• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    2017-10-11 05:33:16WANGXuLINZhongyiYOUYunxiangYURui
    船舶力學 2017年9期
    關鍵詞:上海交通大學粘性海事局

    WANG Xu,LIN Zhong-yi,YOU Yun-xiang,YU Rui

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Numerical Simulations for the Load Characteristics of Internal Solitary Waves on a Vertical Cylinder

    WANG Xu1,2,LIN Zhong-yi3,YOU Yun-xiang1,YU Rui4

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;2.CAS Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Beijing 100190,China;3.School of Jiaxing Nanyang Profession and Technology,Jiaxing 314003,China;4.Jiangsu Local Maritime Safety Administration,Nanjing 210004,China)

    Abstract:According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equations in a twolayer fluid was presented to simulate the strongly nonlinear interaction between internal solitary waves and the vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.Numerical results show that the waveform and amplitude of the internal solitary waves are in good agreement with the experimental and theoretical results.The horizontal and vertical forces,as well as torques on the vertical cylinder obtained from the numerical method also agree well with experimental results.Besides,the numerical results indicate that the horizontal and vertical forces on the vertical cylinder due to internal solitary waves can be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the fractional force is not significant and can be neglected;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which shows that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant so that the effect of the fluid viscosity can also be neglected.Moreover,the effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    Key words:two-layer fluid;internal solitary waves;numerical simulation;load characteristics

    0 Introduction

    As a compliant floating structure,Spar platform is well suited for deep water applicationslike drilling,production,processing,storage and off-loading of ocean deposits[1].In practical applications,ocean conditions have great impacts on the safety of Spar,therefore it is necessary to consider hydrodynamic characteristics of the Spar platform under various ocean conditions.

    A large number of observations showed that internal solitary waves occur frequently and exist widely in the South China Sea[2],which has resulted in severe impact on the operation of ocean engineering structures[3].With the further exploitation of the oil and gas in South China Sea,internal solitary waves have become one fundamental environmental factor which must be considered.

    Nonlinearity and dispersion are two fundamental mechanisms of gravity wave propagation in fluids.As a general rule,it is well known that nonlinearity tends to steepen a given waveform during the course of its evolution,while dispersion has the opposite effect and tends to flatten steep free-surface gradients[4].According to the relative importance of nonlinear and dispersion,internal solitary waves can be generally described as KdV(Korteweg-de Vries)theory,eKdV(extended KdV)theory,MCC(Miyata-Choi-Camassa)theory and others[5-6].In order to quantitatively distinguish the above three theories,Huang[7]summarized the applicability conditions for former three different internal solitary wave models based on a large number of experiments.

    Since the vertical cylinder is the main structure form of the spar platform,it has great importance for both theoretical research and engineering application to study the load characteristics of internal solitary waves on it.Although the load and motion response characteristics of deepwater floating structures due to internal solitary waves have been studied preliminarily by far[8-9],most of hydrodynamic mechanism are not yet clear,including the formation mechanism of various load components,the influence mechanism of viscosity factor on internal solitary wave loads,and the applicability of calculating loads of the floating structure by Morison formulas.The CFD(Computational Fluid Dynamics)simulation provides an effective way to deeply analyze the questions mentioned above.However,the previous simulated waveform and amplitude are often unable to be controlled in varying degrees due to the lack of considering the applicability conditions for solitary wave theories[10-11].Thus one of the key problems is how to select an appropriate internal solitary wave theory as the basis for numerical wave-making in the process of studying the strong nonlinear interaction characteristics between floating structures and internal solitary waves by using the CFD method.

    At the present study we aim to determine the formation mechanism of various load components on the vertical cylinder due to internal solitary waves,as well as the influence mechanism of the vertical cylinder on the waveform and flow field characteristics.The paper is organized as follows:Chap.1 describes the numerical models to be used in this study on the base of considering the applicability conditions for internal solitary wave theories.Chap.2 contains the numerical results,including wave properties such as shape and amplitude,and internal solitary wave loads on the vertical cylinder,in addition,the comparisons between numerical results and experimental results are presented.Finally,some conclusions are given in Chap.3.

    1 Numerical methods

    The present numerical method adopts Navier-Stokes equations to simulate the strongly nonlinear interaction of internal solitary waves with the vertical cylinder,where the velocityinlet boundary uses the depth-averaged velocities of the upper-and lower-layer fluids induced by internal solitary waves.

    1.1 Governing equations

    For an incompressible fluid of density ρi,the velocity componentsu,v,()w in Cartesian coordinates Oxyz and the pressure Pisatisfy the continuity equation and Navier-Stokes equations:

    where g is gravitational acceleration and subscripts with respect to space and time represent partial differentiation.In the equations,stands for the upper(lower)layer fluid.

    The boundary conditions at the interfaceare the continuity of normal velocity and pressure:

    where ζ is the displacement of the interface.The top and bottom of calculation domain are required to satisfy the following boundary conditions:

    The calculation domain is shown in Fig.1,which consists of two parts:the wave propagation and absorption zones.Internal solitary waves are aroused by using velocity-inlet method,the depth-averaged velocities induced by internal solitary waves on the inlet boundary is defined as

    where c denotes wave phase velocity,is inlet velocity for the upper(lower)fluid at the inlet boundary.

    Fig.1 Sketch of numerical flume for the internal solitary waves

    The VOF(volume of fluid)method is employed for tracking the two-layer fluid interface during the generating and propagating of internal solitary waves.Meanwhile,sponge layer technique is applied to dissipate internal solitary waves at the tail of numerical flume,which is realized by adding a source termto the momentum equation(2).The attenuation coefficient)is determined according to Ref.[12].

    The horizontal forces Fxand vertical forceson the vertical cylinder consist of two parts,the pressure-difference force and the frictional force.

    where S is the wetted surface area of the vertical cylinder,nx,ny,nzare the unit external normal vector of surface.In the formulas,the first term represents the frictional force and the second one represents the pressure-difference force.

    The torque Myon the vertical cylinder is defined as follows:

    According to the applicability conditions for three types of internal solitary wave theories including KdV,eKdV and MCC[7],the inlet velocity is determined as follows:

    For a given internal solitary wave,the nonlinear parameter ε and dispersion parameter μ for the three types of internal solitary wave theories are calculated respectively.The KdV model is selected to calculated the velocity of inlet boundary for ε≤μ and μ< μ0,the eKdV model is selected foras well as the MCC model is selected forμ0(where μ0denotes the critical dispersion parameter summarized by laboratory experiments).

    2 Numerical results and discussions

    The paper carried out a series of experiments for the load characteristics of the vertical cylinder due to internal solitary waves in the large-scale density stratified tank.In order to compare with experimental results,the principal dimension of the numerical flume,upper(lower)layer fluid density,and the depth ratio are consistent with experimental conditions,namely,the length of the numerical flume is 30 m,the depth is 1 m,the diameter of the vertical cylinder D is 0.15 m,the draft of the vertical cylinder d is 0.535 m,the upper layer fluid density ρ1is 998 kg/m3,the lower layer fluid density ρ2is 1 025 kg/m3,and three kinds of depth ratio including h1:h2=1:9,2:8,3:7 are considered.

    2.1 Numerical simulations for internal solitary waves

    In order to analyze the influence of the viscosity on the generation and propagation for internal solitary waves,two different types of numerical models are simulated,including the N-S and Euler simulations.The waveform results for two different methods are shown in Fig.2 when h1:h2=3:7 and ad/h=0.101(Where addenotes the designed amplitude for internal solitary waves,and h=h1+h2).Results indicate that the waveforms generated by the two numerical methods remain stable and the decay of the amplitudes is weak during the propagation of the internal solitary wave,the relative error between the simulated and designed amplitudes is within 5%.Therefore,the two methods to numerically generate internal solitary waves are feasible.Hereinafter,all cases are simulated by N-S model unless special declare.

    Fig.2 The numerical results for the internal solitary wave waveforms when h1:h2=3:7 and ad/h=0.101

    Fig.3 shows the comparisons for internal solitary wave waveforms with theoretical and experimental results under three different cases.According to the applicability conditions for three types of internal solitary wave theories[7],Case A(h1:h2=3:7 and ad/h=0.101)appears weak nonlinear and weak dispersion,the eKdV theory is selected to calculate the velocity of inlet boundary,Case B(h1:h2=2:8 and ad/h=0.052)appears moderate nonlinear and weak dispersion,the KdV theory is selected to calculate the velocity of inlet boundary,Case C(h1:h2=1:9 and ad/h=0.086)appears strong nonlinear and weak dispersion,the MCC theory is selected to calculate the velocity of inlet boundary.Results show that the waveforms are in good agreement with the experimental and theoretical results,which means that the waveform is accurate and controllable for the present numerical method.

    Fig.3 Comparisons for internal solitary wave waveforms with theoretical and experimental ones

    The numerical results of wave amplitudes for the internal solitary waves are shown in Fig.4,where Symbol‘О’ represents the simulated amplitude,and the dotted line represents the designed amplitude.Results show the simulated amplitudes have good agreement with the designed amplitude,and the maximum error is within 5%.

    Fig.4 The numerical results of wave amplitudes for the internal solitary waves

    2.2 Load characteristics on the vertical cylinder

    In order to conveniently explain,the expressionare defined as the dimensionless horizontal and vertical forces,as well as torquesrespectively on the vertical cylinder due to internal solitary waves.Results of numerical and experimental amplitudes for dimensionless loads are shown in Fig.5.Results show that the numerical simulated amplitudes for the horizontal and vertical forces,as well as torques are in good agreement with experimental ones,and the maximum error is within 10%.

    Fig.5 Results of numerical and experimental amplitudes for dimensionless loads

    Fig.6 shows that the time variation characteristics for dimensionless loads for Case A.Results show that the simulated time-variation loads are in good agreement with experimentalresults,which means that it is reasonable and feasible to calculate the loads on the vertical cylinder based on the present numerical method.

    Fig.6 The time-variation characteristics for dimensionless loads for Case A

    From the formulas(8)and(9),it can be seen that the pressure-difference and frictional forces are two components for horizontal and vertical forces due to internal solitary waves.The time-variation characteristics for wave pressure-difference and viscous pressure-difference forces for Case A are shown in Fig.7.The results indicate that frictional forceis not significant comparing with the pressure-difference forceand hence can be neglected,the main component of horizontal and vertical forces is pressure-difference force.

    Fig.7 The time-variation characteristics for pressure-difference and frictional forces for Case A

    Fig.8 The time-variation characteristics for wave and viscous pressure-difference forces for Case A

    Furthermore,the pressure-difference force can be divided into two components,including the wave pressure-difference forceand the viscous pressure-difference forceThe wave pressure-difference force is associated with the fluctuation of water parcel,which can be calculated by the Euler simulation,while the viscous pressure-difference force is associated with the viscosity effect of fluid,which can be calculated by the N-S simulation.The time-variation characteristics for wave and viscous pressure-difference forces due to internal solitary waves for Case A are shown in Fig.8.For the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant.For the vertical force,the component of the viscous pressure-difference force is not significant,which indicates that the effect of the fluid viscosity can be neglected.

    2.3 Influence of the cylinder on internal solitary waves

    The influence of the vertical cylinder on the internal solitary wave waveform for Case A is shown in Fig.9,where the axis of the vertical cylinder is in front of the wave trough when t=46 s and t=58 s,the axis is located near the wave trough when t=60 s,and the axis is behind the wave trough when t=62 s and t=74 s.Results show that some disturbances of the wave surface happen near the cylinder during the propagation of internal solitary waves,especially,the disturbances of the wave surface are most evident when the internal solitary wave passes right through the axis of the cylinder.Nevertheless,the disturbances are not significant comparing to the amplitude of the internal solitary wave,and hence can be neglected.

    Fig.9 The effect of the cylinder on the internal solitary wave waveform for Case A

    Fig.10 The flow field characteristics induced by the internal solitary wave when t=60 s for Case A

    The flow field characteristics due to the internal solitary waves when t=60 s for Case A are shown in Fig.10.In the propagation process,the internal solitary wave is going in the same direction as the upper fluid,but contrary to the lower fluid.Hence,the shear flow is formed near the interface of the upper and lower fluid.The vertical flow induced by the internal solitary wave also exists,which descends and climbs at the front and rear of the wave trough respectively.In addition,it can be seen from the Fig.10 that the decay rate of the vertical distribution of the horizontal velocity induced by the internal solitary wave is small in different positions.

    Fig.11 The effects of the vertical cylinder on flow field due to the internal solitary waves for Case A

    The effect of the cylinder on the flow field due to the internal solitary wave for Case A is shown in Fig.11.During wave propagation,a pair of opposite trailing vortex forms at the tail of the cylinder due to the detour flow of the vertical cylinder on the induced flow field.The induced horizontal velocity move from left to right when z/h=0.1 and z/h=-0.05,so the trailing vortex is on the right side of the vertical cylinder.Instead,the induced horizontal velocity move from right to left when z/h=-0.12,thus the trailing vortex is on the left side of the vertical cylinder.

    The vortex-induced vibration is a common physical phenomenon in ocean engineering,which is caused by periodic trailing vortex behind the vertical cylinder.Due to the existence of the trailing vortex at the rear of the vertical cylinder,it is necessary to study the effect of trailing vortex on the vertical cylinder.The Fig.12 shows that the dimensionless lifton the vertical cylinder due to the trailing vortex is not significant and can be neglected.

    Fig.12 The time-variation characteristics of the dimensionless lift force for Case A

    For the interaction between the vertical cylinder and surface gravity waves,the character number β=D/λ is usually defined to describe the relative size of the wavelength and the vertical cylinder’s diameter.The diffraction effect of the surface wave can be neglected when β<0.15,therefore,it is feasible that the horizontal and vertical forces on the vertical cylinder due to surface gravity waves can be calculated by the Morison and Froude-Krylov formulas respectively.At the real ocean circumstance,the characteristic wavelength of internal solitary waves can reach several hundreds meters,even thousands of meters,while the diameter of the vertical cylinder is within 40 m in general,hence,the characteristic number β is far lower than 0.15.According to the pervious discussion,the influence of the vertical cylinder on the waveform and the flow field induce by the internal solitary wave can be neglected.Hence,a simplified method for calculating the loads on the vertical cylinder due to internal solitary waves can be presented as follows:the horizontal force is calculated by the Morison formulas and the vertical force is calculated by the Froude-Krylov formulas respectively.Then we will verify the rationality of this simplified method using the numerical method combined with experimental results.

    We denote U1and W1as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when ζ< z<h1,U2and W2as horizontal and vertical instantaneous velocities of water particles induced by internal solitary waves when-h2< z< ζ,where Uiand Wiare defined as follows[13]:

    Combined with the formulas(11)and(12),the Morison formulas for calculating the horizontal force on vertical cylinder due to internal solitary waves can be written as follows:

    where Cmis the coefficient of the inertia force,Cdis the coefficient of the drag force,Vnis the normal velocity vector of water parcels,andis the normal acceleration vector of water parcels.

    Based on a series of experiments,Huang[7]summarized a solution for two coefficients in the Morison formula:

    where Re=UmaxD/ν is the Reynolds number,Umaxis maximum velocity of water parcel due to internal solitary waves,ν is the coefficient of the kinematical viscosity.

    The Froude-Krylov formulas for calculating the vertical forces on vertical cylinder due to internal solitary waves can be described as follows:

    According the Bernoulli equation,the dynamic pressure P induced by internal solitary waves can be calculated as

    Results based on the simplified method for amplitudes for dimensionless loads are shown in Fig.13.It can be seen that the load amplitudes based on the simplified method are in good agreement with the numerical results,and the maximum error is within 8%.Hence,it is feasible to calculate the loads on vertical cylinder due to internal solitary waves by using the simplified method.

    Fig.13 Results based on the simplified method for amplitudes for dimensionless loads due to internal solitary waves

    3 Conclusions

    According to the applicability conditions for three types of internal solitary wave theories,including KdV,eKdV and MCC,a numerical method based on the Navier-Stokes equation in a two-layer fluid is presented to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder,where the velocity-inlet boundary is applied by using of the depth-averaged velocities in the upper-and lower-layer fluids induced by the internal solitary wave.The conclusions can be summarized as follows:

    (1)The waveform and amplitude of the internal solitary wave based on the present numerical method are in good agreement with the experimental and theoretical results.Also,numerical results for the horizontal and vertical forces,as well as torques on the vertical cylinder due to the internal solitary wave have a good agreement with experimental results.Hence,it is feasible to simulate the strongly nonlinear interaction of internal solitary waves with a vertical cylinder by using the present numerical method.

    (2)The horizontal and vertical forces on the vertical cylinder due to internal solitary wavescan be divided into three components,including the wave and viscous pressure-difference forces,as well as the frictional force,where the frictional force is not significant and can be negligible;for the horizontal force,the orders of the magnitudes between the wave and viscous pressure-difference forces are the same,which means that the effect of the fluid viscosity is significant;for the vertical force,the component of the viscous pressure-difference force is not significant,which means that the effect of the fluid viscosity can be neglected.

    (3)The effects of the vertical cylinder on the waveform and flow field induced by the internal solitary wave are small.Therefore,it is feasible to calculate the horizontal and vertical forces on the vertical cylinder due to internal solitary waves by the Morison and Froude-Krylov formulas respectively.

    [1]Jameel M,Ahmad S,Islam M K A B M S.Fully coupled nonlinear dynamic response of spar platform under random loads[C]//The Twenty-second International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2012:1004-1011.

    [2]Cai S,Xie J,He J.An overview of internal solitary waves in the South China Sea[J].Surveys in Geophysics,2012,33(5):927-943.

    [3]Bole J B,Ebbesmeyer C C,Romea R D.Soliton currents in the South China Sea:Measurements and theoretical modeling[C]//The 16th Offshore Technology Conference.Houston,1994:367-376.

    [4]Choi W,Camassa R.Fully nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1999,396:1-36.

    [5]Helfrich K R,Melville W K.Long nonlinear internal waves[J].Ann.Rev.Fluid Mech.,2006,38:395-425.

    [6]Choi W,Camassa R.Weakly nonlinear internal waves in a two-fluid system[J].J Fluid Mech.,1996,313:83-103.

    [7]Huang Wenhao,You Yunxiang,Wang Xu,et al.Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth[J].Acta Phys.Sin.,2013,62(8),084705:1-14.(in Chinese)

    [8]Cai Shuqun,Xu Jiexin,Chen Zhiwu,et al.The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile[J].Acta Oceanologica Sinica,2014,33(7):21-26.

    [9]Xie J S,Jiang Y J,et al.Strongly nonlinear internal solution load on a small vertical cylinder in two-layer fluids[J].Applied Mathematical Modelling,2010,34(8):2089-2101.

    [10]Li Xiaomin,Zhang Lin,Guo Haiyan,et al.Comparison of numerical wave-generating methods for internal solitary waves with theoretical and experimental results[J].Oceanologia Et Limnologia Sinica,2016,47(5):898-905.(in Chinese)

    [11]Miao Desheng,Guo Haiyan,Zhao Jing,et al.Study of numerical simulation method of internal solitary waves[J].Journal of Ocean University of China,2016,46(10):123-128.(in Chinese)

    [12]Han Peng.The study of damping absorber for irregular waves based on VOF method[D].Dalian:Dalian University of Technology,2008:38-47.(in Chinese)

    [13]Camassa R,Choi W,Michallet H,et al.On the realm of validity of strongly nonlinear asymptotic approximations for internal waves[J].J Fluid Mech.,2006,549:1-23.

    直立圓柱體內(nèi)孤立波載荷特性數(shù)值模擬

    王 旭1,2, 林忠義3, 尤云祥1, 於 銳4
    (1.上海交通大學 海洋工程國家重點實驗室,上海200240;2.中國科學院 力學研究所 流固耦合系統(tǒng)力學重點實驗室,北京100190;3.嘉興南洋職業(yè)技術學院,浙江 嘉興314003;4.江蘇省地方海事局,南京 210004)

    以三類內(nèi)孤立波理論(KdV、eKdV和MCC)的適用性條件為依據(jù),將內(nèi)孤立波誘導上下層深度平均水平速度作為入口條件,采用Navier-Stokes方程為流場控制方程,建立了兩層流體中內(nèi)孤立波對直立圓柱體強非線性作用的數(shù)值模擬方法。結果表明,數(shù)值模擬所得內(nèi)孤立波波形及其振幅與相應理論和實驗結果一致,并且直立圓柱體內(nèi)孤立波水平力、垂向力及其力矩數(shù)值模擬結果與實驗結果吻合。直立圓柱體內(nèi)孤立波載荷由波浪壓差力、粘性壓差力和摩擦力構成,其中摩擦力很小,可以忽略;對于水平力,其波浪壓差力與粘性壓差力量級相當,流體粘性的影響顯著;對于垂向力,粘性壓差力很小,流體粘性影響可以忽略。此外,直立圓柱體對內(nèi)孤立波的波形及其誘導流場的影響很小,因此采用Morison公式和傅汝德—克雷洛夫力分別計算其內(nèi)孤立波水平力和垂向力是可行的。

    兩層流體;內(nèi)孤立波;數(shù)值模擬;載荷特性

    P751

    A

    國家自然科學基金資助項目(11372184,11602274,11232012,11572332);高等學校博士點基金資助項目(20110073130003)

    王 旭(1985-),男,上海交通大學博士研究生;林忠義(1959-),男,嘉興南洋職業(yè)技術學院副教授;尤云祥(1963-),男,上海交通大學教授,博士生導師;於 銳(1984-),男,江蘇省地方海事局工程師。

    10.3969/j.issn.1007-7294.2017.09.003

    Article ID: 1007-7294(2017)09-1071-15

    Received date:2017-06-10

    Foundation item:Supported by the National Natural Science Foundation of China(11372184,11602274,11232012,11572332);The Specialized Research Foundation for the Doctoral Program of Higher Education of China(20110073130003)

    Biography:WANG Xu(1985-),male,Ph.D.student of Shanghai Jiao Tong University;LIN Zhong-yi(1959-),male,professor,School of Jiaxing Nanyang Profession and Technology;YOU Yun-xiang(1963-),male,professor/tutor,corresponding author,E-mail:youyx@sjtu.edu.cn.

    猜你喜歡
    上海交通大學粘性海事局
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    一類具有粘性項的擬線性拋物型方程組
    交通運輸部海事局“新一代衛(wèi)星AIS驗證載荷”成功發(fā)射
    水上消防(2022年2期)2022-07-22 08:45:00
    交通運輸部海事局公布第二批可在線辦理的電子證照清單
    水上消防(2022年1期)2022-06-16 08:07:28
    中方將在渤海執(zhí)行軍事任務
    帶粘性的波動方程組解的逐點估計
    上海交通大學參加機器人比賽
    實地考察強交流
    珠江水運(2018年21期)2018-12-20 23:17:38
    粘性非等熵流體方程平衡解的穩(wěn)定性
    家庭醫(yī)生增強基層首診粘性
    亚洲精品乱码久久久v下载方式| 国产精品偷伦视频观看了| 永久免费av网站大全| 日本午夜av视频| 天天躁夜夜躁狠狠久久av| 亚洲精品aⅴ在线观看| 亚洲怡红院男人天堂| 久久久久久久久大av| 啦啦啦视频在线资源免费观看| 欧美日韩av久久| 国产乱来视频区| 国产精品久久久久久久久免| 欧美精品高潮呻吟av久久| 波野结衣二区三区在线| 九九久久精品国产亚洲av麻豆| 国产成人91sexporn| 国产av国产精品国产| 国产精品国产三级国产专区5o| 一级毛片aaaaaa免费看小| 在线播放无遮挡| 母亲3免费完整高清在线观看 | 九九爱精品视频在线观看| 午夜福利,免费看| 日韩av在线免费看完整版不卡| 亚洲精品色激情综合| 一级毛片我不卡| 在线 av 中文字幕| 秋霞伦理黄片| 亚洲av中文av极速乱| 各种免费的搞黄视频| av免费在线看不卡| 国产亚洲精品久久久com| 成年av动漫网址| 不卡视频在线观看欧美| 最新中文字幕久久久久| 国产精品久久久久久av不卡| 十八禁高潮呻吟视频| av有码第一页| 成人手机av| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 国产成人91sexporn| 亚洲成人手机| 精品亚洲成国产av| 国产成人精品无人区| 中国三级夫妇交换| 国产精品久久久久久精品电影小说| 少妇精品久久久久久久| 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 丰满少妇做爰视频| 夜夜爽夜夜爽视频| freevideosex欧美| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看| 超色免费av| 中文字幕最新亚洲高清| 婷婷成人精品国产| 久久精品人人爽人人爽视色| 亚洲av.av天堂| 嫩草影院入口| 成人综合一区亚洲| 国产精品 国内视频| 色哟哟·www| 成人影院久久| 久久精品国产亚洲网站| 成年女人在线观看亚洲视频| 成人亚洲欧美一区二区av| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 热99国产精品久久久久久7| 夜夜爽夜夜爽视频| 只有这里有精品99| 黄色毛片三级朝国网站| 老女人水多毛片| 欧美三级亚洲精品| 国产男人的电影天堂91| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 日本午夜av视频| 一二三四中文在线观看免费高清| 久久精品国产亚洲av天美| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 中文字幕人妻熟人妻熟丝袜美| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 性色avwww在线观看| 在线观看人妻少妇| 婷婷色麻豆天堂久久| 99九九线精品视频在线观看视频| 成年av动漫网址| 黑丝袜美女国产一区| 国产一区亚洲一区在线观看| 一边摸一边做爽爽视频免费| 亚洲成色77777| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 国产日韩欧美在线精品| 一区二区三区精品91| av在线播放精品| 欧美成人午夜免费资源| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 欧美+日韩+精品| 日本午夜av视频| 18禁在线无遮挡免费观看视频| av在线app专区| 人妻夜夜爽99麻豆av| 免费av中文字幕在线| 热re99久久精品国产66热6| 人妻制服诱惑在线中文字幕| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 日本av免费视频播放| 91精品伊人久久大香线蕉| 丁香六月天网| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 成人毛片60女人毛片免费| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 久久青草综合色| 国产深夜福利视频在线观看| 寂寞人妻少妇视频99o| 黑人猛操日本美女一级片| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 国产精品三级大全| 内地一区二区视频在线| 大香蕉久久网| 亚洲内射少妇av| 久久99热6这里只有精品| 免费大片黄手机在线观看| 亚洲av男天堂| 国产乱来视频区| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| a 毛片基地| 亚洲久久久国产精品| 少妇人妻 视频| 我要看黄色一级片免费的| 99久久精品一区二区三区| av播播在线观看一区| 国产免费一区二区三区四区乱码| 99久久精品一区二区三区| 日本色播在线视频| 曰老女人黄片| 国产免费现黄频在线看| a级毛片免费高清观看在线播放| 久久精品久久久久久久性| 看十八女毛片水多多多| 97在线视频观看| 如何舔出高潮| 男人爽女人下面视频在线观看| 日韩成人伦理影院| xxx大片免费视频| 久久99热6这里只有精品| 波野结衣二区三区在线| 日韩三级伦理在线观看| 999精品在线视频| 黑丝袜美女国产一区| 免费av中文字幕在线| 午夜精品国产一区二区电影| 日本黄大片高清| 成人18禁高潮啪啪吃奶动态图 | 91久久精品电影网| 国产成人免费无遮挡视频| 成年av动漫网址| 亚洲精品aⅴ在线观看| 综合色丁香网| 日韩电影二区| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 人人妻人人爽人人添夜夜欢视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品99久久99久久久不卡 | 性色avwww在线观看| av专区在线播放| 男女免费视频国产| 精品久久蜜臀av无| 亚洲中文av在线| a级片在线免费高清观看视频| 人人妻人人澡人人爽人人夜夜| 观看av在线不卡| 美女福利国产在线| 三级国产精品片| 亚洲中文av在线| 十分钟在线观看高清视频www| 日本av手机在线免费观看| 精品人妻熟女av久视频| 国产免费又黄又爽又色| 久久av网站| 国产成人精品久久久久久| 国产精品国产三级国产av玫瑰| 欧美日韩视频高清一区二区三区二| 国产日韩欧美视频二区| 久久久a久久爽久久v久久| av有码第一页| av播播在线观看一区| 丰满乱子伦码专区| 亚洲四区av| 久久久精品免费免费高清| 亚洲精品自拍成人| 国产精品免费大片| 亚洲四区av| 青春草视频在线免费观看| 蜜臀久久99精品久久宅男| 国产精品女同一区二区软件| 美女国产高潮福利片在线看| 亚洲人成网站在线观看播放| 日本黄大片高清| 在线观看三级黄色| 亚洲综合精品二区| 新久久久久国产一级毛片| 亚洲av二区三区四区| 久久精品国产自在天天线| 制服人妻中文乱码| 国产成人aa在线观看| 日韩精品免费视频一区二区三区 | 特大巨黑吊av在线直播| 亚洲性久久影院| 大香蕉久久成人网| 精品久久久久久久久av| 日韩亚洲欧美综合| 久久毛片免费看一区二区三区| 久久久午夜欧美精品| av卡一久久| 欧美激情 高清一区二区三区| 亚洲av.av天堂| 国产无遮挡羞羞视频在线观看| 免费观看在线日韩| 99九九在线精品视频| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 嫩草影院入口| 大香蕉久久网| 久久青草综合色| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 韩国高清视频一区二区三区| 亚洲av国产av综合av卡| 国产 精品1| 九九在线视频观看精品| 丝袜美足系列| 亚洲无线观看免费| av天堂久久9| 亚洲国产毛片av蜜桃av| 一区二区av电影网| 三上悠亚av全集在线观看| 国产精品国产三级专区第一集| 插阴视频在线观看视频| 黄色配什么色好看| 黄色怎么调成土黄色| 人妻 亚洲 视频| 日韩制服骚丝袜av| 丝袜美足系列| 超色免费av| 久久久精品94久久精品| 99热这里只有精品一区| av.在线天堂| 久久影院123| 久久久久久人妻| 欧美精品人与动牲交sv欧美| 久久久久久久精品精品| 极品少妇高潮喷水抽搐| 2022亚洲国产成人精品| 能在线免费看毛片的网站| 久久久精品免费免费高清| 18在线观看网站| 最近手机中文字幕大全| 久热这里只有精品99| 欧美日韩视频精品一区| 18禁在线无遮挡免费观看视频| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 在线观看美女被高潮喷水网站| 如何舔出高潮| 看免费成人av毛片| 日韩三级伦理在线观看| 国产成人aa在线观看| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 午夜福利视频精品| 国产精品一区二区三区四区免费观看| 亚洲欧洲精品一区二区精品久久久 | 交换朋友夫妻互换小说| 男女国产视频网站| 精品视频人人做人人爽| 精品久久蜜臀av无| 免费少妇av软件| 亚洲av.av天堂| 999精品在线视频| 精品人妻偷拍中文字幕| 欧美日韩av久久| 寂寞人妻少妇视频99o| 性色avwww在线观看| 看十八女毛片水多多多| av卡一久久| 人妻制服诱惑在线中文字幕| 观看美女的网站| 午夜免费男女啪啪视频观看| 久久ye,这里只有精品| 日韩一区二区视频免费看| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 久久久久久伊人网av| 亚洲人成网站在线播| 一区在线观看完整版| a级毛色黄片| 男女啪啪激烈高潮av片| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 简卡轻食公司| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 亚洲成色77777| 日日摸夜夜添夜夜爱| 亚洲精品美女久久av网站| 国产精品女同一区二区软件| 亚洲在久久综合| 黄片播放在线免费| 欧美+日韩+精品| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 男女高潮啪啪啪动态图| 两个人免费观看高清视频| √禁漫天堂资源中文www| 精品亚洲成国产av| 在线看a的网站| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 少妇被粗大猛烈的视频| 人妻系列 视频| 熟女电影av网| 人人澡人人妻人| 男女无遮挡免费网站观看| 日韩不卡一区二区三区视频在线| 久久人人爽人人片av| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 视频中文字幕在线观看| 日韩欧美一区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲一区二区精品| 中文天堂在线官网| 精品一区在线观看国产| 国产免费又黄又爽又色| 亚洲av.av天堂| 99久久人妻综合| 久久99蜜桃精品久久| 日韩亚洲欧美综合| 大陆偷拍与自拍| 国产免费视频播放在线视频| h视频一区二区三区| 亚州av有码| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 久久青草综合色| av视频免费观看在线观看| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 草草在线视频免费看| 一本大道久久a久久精品| .国产精品久久| 午夜老司机福利剧场| 欧美日韩一区二区视频在线观看视频在线| 热99国产精品久久久久久7| 午夜福利网站1000一区二区三区| 少妇 在线观看| 18在线观看网站| 啦啦啦啦在线视频资源| 视频区图区小说| 亚洲av在线观看美女高潮| av免费在线看不卡| 成年女人在线观看亚洲视频| 成人18禁高潮啪啪吃奶动态图 | 午夜激情久久久久久久| 久久久欧美国产精品| 青春草亚洲视频在线观看| 日韩在线高清观看一区二区三区| 精品少妇久久久久久888优播| 久久鲁丝午夜福利片| 毛片一级片免费看久久久久| 天堂中文最新版在线下载| 下体分泌物呈黄色| 中文欧美无线码| 纯流量卡能插随身wifi吗| 亚洲怡红院男人天堂| 日本91视频免费播放| 777米奇影视久久| 一级毛片aaaaaa免费看小| 国产亚洲最大av| 国产伦理片在线播放av一区| 91在线精品国自产拍蜜月| 亚洲成色77777| 婷婷色综合www| 天天操日日干夜夜撸| 少妇熟女欧美另类| 少妇丰满av| 精品亚洲成国产av| 欧美少妇被猛烈插入视频| 亚洲国产精品999| 日韩成人av中文字幕在线观看| 黄色一级大片看看| videossex国产| 三级国产精品欧美在线观看| 国产视频内射| 成人国产麻豆网| 国产色爽女视频免费观看| 色哟哟·www| 人妻一区二区av| 91精品国产国语对白视频| 在线天堂最新版资源| 曰老女人黄片| 国产 一区精品| 亚洲精品一区蜜桃| 午夜久久久在线观看| kizo精华| 中文字幕av电影在线播放| 夫妻性生交免费视频一级片| 在现免费观看毛片| 一区二区三区精品91| 18禁观看日本| 在线观看三级黄色| 人妻一区二区av| 99久久综合免费| 国产免费一级a男人的天堂| 韩国av在线不卡| 最黄视频免费看| 亚洲精品乱码久久久v下载方式| av免费在线看不卡| 热99久久久久精品小说推荐| 国产成人免费无遮挡视频| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕 | 午夜免费观看性视频| 国产综合精华液| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 最新的欧美精品一区二区| 久热久热在线精品观看| 国产探花极品一区二区| 欧美精品高潮呻吟av久久| 激情五月婷婷亚洲| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| 亚洲国产精品一区二区三区在线| 久久99热6这里只有精品| 一区二区av电影网| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 伦理电影大哥的女人| 国内精品宾馆在线| 国产精品偷伦视频观看了| 国产在线一区二区三区精| 国产男女内射视频| 黄色配什么色好看| 亚洲精品日本国产第一区| 街头女战士在线观看网站| 99久久人妻综合| 国产精品免费大片| 欧美老熟妇乱子伦牲交| av国产久精品久网站免费入址| 永久免费av网站大全| 亚洲精品中文字幕在线视频| 一级毛片 在线播放| 少妇被粗大的猛进出69影院 | 大香蕉97超碰在线| 中文欧美无线码| 精品亚洲成国产av| 丰满迷人的少妇在线观看| 老司机影院毛片| 久久久久国产精品人妻一区二区| 免费播放大片免费观看视频在线观看| 久久久a久久爽久久v久久| 成人影院久久| 黑丝袜美女国产一区| 少妇人妻精品综合一区二区| 国产国语露脸激情在线看| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 桃花免费在线播放| 人妻一区二区av| 亚洲欧美清纯卡通| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 最近2019中文字幕mv第一页| 精品国产一区二区久久| 国产午夜精品一二区理论片| 精品国产国语对白av| 日韩一本色道免费dvd| 久久久久久人妻| 国产精品欧美亚洲77777| 久久久久久久久久久免费av| 97精品久久久久久久久久精品| 国产一区二区在线观看日韩| 久久婷婷青草| 91精品伊人久久大香线蕉| 日韩人妻高清精品专区| 久久精品国产a三级三级三级| 色哟哟·www| 久久久久久久久久久免费av| 久久精品夜色国产| 九九久久精品国产亚洲av麻豆| 亚洲三级黄色毛片| 久久国产亚洲av麻豆专区| 22中文网久久字幕| 亚洲av在线观看美女高潮| 日韩av免费高清视频| 久久久欧美国产精品| 青青草视频在线视频观看| 99国产综合亚洲精品| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 国产日韩欧美亚洲二区| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 国产不卡av网站在线观看| 国产免费一区二区三区四区乱码| 亚洲精品久久久久久婷婷小说| 中文字幕人妻熟人妻熟丝袜美| 中国国产av一级| 精品熟女少妇av免费看| 91精品国产九色| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 久久久久国产精品人妻一区二区| 国产成人91sexporn| 亚洲性久久影院| 美女cb高潮喷水在线观看| av免费观看日本| 成年女人在线观看亚洲视频| 嫩草影院入口| 国产黄频视频在线观看| 亚洲av成人精品一区久久| 国产高清有码在线观看视频| 人成视频在线观看免费观看| 亚洲精品一区蜜桃| 天堂8中文在线网| 久久99一区二区三区| 亚洲av不卡在线观看| 97在线视频观看| 国产熟女欧美一区二区| 欧美 日韩 精品 国产| 久久久精品94久久精品| 一级毛片黄色毛片免费观看视频| 亚洲成人一二三区av| 国产男女内射视频| 久久久久久久久久人人人人人人| 人妻系列 视频| 国产男人的电影天堂91| 亚洲经典国产精华液单| 人妻系列 视频| 亚洲综合色网址| 国产成人精品在线电影| 欧美3d第一页| 亚洲欧洲日产国产| 全区人妻精品视频| 在线亚洲精品国产二区图片欧美 | 亚洲中文av在线| 青春草国产在线视频| 国产男人的电影天堂91| 波野结衣二区三区在线| 免费看av在线观看网站| 夫妻午夜视频| av.在线天堂| 自线自在国产av| 久久影院123| 边亲边吃奶的免费视频| 国产日韩欧美亚洲二区| 一区二区三区四区激情视频| 汤姆久久久久久久影院中文字幕| 欧美一级a爱片免费观看看|