S.Datta,S.K.Chaturvedi,N.Mallikarjuna,G.Anuradha,A.Babbar,A.K.Choudhary,M.B.Mhase,C.Bharadwaj,D.M.Mannur,P.N.Harer,B.Z.Guo,X.Q.Liang,N.Nadarajan,C.L.L.Gowda,Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics,Biotechnol.Adv.31(2013)1120–1134.

    [7]X.P.Ren,H.F.Jiang,Z.Y.Yan,Y.N.Chen,X.J.Zhou,L.Huang,Y.Lei,J.Q.Huang,L.Y.Yan,Y.Qi,W.H.Wei,B.S.Liao,Genetic diversity and population structure of the major peanut(Arachis hypogaea L.)cultivars grown in China by SSR markers,PLoS One 9(2014)e0088091.

    [8]H.Chen,L.Liu,L.Wang,S.Wang,P.Somta,X.Cheng,Development and validation of EST-SSR markers from the transcriptome of adzuki bean(Vigna angularis),PLoS One 10(2015),e0131939..

    [9]R.K.Varshney,A.Graner,M.E.Sorrells,Genic microsatellite markers in plants:features and applications,Trends Biotechnol.23(2005)48–55.

    [10]M.E.Ferguson,M.D.Burow,S.R.Schulze,P.J.Bramel,A.H.Paterson,S.Kresovich,S.Mitchell,Microsatellite identification and characterization in peanut(A-hypogaea L.),Theor.Appl.Genet.108(2004)1064–1070.

    [11]M.S.Hopkins,A.M.Casa,T.Wang,S.E.Mitchell,R.E.Dean,G.D.Kochert,S.Kresovich,Discovery and characterization of polymorphic simple sequence repeats(SSRs)in peanut,Crop Sci.39(1999)1243–1247.

    [12]Md.C.Moretzsohn,M.S.Hopkins,S.E.Mitchell,S.Kresovich,J.F.M.Valls,M.E.Ferreira,Genetic diversity of peanut(Arachis hypogaea L.)and its wild relatives based on the analysis of hypervariable regions of the genome,BMC Plant Biol.4(2004)11.

    [13]G.H.He,R.H.Meng,H.Gao,B.Z.Guo,G.Q.Gao,M.Newman,R.N.Pittman,C.S.Prakash,Simple sequence repeat markers for botanical varieties of cultivated peanut(Arachis hypogaea L.),Euphytica 142(2005)131–136.

    [14]R.Tang,G.Gao,L.He,Z.Han,S.Shan,R.Zhong,C.Zhou,J.Jiang,Y.Li,W.Zhuang,Genetic diversity in cultivated groundnut based on SSR markers,J.Genet.Genomics 34(2007)449–459.

    [15]T.C.Bosamia,G.P.Mishra,R.Thankappan,J.R.Dobaria,Novel and stress relevant EST derived SSR markers developed and validated in peanut,PLoS One 10(2015),e0129127..

    [16]Y.Hong,X.Chen,X.Liang,H.Liu,G.Zhou,S.Li,S.Wen,C.C.Holbrook,B.Z.Guo,A SSR-based composite genetic linkage map for the cultivated peanut(Arachis hypogaea L.)genome,BMC Plant Biol.10(2010)17.

    [17]H.Qin,S.Feng,C.Chen,Y.Guo,S.Knapp,A.Culbreath,G.H.He,M.L.Wang,X.Y.Zhang,C.C.Holbrook,P.Ozias-Akins,B.Z.Guo,An integrated genetic linkage map of cultivated peanut(Arachis hypogaea L.)constructed from two RIL populations,Theor.Appl.Genet.124(2012)653–664.

    [18]K.Shirasawa,P.Koilkonda,K.Aoki,H.Hirakawa,S.Tabata,M.Watanabe,M.Hasegawa,H.Kiyoshima,S.Suzuki,C.Kuwata,Y.Naito,T.Kuboyama,A.Nakaya,S.Sasamoto,A.Watanabe,M.Kato,K.Kawashima,Y.Kishida,M.Kohara,A.Kurabayashi,C.Takahashi,H.Tsuruoka,T.Wada,S.Isobe,In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut,BMC Plant Biol.12(2012)80.

    [19]Y.P.Khedikar,M.V.C.Gowda,C.Sarvamangala,K.V.Patgar,H.D.Upadhyaya,R.K.Varshney,A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut(Arachis hypogaea L.),Theor.Appl.Genet.121(2010)971–984.

    [20]K.Ravi,V.Vadez,S.Isobe,R.R.Mir,Y.Guo,S.N.Nigam,M.V.C.Gowda,T.Radhakrishnan,D.J.Bertioli,S.J.Knapp,R.K.Varshney,Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut(Arachis hypogaea L.),Theor.Appl.Genet.122(2011)1119–1132.

    [21]I.Faye,M.K.Pandey,F.Hamidou,A.Rathore,O.Ndoye,V.Vadez,R.K.Varshney,Identification of quantitative trait loci for yield and yield related traits in groundnut(Arachis hypogaea L.)under different water regimes in Niger and Senegal,Euphytica 206(2015)631–647.

    [22]L.Huang,H.Y.He,W.G.Chen,X.P.Ren,Y.N.Chen,X.J.Zhou,Y.L.Xia,X.L.Wang,X.G.Jiang,B.S.Liao,H.F.Jiang,Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut(Arachis hypogaea L.),Theor.Appl.Genet.128(2015)1103–1115.

    [23]M.L.Wang,P.Khera,M.K.Pandey,H.Wang,L.Qiao,S.Feng,B.Tonnis,N.A.Barkley,D.Pinnow,C.C.Holbrook,A.K.Culbreath,R.K.Varshney,B.Z.Guo,Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut(Arachis hypogaea L.),PLoS One 10(2015)e0119454.

    [24]T.Liu,S.Zhu,L.Fu,Q.Tang,Y.Yu,P.Chen,M.Luan,C.Wang,S.Tang,Development and characterization of 1,827 expressed sequence tag-derived simple sequence repeat markers for ramie(Boehmeria nivea L.Gaud),PLoS One 8(2013)e60346.

    [25]W.Chen,Y.X.Liu,G.F.Jiang,De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana,Sci.Rep.5(2015)11144.

    [26]Q.Ding,J.Li,F.Wang,Y.Zhang,H.Li,J.Zhang,J.Gao,Characterization and development of EST-SSRs by deep transcriptome sequencing in Chinese cabbage(Brassica rapa L.ssp.pekinensis),Int.J.Genomics 473028(2015).

    [27]Y.F.Guo,K.E.Wiegert-Rininger,V.A.Vallejo,C.S.Barry,R.M.Warner,Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp.BMC Genomics 16(2015)726.

    [28]Y.Liu,P.Zhang,M.Song,J.Hou,M.Qing,W.Wang,C.Liu,Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis fisch,PLoS One 10(2015),e0143017.

    [29]C.Luo,H.X.Wu,Q.S.Yao,S.B.Wang,W.T.Xu,Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango,Genet.Mol.Res.14(2015)7914–7919.

    [30]S.Y.Zhang,C.Feng,C.J.Xu,C.Q.Zhu,K.S.Chen,Polymorphisms in different EST-SSR types derived from the Chinese bayberry(Myrica rubra,Myricaceae)transcriptome,Genet.Mol.Res.14(2015)6037–6041.

    [31]X.J.Zhou,Y.Y.Wang,Y.N.Xu,R.S.Yan,P.Zhao,W.Z.Liu,De novo characterization of flower bud transcriptomes and the development of EST-SSR markers for the endangered tree Tapiscia sinensis,Int.J.Mol.Sci.16(2015)12855–12870.

    [32]D.Xin,J.Sun,J.Wang,H.Jiang,G.Hu,C.Liu,Q.Chen,Identification and characterization of SSRs from soybean(Glycine max)ESTs,Mol.Biol.Rep.39(2012)9047–9057.

    [33]S.Li,S.W.Tighe,C.M.Nicolet,D.Grove,S.Levy,W.Farmerie,A.Viale,C.Wright,P.A.Schweitzer,Y.Gao,D.Kim,J.Boland,B.Hicks,R.Kim,S.Chhangawala,N.Jafari,N.Raghavachari,J.Gandara,N.Garcia-Reyero,C.Hendrickson,D.Roberson,J.Rosenfeldr,T.Smith,J.G.Underwood,M.Wang,P.Zumbo,D.A.Baldwin,G.S.Grills,C.E.Mason,Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study,Nat.Biotechnol.32(2014)915–925.

    [34]Y.N.Chen,X.P.Ren,X.J.Zhou,L.Huang,L.Y.Yan,Y.Lei,B.S.Liao,H.F.Jiang,Dynamics in the resistant and susceptible peanut(Arachis hypogaea L.)root transcriptome on infection with the Ralstonia solanacearum,BMC Genomics 15(2014)1078.

    [35]L.Geng,X.Duan,C.Liang,C.Shu,F.Song,J.Zhang,Mining tissue-specific contigs from peanut(Arachis hypogaea L.)for promoter cloning by deep transcriptome sequencing,Plant Cell Physiol.55(2014)1793–1801.

    [36]P.M.Guimaraes,A.C.M.Brasileiro,C.V.Morgante,A.C.Q.Martins,G.Pappas,O.B.Silva Jr.,R.Togawa,S.C.M.Leal-Bertioli,A.C.G.Araujo,M.C.Moretzsohn,D.J.Bertioli,Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection,BMC Genomics 13(2012)387.

    [37]X.Li,J.Lu,S.Liu,X.Liu,Y.Lin,L.Li,Identification of rapidly induced genes in the response of peanut(Arachis hypogaea)to water deficit and abscisic acid,BMC Biotechnol.14(2014)58.

    [38]D.Yin,Y.Wang,X.Zhang,H.Li,X.Lu,J.Zhang,W.Zhang,S.Chen,De novo assembly of the peanut(Arachis hypogaea L.)seed transcriptome revealed candidate unigenes for oil accumulation pathways,PLoS One 8(2013)e73767.

    [39]W.Zhu,X.P.Chen,H.Li,F.Zhu,Y.B.Hong,R.K.Varshney,X.Q.Liang,Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut,Plant Mol.Biol.85(2014)395–409.

    [40]H.M.Wang,Y.Lei,L.Y.Wan,L.Y.Yan,J.W.Lv,X.F.Dai,X.P.Ren,W.Guo,H.F.Jiang,B.S.Liao,Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus,BMC Plant Biol.16(2016)54.

    [41]L.M.Cuc,E.S.Mace,J.H.Crouch,V.D.Quang,T.D.Long,R.K.Varshney,Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut(Arachis hypogaea),BMC Plant Biol.8(2008)55.

    [42]R.L.Tatusov,N.D.Fedorova,J.D.Jackson,A.R.Jacobs,B.Kiryutin,E.V.Koonin,D.M.Krylov,R.Mazumder,S.L.Mekhedov,A.N.Nikolskaya,B.S.Rao,S.Smirnov,A.V.Sverdlov,S.Vasudevan,Y.I.Wolf,J.J.Yin,D.A.Natale,The COG database:an updated version includes eukaryotes,BMC Bioinf.4(2003)41.

    [43]M.Kanehisa,S.Goto,KEGG:Kyoto encyclopedia of genes and genomes,Nucleic Acids Res.28(2000)27–30.

    [44]I.Ahuja,R.Kissen,A.M.Bones,Phytoalexins in defense against pathogens,Trends Plant Sci.17(2012)73–90.

    [45]K.J.Liu,S.V.Muse,PowerMarker:an integrated analysis environment for genetic marker analysis,Bioinformatics 21(2005)2128–2129.

    [46]V.Arbona,A.Gomez-Cadenas,Metabolomics of disease resistance in crops,Curr.Issues Mol.Biol.19(2016)13–29.

    [47]S.S.Arya,A.R.Salve,S.Chauhan,Peanuts as functional food:a review,J.Food Sci.Technol.-Mysore 53(2016)31–41.

    [48]X.Q.Liang,X.P.Chen,Y.B.Hong,H.Y.Liu,G.Y.Zhou,S.X.Li,B.Z.Guo,Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.)and Arachis wild species,BMC Plant Biol.9(2009)35.

    [49]P.Koilkonda,S.Sato,S.Tabata,K.Shirasawa,H.Hirakawa,H.Sakai,S.Sasamoto,A.Watanabe,T.Wada,Y.Kishida,H.Tsuruoka,T.Fujishiro,M.Yamada,M.Kohara,S.Suzuki,M.Hasegawa,H.Kiyoshima,S.Isobe,Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp.Mol.Breed.30(2012)125–138.

    [50]S.P.Kumpatla,S.Mukhopadhyay,Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species,Genome 48(2005)985–998.

    [51]S.Kaur,L.W.Pembleton,N.O.Cogan,K.W.Savin,T.Leonforte,J.Paull,M.Materne,J.W.Forster,Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers,BMC Genomics 13(2012)104.

    [52]Y.M.Zhao,T.Zhou,Z.H.Li,G.F.Zhao,Characterization of global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers in two species of gynostemma(Cucurbitaceae),Molecules 20(2015)21214–21231.

    [53]G.Q.Song,M.J.Li,H.Xiao,X.J.Wang,R.H.Tang,H.Xia,C.Z.Zhao,Y.P.Bi,EST sequencing and SSR marker development from cultivated peanut(Arachis hypogaea L.),Electron.J.Biotechnol.13(2010)1010.

    [54]G.Agarwal,S.Jhanwar,P.Priya,V.K.Singh,M.S.Saxena,S.K.Parida,R.Garg,A.K.Tyagi,M.Jain,Comparative analysis of Kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers,PLoS One 7(2012),e52443.

    [55]Z.Wang,G.Yu,B.Shi,X.Wang,H.Qiang,H.Gao,Development and characterization of simple sequence repeat(SSR)markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M.truncatula genome,PLoS One 9(2014)e92029.

    [56]D.Metzgar,J.Bytof,C.Wills,Selection against frameshift mutations limits microsatellite expansion in coding DNA,Genome Res.10(2000)72–80.

    av天堂中文字幕网| 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 在线播放国产精品三级| av专区在线播放| 看免费成人av毛片| 在线观看66精品国产| 亚洲精品在线观看二区| 深夜精品福利| 两个人视频免费观看高清| 插阴视频在线观看视频| 99热全是精品| 国产精品一区二区免费欧美| 伦精品一区二区三区| 99视频精品全部免费 在线| 亚洲专区国产一区二区| 变态另类成人亚洲欧美熟女| 一进一出抽搐gif免费好疼| 亚洲精品亚洲一区二区| 亚洲自拍偷在线| 3wmmmm亚洲av在线观看| 日韩精品青青久久久久久| 欧美又色又爽又黄视频| 亚洲精品日韩在线中文字幕 | 大又大粗又爽又黄少妇毛片口| 赤兔流量卡办理| 两性午夜刺激爽爽歪歪视频在线观看| 91狼人影院| 亚洲av五月六月丁香网| 中文亚洲av片在线观看爽| 日本黄大片高清| 午夜影院日韩av| 欧美日韩精品成人综合77777| 日韩制服骚丝袜av| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频| 成人漫画全彩无遮挡| 日本a在线网址| 99riav亚洲国产免费| 久久久国产成人免费| 久久久国产成人免费| 国产乱人偷精品视频| 国产在线精品亚洲第一网站| 免费av观看视频| 免费观看在线日韩| 亚洲精品日韩在线中文字幕 | 男女下面进入的视频免费午夜| 综合色丁香网| 高清毛片免费看| h日本视频在线播放| avwww免费| av视频在线观看入口| 国产精品久久久久久久久免| h日本视频在线播放| 男女做爰动态图高潮gif福利片| 丝袜美腿在线中文| 亚洲av成人精品一区久久| 中国国产av一级| 俺也久久电影网| 亚洲美女搞黄在线观看 | 亚洲最大成人手机在线| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| 特级一级黄色大片| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 免费观看人在逋| 性欧美人与动物交配| 不卡视频在线观看欧美| 香蕉av资源在线| 永久网站在线| 国产精品无大码| 五月伊人婷婷丁香| 伦理电影大哥的女人| 久久精品国产亚洲av涩爱 | 国产激情偷乱视频一区二区| 国产精品人妻久久久久久| 久久久久国产精品人妻aⅴ院| 三级经典国产精品| 寂寞人妻少妇视频99o| 婷婷精品国产亚洲av在线| 一进一出好大好爽视频| 男女边吃奶边做爰视频| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 精品人妻熟女av久视频| 日本黄色片子视频| av黄色大香蕉| 午夜免费男女啪啪视频观看 | 欧美性感艳星| 最近手机中文字幕大全| 美女 人体艺术 gogo| 精品久久久久久久久久久久久| 秋霞在线观看毛片| 最近中文字幕高清免费大全6| 天美传媒精品一区二区| 深爱激情五月婷婷| 久久天躁狠狠躁夜夜2o2o| 99久国产av精品国产电影| 国产片特级美女逼逼视频| 亚洲美女黄片视频| 国产伦精品一区二区三区视频9| 国产精品av视频在线免费观看| 国产私拍福利视频在线观看| 国产一区二区在线av高清观看| 亚洲av一区综合| av在线播放精品| 日本一二三区视频观看| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 午夜久久久久精精品| 青春草视频在线免费观看| 成人永久免费在线观看视频| 熟女电影av网| 久久欧美精品欧美久久欧美| 最好的美女福利视频网| www.色视频.com| 国产精品日韩av在线免费观看| 日本一二三区视频观看| 蜜桃久久精品国产亚洲av| 亚洲欧美成人精品一区二区| 日韩制服骚丝袜av| 在线看三级毛片| 国内精品一区二区在线观看| 国产高清视频在线观看网站| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 亚洲精品粉嫩美女一区| 九九爱精品视频在线观看| 少妇高潮的动态图| 亚洲精品日韩av片在线观看| 成人国产麻豆网| 伊人久久精品亚洲午夜| 国产精品一区二区性色av| 久久精品国产亚洲av香蕉五月| 97在线视频观看| 一区二区三区免费毛片| 少妇人妻精品综合一区二区 | 亚洲av成人av| 午夜亚洲福利在线播放| 亚洲va在线va天堂va国产| 国产淫片久久久久久久久| 欧美中文日本在线观看视频| 亚洲在线观看片| 人妻制服诱惑在线中文字幕| 国产高清视频在线播放一区| 日韩欧美精品v在线| 亚洲内射少妇av| 美女高潮的动态| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 亚洲av不卡在线观看| 99视频精品全部免费 在线| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 级片在线观看| 日韩欧美精品v在线| 最后的刺客免费高清国语| 国产伦精品一区二区三区四那| 91av网一区二区| 99riav亚洲国产免费| 午夜视频国产福利| 婷婷色综合大香蕉| 欧美色视频一区免费| 国产午夜精品论理片| 丰满的人妻完整版| 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 久久久成人免费电影| 男人和女人高潮做爰伦理| 色5月婷婷丁香| 看非洲黑人一级黄片| 国产成人影院久久av| 久久久久久久久中文| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 国产成人福利小说| 亚洲国产精品国产精品| 午夜福利高清视频| 一区二区三区四区激情视频 | 91久久精品电影网| 18禁在线无遮挡免费观看视频 | 两个人视频免费观看高清| 国产精品一区二区免费欧美| avwww免费| 国产淫片久久久久久久久| 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 自拍偷自拍亚洲精品老妇| 久久久久国内视频| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 国产人妻一区二区三区在| 看免费成人av毛片| 天堂√8在线中文| 91精品国产九色| 久久久久久久久久成人| 国产三级在线视频| 天美传媒精品一区二区| 女人十人毛片免费观看3o分钟| 欧美成人精品欧美一级黄| 熟妇人妻久久中文字幕3abv| 天天躁夜夜躁狠狠久久av| 九九热线精品视视频播放| av女优亚洲男人天堂| 亚洲图色成人| 老师上课跳d突然被开到最大视频| 直男gayav资源| 国产亚洲精品综合一区在线观看| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 国产精品一区二区免费欧美| 在线天堂最新版资源| 日本精品一区二区三区蜜桃| 国产片特级美女逼逼视频| 亚洲三级黄色毛片| 22中文网久久字幕| 国产高清有码在线观看视频| 国产又黄又爽又无遮挡在线| 日本免费一区二区三区高清不卡| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 久久草成人影院| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 免费看美女性在线毛片视频| 一级av片app| 免费无遮挡裸体视频| 亚洲一级一片aⅴ在线观看| 性色avwww在线观看| 久久久欧美国产精品| 国产乱人视频| 床上黄色一级片| 国产人妻一区二区三区在| 亚洲成av人片在线播放无| 97碰自拍视频| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 久久热精品热| 日韩成人av中文字幕在线观看 | 在线a可以看的网站| 日本精品一区二区三区蜜桃| 99热全是精品| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 最后的刺客免费高清国语| 可以在线观看毛片的网站| 身体一侧抽搐| 欧美一区二区国产精品久久精品| 少妇熟女欧美另类| 久久久欧美国产精品| 亚洲精品在线观看二区| 免费观看人在逋| 久久人妻av系列| 一区二区三区高清视频在线| 欧美日韩乱码在线| 老女人水多毛片| 神马国产精品三级电影在线观看| 欧美激情在线99| 亚洲三级黄色毛片| 黄片wwwwww| 亚洲国产精品成人久久小说 | 熟女电影av网| 欧美一区二区国产精品久久精品| 精品日产1卡2卡| 日本黄色视频三级网站网址| 久久久精品94久久精品| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 中文在线观看免费www的网站| 91午夜精品亚洲一区二区三区| av在线播放精品| 国产在视频线在精品| 国产乱人视频| 校园人妻丝袜中文字幕| 极品教师在线视频| 91久久精品电影网| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 最好的美女福利视频网| 春色校园在线视频观看| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 亚洲国产色片| 免费人成在线观看视频色| 久久热精品热| 在线观看美女被高潮喷水网站| 99久久成人亚洲精品观看| 国产乱人视频| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清在线视频| 亚洲精品一区av在线观看| 久久久久国内视频| 国产探花在线观看一区二区| 97碰自拍视频| 亚洲av熟女| 天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 男女啪啪激烈高潮av片| 激情 狠狠 欧美| 亚洲精品一区av在线观看| 一个人免费在线观看电影| 老女人水多毛片| 免费观看在线日韩| 日韩制服骚丝袜av| 中国美女看黄片| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 床上黄色一级片| 麻豆乱淫一区二区| 国产精品国产高清国产av| 日本 av在线| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 美女免费视频网站| 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| 一级毛片我不卡| 免费av不卡在线播放| 夜夜爽天天搞| .国产精品久久| 欧美zozozo另类| 国产精品乱码一区二三区的特点| 国产精品女同一区二区软件| 内射极品少妇av片p| 国产精品女同一区二区软件| 亚洲成av人片在线播放无| 欧美性猛交黑人性爽| 成人欧美大片| 97在线视频观看| 日韩一区二区视频免费看| 亚洲熟妇熟女久久| av专区在线播放| 床上黄色一级片| 啦啦啦韩国在线观看视频| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 有码 亚洲区| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 99精品在免费线老司机午夜| 一级毛片电影观看 | 国产精品嫩草影院av在线观看| 国产视频一区二区在线看| videossex国产| 亚洲专区国产一区二区| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 春色校园在线视频观看| 亚洲成人久久性| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 欧美色欧美亚洲另类二区| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类| 国产一区二区三区av在线 | 伊人久久精品亚洲午夜| 色播亚洲综合网| 亚洲色图av天堂| 日韩av在线大香蕉| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 91在线观看av| 国产精品一区二区三区四区久久| 欧美成人免费av一区二区三区| 老熟妇仑乱视频hdxx| 国产黄色小视频在线观看| 中出人妻视频一区二区| 99视频精品全部免费 在线| 成人漫画全彩无遮挡| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 中文资源天堂在线| 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 亚洲av中文字字幕乱码综合| 国产高清视频在线观看网站| 欧美极品一区二区三区四区| 在线观看av片永久免费下载| 超碰av人人做人人爽久久| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 夜夜爽天天搞| 国产精品野战在线观看| 色综合亚洲欧美另类图片| 精品人妻熟女av久视频| 久久久欧美国产精品| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 亚洲最大成人手机在线| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 别揉我奶头~嗯~啊~动态视频| av在线亚洲专区| 精华霜和精华液先用哪个| 亚洲国产色片| 免费无遮挡裸体视频| 亚洲熟妇熟女久久| 麻豆av噜噜一区二区三区| 伦理电影大哥的女人| 成人特级av手机在线观看| 亚洲第一电影网av| 日韩av不卡免费在线播放| 我要搜黄色片| 丝袜喷水一区| 久久人人精品亚洲av| 禁无遮挡网站| 亚洲,欧美,日韩| 女生性感内裤真人,穿戴方法视频| 国产综合懂色| 国产成人福利小说| 久久久久久久久久成人| 精品久久久久久久末码| 国产精品久久久久久久电影| 欧美xxxx性猛交bbbb| 午夜影院日韩av| 精品日产1卡2卡| 一进一出好大好爽视频| 国产欧美日韩精品一区二区| 免费大片18禁| 在线观看66精品国产| 男人和女人高潮做爰伦理| 嫩草影视91久久| 欧美中文日本在线观看视频| 色综合亚洲欧美另类图片| 精品久久久噜噜| 九色成人免费人妻av| 国产亚洲精品av在线| 狠狠狠狠99中文字幕| 日本成人三级电影网站| 精品人妻熟女av久视频| 亚洲成人中文字幕在线播放| 又爽又黄a免费视频| 国产精品一区二区三区四区久久| 欧美高清成人免费视频www| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 国产亚洲av嫩草精品影院| 中文字幕av成人在线电影| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱| 成人美女网站在线观看视频| 黄色视频,在线免费观看| 99久久九九国产精品国产免费| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 欧美+亚洲+日韩+国产| 国产亚洲精品av在线| 十八禁网站免费在线| 黄色欧美视频在线观看| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 亚洲精品国产成人久久av| 精品国内亚洲2022精品成人| 久久精品影院6| 中文字幕久久专区| 亚洲av美国av| 在线播放国产精品三级| 国产一区二区在线观看日韩| 欧美成人免费av一区二区三区| 91av网一区二区| 美女高潮的动态| 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄 | av在线观看视频网站免费| 午夜激情欧美在线| 97碰自拍视频| 久久99热6这里只有精品| 国产精品综合久久久久久久免费| 久久久色成人| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 日韩人妻高清精品专区| 热99re8久久精品国产| 午夜福利在线在线| 色视频www国产| 色在线成人网| 性欧美人与动物交配| 一级a爱片免费观看的视频| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 国产精品伦人一区二区| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 午夜a级毛片| 成人二区视频| 欧美日韩精品成人综合77777| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 人妻久久中文字幕网| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 99热网站在线观看| 国产在视频线在精品| 国产精品人妻久久久影院| 联通29元200g的流量卡| 久久久久久国产a免费观看| 免费av观看视频| 俄罗斯特黄特色一大片| 免费看光身美女| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美成人精品一区二区| 美女xxoo啪啪120秒动态图| 国产午夜精品论理片| 综合色丁香网| 国产精品一区二区三区四区免费观看 | 久久99热6这里只有精品| 亚洲美女黄片视频| 国产v大片淫在线免费观看| 一a级毛片在线观看| 亚洲久久久久久中文字幕| 精品一区二区免费观看| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 人妻丰满熟妇av一区二区三区| 久久久精品94久久精品| 中文资源天堂在线| 日本爱情动作片www.在线观看 | 一个人观看的视频www高清免费观看| .国产精品久久| 午夜福利视频1000在线观看| 永久网站在线| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 日本精品一区二区三区蜜桃| 一级毛片aaaaaa免费看小| АⅤ资源中文在线天堂| 麻豆一二三区av精品| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 日日摸夜夜添夜夜爱| 国产视频一区二区在线看| 亚洲欧美日韩高清专用| 男人舔奶头视频| 亚洲一区高清亚洲精品| www日本黄色视频网| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区三区四区久久| 国产在线男女| 成人午夜高清在线视频| 国产精品亚洲一级av第二区| 国产真实乱freesex| 亚洲真实伦在线观看| 性欧美人与动物交配| 日韩中字成人| 久久久久久久久久久丰满| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 超碰av人人做人人爽久久| 伦理电影大哥的女人| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 国产亚洲欧美98| 午夜a级毛片| 午夜精品一区二区三区免费看| 欧美一区二区国产精品久久精品| 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 国产成人精品久久久久久| 韩国av在线不卡| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 麻豆国产97在线/欧美| 在线播放无遮挡| av卡一久久| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 久久精品国产自在天天线| 国产又黄又爽又无遮挡在线| 国产精品三级大全| 欧美人与善性xxx| 亚洲五月天丁香| 免费在线观看影片大全网站| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 男女那种视频在线观看| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 老熟妇仑乱视频hdxx| 国产精品伦人一区二区| 99久久中文字幕三级久久日本| 国产精品野战在线观看| 观看美女的网站| 欧美最新免费一区二区三区| 在线免费十八禁| 国产真实伦视频高清在线观看| 午夜久久久久精精品| 亚洲精品国产成人久久av| 国产毛片a区久久久久| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 精品午夜福利视频在线观看一区| 亚洲av免费在线观看|