• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation

    2018-04-12 03:33:54LiChenYupengCaiXiujieLiuChenGuoShiSunCunxiangWuBingjunJiangTianfuHanWenshengHou
    The Crop Journal 2018年2期
    關(guān)鍵詞:監(jiān)督機(jī)構(gòu)代表大會最大化

    Li Chen, Yupeng Cai, Xiujie Liu, Chen Guo, Shi Sun, Cunxiang Wu,Bingjun Jiang, Tianfu Han, Wensheng Hou,*

    a National Center for Transgenic Research in Plants,Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    b Ministry of Agriculture Key Laboratory of Soybean Biology(Beijing),Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    1.Introduction

    Agrobacterium rhizogenes contains a root-inducing(Ri)plasmid that contains root locus(rol)genes in the T-DNA region,including rolA,rolB,rolC,and rolD,and is able to induce hairy roots from the wounded surface of explants after infection[1].The hairy roots can be maintained in culture or hosted in composite plants with untransformed aerial tissue.Agrobacterium rhizogenes-mediated transformation has been widely used in many plants,such as Glycine max[2],Capsicum annuum[3],Lotus corniculatus[4],Prunus[5],Pisum sativum[6],and Catharanthus roseus[7].

    Soybean(Glycine max(L.)Merr.)is one of the most important crops and has high oil and protein contents.With the development of biotechnology,advances in breeding,functional research and targeted genetic modifications have become essential for studying soybean.Thus,efficient transformation systems are required to advance soybean research.At present,Agrobacterium tumefaciens-mediated transformation and biolistic methods are the methods most frequently used for soybean transformation[8,9].However,these techniques are too inefficient and labor-intensive to meet the increased demands of research[2].

    Several successful soybean studies have been performed using Agrobacterium rhizogenes and taking advantage of the hairy root system.For gene function studies,overexpression of GmACSL2(long-chain acyl-CoA synthetase 2)in soybean hairy roots was observed to reduce lipid and fatty acid content,suggesting that GmACSL2 is an important enzyme that catalyzes the five fatty acids(C16:0,C18:0,C18:1,C18:2,and C18:3 fatty acids)to form acyl-coenzymes [10].Overexpression of TaNHX2(Na+/H+antiporter 2)in hairy roots improves the salinity tolerance of transgenic roots.Under salt stress,a general growth inhibition in hairy roots was observed,but hairy roots transformed with the control vector without TaNHX2 showed much less growth(on a dry-weight basis)than transgenic hairy roots overexpressing TaNHX2[2].For promoter studies,the specificity of the soybean root promoter could be used to detect expression in hairy roots.Using this method,activities,enhancers,repressors,and the core region of the promoter could be easily observed in the hairy root system[11,12].The soybean hairy root system was also used to test the expression efficiency of an RNAi vector and was successfully applied to the CRISPR/Cas9 system[13–15].

    Compared with A.tumefaciens-mediated transformation of soybean,the A.rhizogenes-mediated hairy root transformation system has a high transformation efficiency and short transformation period.The procedure can be completed within one month.Hairy roots are usually non-chimeric,because they are derived from single cells and each hairy root consists of uniformly transformed cells[16].Furthermore,hairy roots can grow without exogenous hormones[17].

    In this report,the process for producing soybean hairy roots is described and illustrated.Using this method,90%–99% of the infected explants of five different cultivars produced hairy roots within one month,and 30%–60%of the hairy roots induced were transformed.In addition,the formation of calluses from hairy roots can be successfully induced.An efficient in vitro hairy root system was established,it would be an efficient and rapid platform for study of soybean gene function.

    2.Materials and methods

    2.1.Plant materials

    Five soybean cultivars(Williams 82,Jack,Zigongdongdou,Heihe 27,and Zhonghuang 30)were used for Agrobacterium rhizogenes-mediated transformation.

    2.2.Plasmid construction

    In addition to the desired transgenic construct,plasmids for the transformation of soybean require a linked reporter gene marker.We designed a plasmid with three reporter genes(GUS,GFP,and DsRed2)under the constitutive promoter CaMV 35S for rapidly checking for positive hairy roots.

    2.3.Strain

    The plasmid vector with the three reporter genes(GUS,GFP,and DsRed2)was mobilized into Agrobacterium rhizogenes K599 via electroporation for use in later soybean infection.

    2.4.Preparation of culture medium

    The media used in this protocol were(1)solidified YEP medium,composed of 10 g L?1tryptone,5 g L?1yeast extract,5 g L?1NaCl,and 15 g L?1agar(pH 7.0);(2)liquid YEP medium,composed of 10 g L?1tryptone,5 g L?1yeast extract,and 5 g L?1NaCl(pH 7.0);(3)MS liquid medium,composed of 4.33 g L?1MURASHIGE&SKOOG BASAL SALT MIXTURE(PhytoTechnology,M524),30 g L?1sucrose (pH 5.8)and 1 mL L?1of MURASHIGE&SKOOG VITAMIN SOLUTION(PhytoTechnology,M533);(4)germination culture medium(GCM),composed of 3.1 g L?1GAMBORGS BASAL SALT MIXTURE(PhytoTechnology,G768),20 g L?1sucrose,7 g L?1agar(pH 5.8),and 1 mL L?1of GAMBORGS VITAMIN SOLUTION(PhytoTechnology,G249);(5)co-cultivation culture medium(CCM),composed of 0.433 g L?1MURASHIGE&SKOOG BASAL SALT MIXTURE,30 g L?1sucrose,3.9 g L?1MES(Sigma,M3671),7 g L?1agar(pH 5.4),1 mL L?1of MURASHIGE&SKOOG VITAMIN SOLUTION,150 mg L?1DTT(Sigma,D5545),and 0.02 g L?1AS(Sigma,D134406);(6)washing culture medium(WCM),composed of 2.165 g L?1MURASHIGE&SKOOG BASAL SALT MIXTURE,30 g L?1sucrose(pH 5.8),1 mL L?1of MURASHIGE&SKOOG VITAMIN SOLUTION,250 mg L?1cefotaxime sodium salt(Sigma,C7039),and 250 mg L?1carbenicillin disodium salt(INALCO,1758–9317);(7)induction culture medium(ICM),composed of 2.165 g L?1MURASHIGE&SKOOG BASAL SALT MIXTURE,30 g L?1sucrose,0.6 g L?1MES,7 g L?1agar (pH 5.8),1 mL L?1of MURASHIGE&SKOOG VITAMIN SOLUTION,250 mg L?1cefotaxime sodium salt,and 250 mg L?1carbenicillin disodium salt;and(8)callus induction culture medium(CICM),composed of 2.165 g L?1MURASHIGE&SKOOG BASAL SALT MIXTURE,30 g L?1sucrose,0.6 g L?1MES,7 g L?1agar(pH 5.8),1 mL L?1of MURASHIGE&SKOOG VITAMIN SOLUTION,1 mg L?12,4-D(Sigma,D7299),0.2 mg L?16-BA(Sigma,B3408),250 mg L?1cefotaxime sodium salt,and 250 mg L?1carbenicillin disodium salt.All media were autoclaved at 121°C for 15 min.

    2.5.Detection of transgenic hairy roots

    According to reporter gene in the designed vector,any reporter gene can be used to detect transgenic hairy roots.GUS can be assessed by GUS staining,whereas GFP and DsRed2 can be assessed by fluorescence.Hairy roots were directly screened using a dissecting fluorescence microscope(Nikon SMZ1500),and transgenic hairy roots showed GFP or DsRed2 fluorescence labeling.Histochemical GUS assays were performed following Jefferson[18].The hairy roots were placed in GUS staining solution(50 mmol L?1sodium phosphate,pH 7.0,0.5 mmol L?1potassium ferrocyanide,0.5 mmol L?1potassium ferricyanide, 0.5 mg mL?15-bromo-4-chloro-3-indolyl-β-D-glucuronide(X-Gluc),0.1%Triton X-100,and 20%methanol)and incubated at 37°C overnight.GUS staining was observed under a Nikon SMZ1500 microscope and photographed with a Nikon DS-Fil camera.

    3.Results

    An overview of the protocol is shown in Fig.1.The process had five primary working phases:(1)the selected soybean seeds were sterilized with chlorine gas for 16–20 h.(2)The sterilized seeds were planted onto GCM and cultured for 4–5 days,depending on genotype.A higher temperature(30°C)will accelerate the germination process,so that a short germination time is more appropriate.During this time,the Agrobacterium strain was prepared.(3)Cotyledons with the wounded points of attachment of the cotyledon and hypocotyls were immersed in a suspension of the Agrobacterium strain for 30 min.(4)The explants were transferred to CCM and cultured for 5 days.(5)After rinsing in WCM,the explants were transferred to ICM.Hairy roots formed in 10–12 days in ICM.

    Fig.1–Schematic illustration of the protocol for soybean hairy root induction.The phase column includes sterilization,germation,infection,co-cultivation,and induction.GCM,germination culture medium;CCM,co-cultivation culture medium;ICM,induction culture medium.

    3.1.Sterilization of soybean seeds and germination

    Healthy seeds,typically with smooth surfaces and without disease lesions,were carefully selected and placed side by side in Petri dishes.The open Petri dishes were placed in a vacuum desiccator in a fume hood(Fig.2-a,b).A 100 mL volume of 10%sodium hypochlorite was placed in a 100-mL beaker in the desiccator,after which 4 mL of 12 mol L?1HCl was slowly added and the desiccator was immediately covered with a lid and sealed with Vaseline.The seeds were exposed to the chlorine gas for 16–20 h(Fig.2-c,d).The time for seed sterilization should not exceed 20 h,as a long sterilization time will result in poor germination.After sterilization,the Petri dishes were removed.During sterilization,the germination culture medium was prepared.The sterilized seeds were cultivated in GCM,with each dish typically containing 20 seeds(Fig.2-e).The seeds were grown in a growth chamber at 28°C for 5 days(Fig.2-f).The entire cotyledons from 5-day-old seedlings were then harvested as explants.

    首先,普通村民在監(jiān)督機(jī)構(gòu)中須占有一定比例。仿照公司模式,監(jiān)督機(jī)構(gòu)成員由村小組代表大會選舉產(chǎn)生,這是為了對監(jiān)督機(jī)構(gòu)統(tǒng)一領(lǐng)導(dǎo)。但正是因?yàn)檫@樣,監(jiān)督機(jī)構(gòu)很可能變得比較被動,因此需要在其中加入一定比例的普通村民,以保證監(jiān)督機(jī)構(gòu)的作用發(fā)揮到最大化,村民的合法權(quán)益也才會得到真正保障。

    3.2.Preparation of the Agrobacterium strain for infection

    During seed germination,the YEP plates and YEP liquid medium were prepared.Bacteria(from glycerol stock)were streaked onto the surface of the YEP plates containing appropriate antibiotics(Fig.3-a)and the plates were incubated at 28 °C for 2 days(Fig.3-b–d).Next,a single colony was placed into a 20 mL of fresh YEP liquid containing appropriate antibiotics,and incubated at 28°C overnight with shaking at 200 r min?1.The Agrobacterium strain used for infection can be prepared using either of the two methods described below.One method is to use the YEP liquid directly for immersion after incubation.When the OD600of the Agrobacterium culture reaches 0.6,the YEP liquid can be used directly for immersion(Fig.3-e).An alternative method is to resuspend the bacteria in MS liquid medium.When the OD600of the Agrobacterium culture reaches 1.2,the bacteria are collected by centrifugation at 5000 r min?1for 10 min and resuspended in MS liquid medium at an OD600of 0.6 for the immersion step(Fig.3-f).

    3.3.Preparation of explants and infection

    Five-day-old seedlings were used for infection experiments.Cotyledons with 0.5-cm hypocotyls were cut from seedlings(Fig.4-a,b).Two methods may be used to divide the pair of cotyledons into individual ones.One is to cut from cotyledon to hypocotyls(Fig.4-c)and the other is to cut from hypocotyls to cotyledon(Fig.4-d).The pair of cotyledons is divided into single ones(Fig.4-e),and the points of attachment of the cotyledon and hypocotyls are wounded with a blade(Fig.4-f)previously dipped into the A.rhizogenes K599 strain prepared earlier,such that one cotyledon has seven or eight scars(Fig.4-g).The cotyledons are then immersed in an A.rhizogenes culture and shaken at 50 r min?1at 28 °C for 30 min(Fig.4-h).During seed germination,CCM is prepared.

    Fig.2–Sterilization of soybean seeds and germination.Healthy seeds were carefully selected and arranged side by side in Petri dishes(a),the open Petri dishes were placed in a vacuum desiccator in the fume hood(b),a 100-mL beaker was placed in the desiccator,and 100 mL of 10%sodium hypochlorite and 4 mL of 12 mol L?1HCl were added(c),the seeds were kept in the chlorine gas for 16–20 h(d),the sterilized seeds were cultivated in GCM(e),and the 5-day-old seedlings were harvested for the explants(f).GCM:germination culture medium.Scale bar,10 mm.

    Fig.3 –Preparation of the Agrobacterium strain for infection.Bacteria stored in glycerol at?80 °C(a),inoculating loop soaked bacteria(b),streaking culture on the YEP plates containing the appropriate antibiotics(c),incubation at 28°C for 2 days(d),direct use of YEP liquid for immersion when the Agrobacterium strain reaches an OD600of 0.6(e),and resuspension of the bacterial strain in MS liquid medium at an OD600of 0.6(f).

    3.4.Co-cultivation

    After infection,the explants were dried on sterile filter paper and then transferred to CCM covered with sterile filter paper and incubated under 16 h light/8 h dark at 22°C(Fig.5-a).During 5 days of co-cultivation,the cotyledons expanded and the Agrobacterium adhered to the surface of the cotyledons(Fig.5-b).It can be seen that the cotyledon is markedly larger than before co-cultivation(Fig.5-c,d).If the cotyledons have not swelled after 5 days of co-cultivation,hairy roots will not emerge.This result may indicate that the Agrobacterium strain is incompetent and that the Agrobacterium will need to be reprepared for successful infection.During the co-cultivation,WCM and ICM were prepared.

    3.5.Induction of hairy roots and detection

    After co-cultivation,the Agrobacterium adhered to the surface of the cotyledons,so that the cotyledons needed to wash in WCM before being transferred to ICM.The cotyledons can be picked up with a triangular flask(Fig.6-a).Typically,the cotyledons were washed three times until WCM became clear(Fig.6-b),after which explants were dried on sterile filter paper.This step can prevent the Agrobacterium from regrowing during the inducing phase.The cleaned cotyledons were then transferred to ICM.The cotyledon was inserted into the culture medium at a 45°angle,with the abaxial surface downward.Each dish contained five cotyledons(Fig.6-c),and was incubated under a 16 h light/8 h dark at 28°C.The hypocotyls formed calluses during the inducing process(Fig.6-d,e).If a callus did not form,positive hairy roots were not produced.In the present study,hairy roots were produced within approximately 10–12 days and grew very quickly.Within 12–15 days,the hairy roots could spread throughout the culture medium(Fig.6-f).

    Fig.4–Preparation of explants and infection.Cotyledons with long hypocotyls were cut from 5-day-old seedlings in the medium(a),cotyledons with 0.5 cm hypocotyls for explants(b),the pair of cotyledons were separated from cotyledon to hypocotyls(c),the pair of cotyledons were separated from hypocotyls to cotyledon(d),the pair of cotyledons was divided into two individual cotyledons(e),the attachment points of the cotyledon and hypocotyls were wounded with a blade(f),one cotyledon has seven or eight scars(g),and the cotyledons were immersed into an A.rhizogenes culture and shaken at 50 r min?1at 28 °C for 30 min(h).Scale bar,10 mm.

    Fig.5–Explants at the co-cultivation stage.After infection,the explants were dried on sterile filter paper and transferred to CCM covered with sterile filter paper,then incubated in a 16 h light/8 h dark cycle at 22°C(a),5 days after co-cultivation,the cotyledons were expanded and the Agrobacterium adhered to the surface of the cotyledons(b),the cotyledon was co-cultivated for 1 day(c),and the cotyledon was co-cultivated for 5 days(d).CCM:co-cultivation culture medium.Scale bar,10 mm.

    Typically,positive roots may be selected by GUS staining,GFP,and DsRed2(Fig.6-g–i).The positive roots can be used for analyzing the activity of reporter genes,assessing phenotypes,and/or conducting a preliminary study of gene function.

    Fig.6–Induction of hairy root formation and detection.The cotyledons were washed in WCM(a),the cotyledons were washed three times until WCM became clear(b),the entire,washed cotyledons were transferred to induction culture medium,with each dish containing five cotyledons(c),the hypocotyls formed a callus in the induction process(d,e),the hairy roots were produced and spread onto the whole culture medium(f),positive roots were selected by GUS staining or GFP or DsRed2(g–i).WCM:washing culture medium.Scale bar,10 mm.

    3.6.Analysis of transgenic efficiency

    The seeds of five soybean cultivars were used in this protocol for transformation.All tested cultivars were able to produce hairy roots,and the proportion of hairy roots generated was between 90%–99%.Zigongdongdou had the highest generation proportion of almost 99%,followed by Jack and Williams 82 with>95%and Heihe 27 and Zhonghuang 30 with>90%(Table 1).The positive proportion of the hairy roots was between 30%–60%.The highest positive proportion forhairy roots was 58%in Zigongdongdou,and the lowest was 35%in Zhonghuang 30(Table 1).

    3.7.Calluses induced by hairy roots

    The positive hairy roots were used for callus induction by transfer to CICM.Hairy roots need to be transferred to new callus-inducing medium every 2 weeks,and the callus will produce for approximately 30 days.The callus can be used to test the integration of transgenes.Three reporter genes were detected in callus from positive hairy roots(Fig.7).Callus can be continuously conserved in the culture medium for reproduction and shoot induction research.

    4.Discussion

    The protocol described in this study is a rapid and efficient approach for inducing soybean hairy roots in vitro.The technology is more practical than other methods,owing to its high productivity and low cost.Transgenic hairy roots canbe obtained in a short period of time(approximately 3–4 weeks)and can be directly used for research.In comparison,the Agrobacterium tumefaciens-mediated transformation approach typically requires up to 3–4 months to obtain a T0plant and the T1transgenic plants needs to be harvested for research[2].

    Table 1–The generation rate of hairy roots and the positive rate of hairy roots.

    The hairy root system could be an excellent system for molecular studies and genetic engineering in which the production of transgenic plants is not necessary[19],such as the production of recombinant proteins and secondary metabolites[20–22],metabolic engineering and quick functional analyses of genes[23–25],rhizosphere physiology,and biochemistry[26].Recombinant protein production in the hairy root system has proved to be a rapid,low-cost,and reliable method for the production of valuable proteins.Metabolic engineering can elucidate the biosynthetic pathway for phytochemicals in hairy root cultures.Genetic studies can be performed with the hair root system,including foreign gene expression and gene function analyses.Root physiology studies ranging from nitrogen fixation,iron-deficiency,aluminum toxicity,and host-pathogen interactions can be conducted in hairy root cultures[27,28].

    Fig.7 –Reporter gene detection in callus from hairy roots.GUS detection(a–d),callus from hairy roots with the GUS reporter gene(a)and control(b).(c)and(d)show GUS staining of(a)and(b),respectively;GFP detection(e–h),callus from hairy roots with the GFP reporter gene(e)and control(f).Calluses in(g)and(h)were placed under fluorescent light to detect GFP for(e)and(f),respectively;DsRed2 detection(i–l),callus from hairy roots with the DsRed2 reporter gene(i)and control(j).Calluses in(k)and(l)were placed under red fluorescent light to detect DsRed2 for(i)and(j),respectively.Scale bar,5 mm.

    Kereszt et al.[29]reported a protocol for Agrobacterium rhizogenes-mediated transformation of soybean that primarily focused on the formation of composite plants by A.rhizogenes in field cultivation with hairy roots produced by hypocotyls.In our protocol,the hairy roots are generated from cotyledons and are completely grown in vitro,which can be controlled more easily than in an open condition.Thus,the experiments can be conducted in a relatively stable environment.Mohammadi-Dehcheshmeh et al.[30]have modified Kereszt's protocol by combining both in vitro and in vivo strategies for hairy root transformation,and the transformation frequency is greatly improved compared with Kereszt's protocol.Our protocol requires only preparation of media using common reagents.

    The transgenic hairy roots derived from cotyledons in our protocol can be used in rootbiology and gene function studies but are notsuitable for rootnodule studies.The transgenic hairy roots derived from hypocotyls with aerial shoots represent a better system for root nodule and nitrogen fixation studies.

    The transgenic hairy roots can be successfully induced to form calluses,and three reporter genes were detected in calluses induced from soybean transgenic hairy root.The callus generated using our method can support a continuous subculture for long-term maintainance of the materials.Shoots can be generated from calluses in some plants,such as Codonopsis lanceolata[31],Rehmannia glutinosa[32],and Medicago truncatula[33].Unlike for other plant species,there has been no report to date of successful plant regeneration from soybean hairy roots,although the recovery of stable soybean transgenic plants from primary-node explants infected by a disarmed A.rhizogenes strain has been reported[34].If this difficulty is solved,the hairy root system will represent a fast and efficient technology for obtaining transgenic soybean plants.

    5.Conclusions

    This report describes a detailed protocol for A.rhizogenes transformation of soybean.The present protocol has a high transformation efficiency.On average,90%–99% of A.rhizogenes-infected cotyledons generated hairy roots,and they were produced in all soybean cultivars tested.The positive proportion of hairy root formation,as assessed by detecting the reporter gene,reached 30%–60%.The procedure is rapid and simple.Using this method,hairy roots can be obtained within one month and could be used for gene function studies.Several independent transformation events can be obtained by this method,given that every transgenic root originates from a single cell and represents an independent transformation event.The hairy roots can be used to successfully induce calluses.This protocol may become a powerful tool for soybean genetic engineering.

    This work was supported by the Major Science and Technology Projects of China(2016ZX08010-004),the Ministry of Science and Technology of China(2016YFD0100504)and the CAAS(Chinese Academy of Agriculture Sciences)Innovation Project.

    [1]M.C.Christey,R.H.Braun,Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation,in:Leandro Pe?a(Ed.),Transgenic Plants:Methods and Protocols,Methods in Molecular Biology,Vol.286,Humana Press,Totowa,New Jersey,USA 2005,pp.47–60.

    [2]D.Cao,W.S.Hou,W.Liu,W.W.Yao,C.X.Wu,X.B.Liu,T.F.Han,Overexpression of TaNHX2 enhances salt tolerance of‘composite'and whole transgenic soybean plants,Plant Cell Tissue Organ Cult.107(2011)541–552.

    [3]J.Aarrouf,P.Castro-Quezada,S.Mallard,B.Caromel,Y.Lizzi,V.Lefebvre,Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper(Capsicum annuum):a new and efficient tool for functional analysis of genes,Plant Cell Rep.31(2012)391–401.

    [4]B.Jian,W.S.Hou,C.X.Wu,B.Liu,W.Liu,S.K.Song,Y.R.Bi,T.F.Han,Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants:a valuable tool for functional genomics,BMC Plant Biol.9(2009)78.

    [5]N.Bosselut,C.V.Ghelder,M.Claverie,R.Voisin,J.P.Onesto,M.N.Rosso,D.Esmenjaud,Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants,Plant Cell Rep.30(2011)1313–1326.

    [6]S.R.Clemow,L.Clairmont,L.H.Madsen,F.Guinel,Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea,Plant Methods 7(2011)46.

    [7]K.X.Tang,D.H.Liu,Y.L.Wang,L.J.Cui,W.W.Ren,X.F.Sun,Overexpression of transcriptional factor ORCA3 increases the accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots,Russ.J.Plant Physiol.58(2011)415–422.

    [8]M.A.W.Hinchee,D.V.Connor-Ward,C.A.Newell,R.E.McDonnell,S.J.Sato,C.S.Gasser,D.A.Fischhoff,D.B.Re,R.T.Fraley,R.B.Horsch,Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer,Nat.Biotechnol.6(1988)915–922.

    [9]D.E.MaCabe,W.F.Swain,B.J.Martinell,P.Christou,Stable transformation of soybean(Glycine max)by particle acceleration,Nat.Biotechnol.6(1988)923–926.

    [10]L.Yu,X.Tan,B.Jiang,X.Sun,S.Gu,T.Han,W.Hou,A peroxisomal long-chain acyl-CoA synthetase from Glycine max involved in lipid degradation,PLoS One 9(2014),e100144..

    [11]L.Chen,B.J.Jiang,C.X.Wu,S.Sun,W.S.Hou,T.F.Han,GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots,BMC Plant Biol.14(2014)245.

    [12]L.Chen,B.J.Jiang,C.X.Wu,S.Sun,W.S.Hou,T.F.Han,The characterization of GmTIP,a root-specific gene from soybean,and the expression analysis of its promoter,Plant Cell Tissue Organ Cult.121(2015)259–274.

    [13]Y.P.Cai,L.Chen,X.J.Liu,S.Sun,C.X.Wu,B.J.Jiang,T.F.Han,W.S.Hou,CRISPR/Cas9-mediated genome editing in soybean hairy roots,PLoS One 10(2015),e0136064..

    [14]T.B.Jacobs,P.R.LaFayette,R.J.Schmitz,W.Parrott,Targeted genome modifications in soybean with CRISPR/Cas9,BMC Biotechnol.15(2015)16.

    [15]X.J.Sun,Z.Hu,R.Chen,Q.Y.Jiang,G.H.Song,H.Zhang,Y.J.Xi,Targeted mutagenesis in soybean using the CRISP-Cas9 system,Sci Rep 5(2015)10342.

    [16]P.Costantino,L.Spano,M.Pomponi,E.Benvenuto,G.Ancora,The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants,J.Mol.Appl.Genet.2(1984)465–470.

    [17]R.Collier,B.Fuchs,N.Walter,W.K.Lutke,C.G.Taylor,Ex vitro composite plants:an inexpensive,rapid method for root biology,Plant J.43(2005)449–457.

    [18]R.A.Jefferson,Assaying chimeric genes in plants:the GUS gene fusion system,Plant Mol.Biol.Rep.5(1987)387–405.

    [19]V.Veena,C.G.Taylor,Agrobacterium rhizogenes:recent developments and promising applications,In Vitro Cell.Dev.Biol.Plant 43(2007)383–403.

    [20]F.Bourgaud,A.Gravot,S.Milesi,E.Gontier,Production of plant secondary metabolites:a historical perspective,Plant Sci.161(2001)835–891.

    [21]M.I.Georgiev,A.I.Pavlov,T.Bley,Hairy root type plant in vitro systems as sources of bioactive substances,Appl.Microbiol.Biotechnol.74(2007)1175–1185.

    [22]S.Mehrotra,L.U.Rahman,A.K.Kukreja,An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering,Biotechnol.Appl.Biochem.56(2010)161–172.

    [23]Z.B.Hu,M.Du,Hairy root and its application in plant genetic engineering,J.Integr.Plant Biol.48(2006)121–127.

    [24]M.Ron,K.Kajala,G.Pauluzzi,D.Wang,M.A.Reynoso,K.Zumstein,J.Garcha,S.Winte,H.Masson,S.Inagaki,F.Federici,N.Sinha,R.B.Deal,J.Bailey-Serres,S.M.Brady,Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model,Plant Physiol.166(2014)455–469.

    [25]X.P.Qi,M.W.Li,M.Xie,X.Liu,M.Ni,G.H.Shao,C.Song,A.K.Y.Yim,Y.Tao,F.L.Wong,S.Isobe,C.F.Wong,K.S.Wong,C.Y.Xu,C.Q.Li,Y.Wang,R.Guan,F.M.Sun,G.Y.Fan,Z.X.Xiao,F.Zhou,T.H.Phang,X.Liu,S.W.Tong,T.F.Chan,S.M.Yiu,S.Tabata,J.Wang,X.Xu,H.M.Lam,Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing,Nat.Commun.5(2014)4340.

    [26]R.Rios-Estepa,B.M.Lange,Experimental and mathematical approaches to modeling plant metabolic networks,Phytochemistry 68(2007)2351–2374.

    [27]N.N.Ono,L.Tian,The multiplicity of hairy root cultures:prolific possibilities,Plant Sci.180(2011)439–446.

    [28]S.Runo,S.Macharia,A.Alakonya,J.Machuka,N.Sinha,J.Scholes,Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions,Plant Methods 8(2012)20.

    [29]A.Kereszt,D.X.Li,A.Indrasumunar,C.D.T.Nguyen,S.Nontachaiyapoom,M.Kinkema,P.M.Gresshoff,Agrobacterium rhizogenes-mediated transformation of soybean to study root biology,Nat.Protoc.2(2007)948–952.

    [30]M.Mohammadi-Dehcheshmeh,E.Ebrahimie,S.D.Tyerman,B.N.Kaiser,A novel method based on combination of semi-in vitro and in vivo conditions in Agrobacterium rhizogenesmediated hairy root transformation of Glycine species,In Vitro Cell.Dev.Biol.Plant 50(2014)282–291.

    [31]J.A.Kim,Y.S.Kim,Y.E.Choi,Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the regenerated from them,Plant Biotechnol.Rep.5(2011)255–263.

    [32]Y.Q.Zhou,H.Y.Duan,C.E.Zhou,J.J.Li,F.P.Gu,F.Wang,Z.Y.Zhang,Z.M.Gao,Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch.f.hueichingensis Hsiao via Agrobacterium rhizogenes-mediated transformation,Russ.J.Plant Physiol.56(2009)224–231.

    [33]C.Crane,E.Wright,R.A.Dixon,Z.Y.Wang,Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenestransformed hairy roots,Planta 223(2006)1344–1354.

    [34]P.M.Olhoft,L.M.Bernal,L.B.Grist,D.S.Hill,S.L.Mankin,Y.Shen,M.Kalogerakis,H.Wiley,E.Toren,H.S.Song,H.Hillebrand,T.Jones,A novel Agrabacterium rhizogenes-mediated transformation method of soybean[Glycine max(L.)Merrill]using primary-node explants from seedlings,In Vitro Cell.Dev.Biol.Plant 43(2007)536–549.

    猜你喜歡
    監(jiān)督機(jī)構(gòu)代表大會最大化
    懷柔區(qū)工會召開第四次代表大會
    工會博覽(2022年14期)2022-07-16 05:49:06
    我校社科聯(lián)第二屆代表大會圓滿舉行
    湖南省第一次工農(nóng)代表大會何時何地召開
    勉縣:力求黨建“引領(lǐng)力”的最大化
    Advantages and Disadvantages of Studying Abroad
    劉佳炎:回國創(chuàng)業(yè)讓人生價值最大化
    華人時刊(2019年15期)2019-11-26 00:55:44
    全國各地財(cái)政廳局監(jiān)督機(jī)構(gòu)負(fù)責(zé)人名錄
    財(cái)政部駐各地專員辦會計(jì)監(jiān)督機(jī)構(gòu)負(fù)責(zé)人名錄
    淺談服務(wù)創(chuàng)新視野下衛(wèi)生計(jì)生綜合監(jiān)督機(jī)構(gòu)執(zhí)法檔案信息化
    魅力中國(2019年34期)2019-01-14 01:08:23
    獻(xiàn)給中共第十九次代表大會(外一首)
    岷峨詩稿(2017年4期)2017-04-20 06:26:23
    变态另类成人亚洲欧美熟女| 18美女黄网站色大片免费观看| 国产欧美日韩一区二区精品| 欧美久久黑人一区二区| 久久久久久免费高清国产稀缺| 中文字幕人成人乱码亚洲影| 午夜a级毛片| 88av欧美| 国产亚洲av嫩草精品影院| 国产成人影院久久av| 亚洲人成电影免费在线| 又爽又黄无遮挡网站| 久久 成人 亚洲| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 大型av网站在线播放| 免费在线观看成人毛片| 欧美日本视频| 天天躁狠狠躁夜夜躁狠狠躁| av视频在线观看入口| 夜夜夜夜夜久久久久| 免费在线观看日本一区| 国内少妇人妻偷人精品xxx网站 | 香蕉国产在线看| 首页视频小说图片口味搜索| 国产成+人综合+亚洲专区| 神马国产精品三级电影在线观看 | 亚洲一区二区三区不卡视频| 国产精品久久久av美女十八| 国产精品久久久久久人妻精品电影| 成人国语在线视频| 色老头精品视频在线观看| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 国产精品亚洲av一区麻豆| 人人妻人人看人人澡| 天天躁夜夜躁狠狠躁躁| 久久中文字幕一级| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 精品国产美女av久久久久小说| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 在线观看66精品国产| 一区福利在线观看| a在线观看视频网站| 正在播放国产对白刺激| 国产99白浆流出| 亚洲国产欧洲综合997久久,| 国产成人av教育| 国产av麻豆久久久久久久| 少妇粗大呻吟视频| 极品教师在线免费播放| 成人三级做爰电影| 国产精品久久久久久久电影 | 亚洲国产看品久久| 两个人视频免费观看高清| 精品欧美一区二区三区在线| 黄色成人免费大全| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频| 在线观看www视频免费| 国产精品免费一区二区三区在线| 一级作爱视频免费观看| 日日爽夜夜爽网站| 又粗又爽又猛毛片免费看| 国产精品日韩av在线免费观看| 99精品久久久久人妻精品| 国产99久久九九免费精品| 亚洲成人久久性| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 亚洲色图av天堂| 日本 av在线| 欧美黑人巨大hd| 高清在线国产一区| 欧美成人午夜精品| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区四区五区乱码| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品av在线| 免费看a级黄色片| 精品国产乱码久久久久久男人| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 午夜福利欧美成人| 黄片大片在线免费观看| 看片在线看免费视频| 波多野结衣高清无吗| 舔av片在线| 免费在线观看黄色视频的| 国产熟女午夜一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久精品电影| 少妇被粗大的猛进出69影院| 亚洲av成人av| 欧美性猛交╳xxx乱大交人| 夜夜爽天天搞| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 亚洲最大成人中文| 日本免费一区二区三区高清不卡| 久久这里只有精品中国| 亚洲人成77777在线视频| 国产精华一区二区三区| 国产成人欧美在线观看| 窝窝影院91人妻| 麻豆成人av在线观看| 午夜福利在线在线| 久久这里只有精品中国| 亚洲成av人片免费观看| 99精品在免费线老司机午夜| 国产精品久久久久久亚洲av鲁大| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 一边摸一边做爽爽视频免费| 最近视频中文字幕2019在线8| 国产69精品久久久久777片 | 一区二区三区激情视频| 精品久久久久久久毛片微露脸| 成年免费大片在线观看| 日本成人三级电影网站| 90打野战视频偷拍视频| 精品久久蜜臀av无| 亚洲精品在线美女| 淫秽高清视频在线观看| 欧美国产日韩亚洲一区| 国产三级中文精品| 国产精品 国内视频| 国产在线精品亚洲第一网站| 久久人人精品亚洲av| 亚洲色图 男人天堂 中文字幕| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 成人18禁在线播放| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 91麻豆av在线| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 久久久久性生活片| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站| 少妇的丰满在线观看| av免费在线观看网站| 国产成年人精品一区二区| 国产成人aa在线观看| 又黄又粗又硬又大视频| 88av欧美| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久电影 | 久久久久久久久久黄片| www国产在线视频色| 亚洲欧美精品综合一区二区三区| 色综合站精品国产| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 这个男人来自地球电影免费观看| 亚洲一区二区三区不卡视频| 国产精品一区二区三区四区久久| 精品久久蜜臀av无| 日韩免费av在线播放| 日本a在线网址| 久久国产精品人妻蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| 免费无遮挡裸体视频| 亚洲av成人av| √禁漫天堂资源中文www| 中文亚洲av片在线观看爽| 久久久久久久午夜电影| 欧美一级毛片孕妇| 久久精品人妻少妇| 51午夜福利影视在线观看| 亚洲天堂国产精品一区在线| 无遮挡黄片免费观看| 麻豆av在线久日| 成人欧美大片| 国产免费av片在线观看野外av| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 日本一本二区三区精品| 日韩 欧美 亚洲 中文字幕| 69av精品久久久久久| 可以免费在线观看a视频的电影网站| 亚洲 欧美一区二区三区| 欧美极品一区二区三区四区| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 欧美日韩国产亚洲二区| 嫩草影视91久久| 我要搜黄色片| 美女扒开内裤让男人捅视频| 久热爱精品视频在线9| 两个人免费观看高清视频| cao死你这个sao货| 国产精品永久免费网站| 亚洲专区国产一区二区| 在线免费观看的www视频| 又大又爽又粗| 国产高清videossex| 又紧又爽又黄一区二区| 一区福利在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| a在线观看视频网站| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 三级男女做爰猛烈吃奶摸视频| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 成人18禁在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 床上黄色一级片| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费电影在线观看| 国产蜜桃级精品一区二区三区| 一级片免费观看大全| 高清在线国产一区| 午夜两性在线视频| 亚洲激情在线av| 久久亚洲真实| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 色在线成人网| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 超碰成人久久| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 淫秽高清视频在线观看| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 两个人的视频大全免费| 国产精品一及| 亚洲国产欧美一区二区综合| 国产亚洲欧美98| 亚洲av中文字字幕乱码综合| 亚洲精品在线观看二区| 一个人免费在线观看的高清视频| 黄色片一级片一级黄色片| 成人一区二区视频在线观看| 老司机靠b影院| 91成年电影在线观看| 精品一区二区三区四区五区乱码| 欧美高清成人免费视频www| 精品电影一区二区在线| 天堂动漫精品| 欧美色视频一区免费| 国产99久久九九免费精品| 999久久久国产精品视频| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| 亚洲国产看品久久| 极品教师在线免费播放| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 女警被强在线播放| 一级毛片精品| 午夜福利18| 久久久久久久精品吃奶| 成人亚洲精品av一区二区| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区| 亚洲精品久久国产高清桃花| 国产精品永久免费网站| 一级黄色大片毛片| 久久99热这里只有精品18| 一边摸一边抽搐一进一小说| 黄色a级毛片大全视频| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 亚洲av成人不卡在线观看播放网| 亚洲中文av在线| 国产精品美女特级片免费视频播放器 | 亚洲色图 男人天堂 中文字幕| 国内精品久久久久精免费| 欧美三级亚洲精品| 亚洲精品色激情综合| 精品久久久久久久末码| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 禁无遮挡网站| 久久热在线av| 久久精品91蜜桃| 免费高清视频大片| 午夜精品久久久久久毛片777| 丁香六月欧美| 国产精品综合久久久久久久免费| 视频区欧美日本亚洲| 三级毛片av免费| 不卡av一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲精品久久国产高清桃花| 夜夜躁狠狠躁天天躁| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 国内精品一区二区在线观看| 五月伊人婷婷丁香| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 三级国产精品欧美在线观看 | 欧美av亚洲av综合av国产av| 久久精品影院6| 国产精品 国内视频| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美 | 九色国产91popny在线| 在线a可以看的网站| 国产成年人精品一区二区| 一级作爱视频免费观看| 国产99久久九九免费精品| 精品电影一区二区在线| 99在线人妻在线中文字幕| 久9热在线精品视频| 99精品在免费线老司机午夜| 老司机靠b影院| 床上黄色一级片| 亚洲人与动物交配视频| 国产熟女xx| 午夜免费成人在线视频| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| 成人三级黄色视频| 高清毛片免费观看视频网站| 亚洲国产欧美网| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 成人国语在线视频| 久久国产精品影院| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 亚洲五月天丁香| 国产探花在线观看一区二区| 国产亚洲精品第一综合不卡| a级毛片在线看网站| 国产成人精品久久二区二区免费| 亚洲美女视频黄频| 热99re8久久精品国产| 亚洲欧美精品综合一区二区三区| 麻豆国产97在线/欧美 | 一本大道久久a久久精品| 久久精品国产清高在天天线| 国产真实乱freesex| 亚洲va日本ⅴa欧美va伊人久久| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 人妻夜夜爽99麻豆av| 大型av网站在线播放| 黄色毛片三级朝国网站| 在线观看一区二区三区| 无人区码免费观看不卡| 国产精品98久久久久久宅男小说| 露出奶头的视频| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 给我免费播放毛片高清在线观看| 又黄又粗又硬又大视频| 国产一区二区在线av高清观看| 在线播放国产精品三级| 亚洲精品一区av在线观看| 黄片大片在线免费观看| 无限看片的www在线观看| 天堂√8在线中文| www.熟女人妻精品国产| 国产精品影院久久| 久久午夜亚洲精品久久| 欧美精品啪啪一区二区三区| 国产精品九九99| 观看免费一级毛片| 丁香欧美五月| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 日本免费a在线| 窝窝影院91人妻| 在线免费观看的www视频| 午夜福利成人在线免费观看| 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 亚洲精品国产精品久久久不卡| 久久中文字幕人妻熟女| 亚洲男人的天堂狠狠| 久久久久久人人人人人| 丝袜人妻中文字幕| 少妇熟女aⅴ在线视频| 国产精品日韩av在线免费观看| 成人18禁高潮啪啪吃奶动态图| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 一区二区三区激情视频| а√天堂www在线а√下载| 色综合婷婷激情| 天堂动漫精品| 国产久久久一区二区三区| 日韩欧美精品v在线| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 91av网站免费观看| 黄色视频不卡| 欧美黄色淫秽网站| 日本黄大片高清| 69av精品久久久久久| 人人妻人人看人人澡| 五月玫瑰六月丁香| 在线播放国产精品三级| 美女免费视频网站| 国产精品日韩av在线免费观看| 制服人妻中文乱码| 日韩欧美精品v在线| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 国产黄a三级三级三级人| 91老司机精品| 婷婷六月久久综合丁香| 少妇的丰满在线观看| 亚洲精品在线观看二区| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 国产成+人综合+亚洲专区| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久免费视频| 久久亚洲精品不卡| 国产区一区二久久| 悠悠久久av| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 99久久精品热视频| 色综合欧美亚洲国产小说| 成人三级黄色视频| xxxwww97欧美| 午夜福利在线在线| 亚洲欧美日韩高清专用| 久久香蕉精品热| av超薄肉色丝袜交足视频| 天天一区二区日本电影三级| 成在线人永久免费视频| 99精品在免费线老司机午夜| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 国产成人系列免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久亚洲av鲁大| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一级毛片七仙女欲春2| 在线观看午夜福利视频| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 在线国产一区二区在线| 国产精品爽爽va在线观看网站| 国产午夜精品一二区理论片| 亚洲内射少妇av| 日本一本二区三区精品| 在线免费观看的www视频| 国产在视频线在精品| 亚洲av男天堂| 日韩欧美国产在线观看| 久久99热这里只有精品18| 亚洲美女搞黄在线观看| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| www日本黄色视频网| 特大巨黑吊av在线直播| 五月伊人婷婷丁香| 婷婷色av中文字幕| 只有这里有精品99| a级毛色黄片| 日本五十路高清| 夜夜夜夜夜久久久久| 亚洲精品日韩在线中文字幕 | 国产三级中文精品| 可以在线观看的亚洲视频| 国产精品一区二区性色av| 久久国内精品自在自线图片| 全区人妻精品视频| 午夜免费激情av| 精品熟女少妇av免费看| 在线观看午夜福利视频| 熟女电影av网| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区 | av.在线天堂| 午夜福利视频1000在线观看| 国产老妇女一区| 中国美女看黄片| 在线a可以看的网站| 能在线免费看毛片的网站| 你懂的网址亚洲精品在线观看 | 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 亚洲va在线va天堂va国产| 免费观看在线日韩| 好男人在线观看高清免费视频| 两个人的视频大全免费| 在线免费十八禁| 大型黄色视频在线免费观看| 午夜激情福利司机影院| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 男女啪啪激烈高潮av片| 国产老妇伦熟女老妇高清| 91av网一区二区| 久久人人爽人人片av| av天堂在线播放| 麻豆av噜噜一区二区三区| 国产 一区精品| 亚洲不卡免费看| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 又粗又硬又长又爽又黄的视频 | 永久网站在线| 国产成人aa在线观看| 国产极品天堂在线| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 亚洲国产精品国产精品| av免费在线看不卡| 啦啦啦观看免费观看视频高清| 九九热线精品视视频播放| 国产伦一二天堂av在线观看| 久久6这里有精品| 在线a可以看的网站| 久久国内精品自在自线图片| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 久久99蜜桃精品久久| 国产91av在线免费观看| 国产精品一及| 国产高清三级在线| 色哟哟·www| kizo精华| 一区二区三区四区激情视频 | 日日摸夜夜添夜夜爱| 国产伦在线观看视频一区| 最近中文字幕高清免费大全6| 大香蕉久久网| 能在线免费看毛片的网站| 人妻夜夜爽99麻豆av| 三级毛片av免费| 国产精品无大码| 午夜精品国产一区二区电影 | 少妇人妻一区二区三区视频| 中文字幕制服av| 亚洲欧洲国产日韩| 国产精品永久免费网站| 五月玫瑰六月丁香| 小蜜桃在线观看免费完整版高清| 我要搜黄色片| 久久久久久久久久久免费av| 给我免费播放毛片高清在线观看| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 久久国产乱子免费精品| 久久精品国产亚洲av天美| 亚洲av免费在线观看| 可以在线观看毛片的网站| 一级二级三级毛片免费看| 不卡视频在线观看欧美| 国产精品久久视频播放| 国产成人精品久久久久久| 最近的中文字幕免费完整| 村上凉子中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 亚洲人成网站在线观看播放| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 能在线免费观看的黄片| 深夜a级毛片| 热99re8久久精品国产| 亚洲欧美精品专区久久| 中文字幕制服av| 五月玫瑰六月丁香| 久久久欧美国产精品| 久久6这里有精品| 欧美三级亚洲精品| 人妻系列 视频| 搡女人真爽免费视频火全软件| 大又大粗又爽又黄少妇毛片口|