• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motion of the moonlet in the binary system 243 Ida

    2018-03-19 02:07:19LanNiJiangLi
    Acta Mechanica Sinica 2018年1期

    L.Lan·Y.Ni·Y.Jiang·J.Li

    1 Introduction

    Asteroid 243 Ida is an S-type asteroid with an average diameter of 31.4 km in the Koronis family,which is the most abundant type in the inner main belt[1,2].It was discovered by an Austrian astronomer,Johann Palisa,on 29th September 1884.Spacecraft Galileo,destined for Jupiter,flew by the asteroid 243 Ida on 28th August 1993,thus,it is the second asteroid that a spacecraft has flown by(the first was 951 Gaspra,and Spacecraft Galileo also did a flyby).The primary’s observed semi-major axis of revolution is 2.8616 AU with an orbital period of~4.841 years.The asteroid seems to be composed of two connected objects for an elongated shape.

    Moreover,243 Ida is the first asteroid found to have a natural moonlet,called Dactyl,which was discovered in pictures returned from spacecraft Galileo.Dactyl has an average diameter of only 1.4 km,which is about 1/22 the size of the primary.The surfaces of the binary are both heavily covered with craters and composed of similar materials,which suggests the same origin from a parent-body fragment in the Koronis family[3].

    As a delicate system with tiny divergence velocities,binary asteroids such as 243 Ida draw much attention to their formation and evolution[4].However,it is hard to determine the orbit of Dactyl accurately for its remote location from the earth.The ratio of separation to primary’s average radiusas/rpis about 6.9 and the eccentricity of the moonlet is over0.2,according to observation.The over all dimensions of Dactyl were found to be 1.6 km×1.4 km×1.2 km,which is quite insignificant compared with the primary;therefore,it is modeled as a massless particle in this paper for the large size ratio of the binary system[5–8].

    Irregular asteroids are quite common in solar systems because hardly any bodies have sufficient mass for gravity to overcome the inner solid stress[9–11].The study on the gravitational field of the irregular primary is the basis to investigate the motion of the moonlet.The separation between a particle and the primary is an important factor affecting the required sophistication of model.Therefore,several models with various degrees of sophistication have been developed to date.If a particle is adequately remote from the primary,a perturbation expansion method with low-order Legendre coefficients can be used.Moreover,simple-shape models can be adopted,such as a logarithm and a massive finite segment],a simple planar plate],a rotating homogeneous cube[14],a dumbbell-shaped body[15],and a dipole[16].In addition,the ellipsoid–sphere and ellipsoid–ellipsoid systems are used to study the motion of probe near the binary system in the case that the pairs are in relative equilibrium[17,18].

    If a particle is close to the primary,the gravity of an irregular body dominates a conclusive effect,thus the solar gravitation and sunlight pressure can be neglected[19].In this case,using simple-shape models,it is hard to reveal the complicated shape of asteroids,as well as the gravity potential near an irregular body.Moreover,the spherical-harmonic method fails within the reference sphere,and the expansion method with low-order Legendre coefficients is insufficient for calculation since higher-order terms may take numerous iterations to converge or diverge in some cases[11,12].Therefore,the absolute importance of a high-precision polyhedral model with sufficient vertices and faces is underscored for the research on the motion near an irregular asteroid[20–22].Based on the method,Yu and Baoyin[23]investigated 29 families of periodic orbits in the vicinity of 216 Kleopatra using hierarchical grid searching method.Also,Jiang et al.[11]discussed the topological classifications and bifurcations of the periodic orbits near the highly irregular bodies.Moreover,Ni et al.[24]studied the multiple bifurcations in the continuation of periodic orbits near the asteroid 433 Eros.The work of Lan et al.[25]investigated the gravity field of heterogeneous asteroids using method improving upon polyhedron.

    In this paper,calculations are conducted using polyhedral method to investigate the periodic orbits near the primary and motion of the moonlet.First,the periodic orbits around the equilibrium points and large-scale periodic orbits are calculated and analyzed.They indicate that geometric natures of periodic orbits in the vicinity of an irregular asteroid are very sophisticated[11].However,most of these orbits are unstable.

    It is worthy mentioned that two period-doubling bifurcations(PDBs)and one Neimark–Sacker bifurcation(NSB)occur during the continuation of the retrograde near-circular periodic orbits near the equatorial plane,thus orbits of the family appear stable or unstable in different regions divided by three bifurcations.Moreover,we find many quasi-periodic orbits existing near the equatorial plane.The motion of these quasi-periodic orbits differ greatly in region I and region II shown by Poincare sections.Dactyl orbits the primary in the stable region I.Associated with the observed orbital parameters,it can be concluded seriously that Dactyl is likely to be in a quasi-periodic orbit in region I.

    This paper is organized as follows:some basic theories are introduced in Sect.2.Then,several families of periodic orbits in the vicinity of the primary are studied in Sect.3.The stabilities of the retrograde periodic orbits in four regions are also investigated in this section.Moreover,Poincare sectionsVz?Zof quasi-periodic orbits are analyzed in Sect.4,and we propose a possible orbit of Moonlet Dactyl in this section as well.In the final section,we discuss the results and draw our conclusions.

    2 Irregular asteroid’s gravity field and periodic motion of a particle

    In this section,basic theories are introduced,including the gravitational potential of a polyhedral body,dynamic equation of a particle near an asteroid,a hierarchical grid orbital searching method,as well as an orbital continuation method.Moreover,the topological cases of Floquet multipliers are introduced to study the stabilities of periodic orbits.

    2.1 Gravitational potential and dynamical equation

    The overall dimensions of asteroid 243 Ida are 59.8 km×25.4 km×18.6 km,and its rotation period is~4.634 h.The bulk density of the asteroid is estimated to be 2.4 g/cm3,and its total mass is 4.121×1016kg.We use a polyhedral model of the primary with 2161 vertices and 4318 faces[26].The gravitational potential can be expressed as[21]

    and the gravitational force can be written as

    where“?”denotes the gradient operator.G=6.67×10?11m3·kg?1·s?2is the gravitational constant;σis the asteroid’s bulk density;Ledenotes the integration factor between field points and edgese;ωfdenotes the signed angle relative to field points;reandrfdenote the body-fixed vectors from field points to edge e and face f,respectively;EeandFfdenote geometric parameters of edges and faces,respectively.

    The sunlight pressure and solar gravitation are neglected because all considered motion are within the influence sphere of the primary.The dynamical equation of a particle can be written as[22]whereris a vector from origin to the particle;ωdenotes the rotational angular velocity of the primary relative to the inertial frame;τdenotes the angular acceleration of the primary.An inertial principal axis system is used in this paper with an origin at the barycenter of the primary.andIz≥Iy≥Ix,whereIx,Iy,Izare the principal moments of inertia.Equation 3 can be expressed in this body-fixed frame as

    where “.”and “..”are differential and second-order differentials of time.Considering the variation of asteroid’s angular velocity is quite slow,we assumeτ=0 andωremains constant in this paper.The sum of the centrifugal potential and gravity potential are always introduced as the effective potential[27]

    The Coriolis term 2ω×˙rhas no effect on the generalized energy of the system and the term?V(r)is a potential force;therefore,Eq.(6)is conserved for the explicit time independence.The system keeps a symplectic form and conserves phase volume in each extended phase space,resulting in unpredictability of long-range dynamical motions[23].The integral of generalized energy can be expressed as a Hamiltonian function[28]

    which is always called the Jacobi integral.Certain Jacobi integrals divide the entire space into an allowable region withV(r)<C,and a forbidden region withV(r)>Cfor the motion of a particle[29].The zero-velocity surfaces,generated byV(r)=C,are the boundaries of these regions[23].

    Fig.1 Six families of periodic orbits around the equilibrium points

    Table 1 The equilibrium points in the vicinity of the primary

    The kinetic energy of a particle with respect to the body-fixed frame can be calculated from the difference betweenCandV(r)[30]

    The equilibrium points are the spots satisfying?V(r)=0.This means˙r=0 and¨r=0 derived from Eq.(6).A method proposed by Wang et al.[20,31]is used to calculate relative equilibrium points in the vicinity of the primary.As shown in Fig.1,there are four unstable equilibrium points outside the body and one stable equilibrium point inside the body,as listed in Table 1[20].Thereinto,E1andE3are two saddle points,andE2andE4are two extreme points.Asaddle point is a stationary point,but is not a local extremum on all axes.The saddle point always occurs at a relative minimum along one axial direction and at a relative maximum along the crossing axes.

    2.2 Periodic motions in the vicinity of the primary

    Periodic motions were identified as the foundation to comprehend the creation of celestial systems and their stabilities[23,29];therefore,we first need investigate the periodic orbits near the primary in order to understand the motion of moonlet Dactyl.The dynamical equation of the periodic motion can be written simply as follow

    Xis a six-dimensional variate relative to the moonlet’s position and velocity.

    The monodromy matrix represents the state transition matrix with a transition time of a periodt=T:

    The Floquet multipliers are Eigenvalues of the monodromy matrix.There must be a pair of “1”,determined by the orbital periodicity and generalized energy conservation of the system.The remaining Floquet multipliers should be the combination of following forms:a pair of 1,? 1,α±1,cosβ± i sinβorσ±1(cosθ± i sinθ),where|α|∈(0,1),β∈(0,π),θ∈(0,π),which are determined by the symplectic construction of matrixM[11].It is hard to find all periodic orbits near an irregular asteroid because of orbit richness and denseness,but all orbits can be classified by different topological cases of Floquet multipliers[34].

    Seven topological cases of pure-periodic orbits,which are all non-collisional and non-degenerate-real-saddle,were discussed by Jiang et al.[11].Four of these cases are mentioned in this paper,and are listed in Table 4.A periodic orbit is unstable if it has Floquet multipliers outside the unit circle in the complex plane.In contrast,the Floquet multipliers for a stable periodic orbit should be all on the unit circle.

    2.3 Bifurcations in the continuation of the periodic orbits

    The orbital continuation is an effective method to search for plentiful periodic orbits with similar parameters.We find a basic periodic orbit in an orbital family first,and other orbits of the same family are continued from the basic orbits.The Jacobi constant is always chosen as the continuous dependence,and multiple parameters will change correspondingly in the continuation as well[23].The continuation follows[35]

    in whichδX iis the gradient direction;εis the step size chosen to get an optimal value ofX i+1in the gradient direction.The procedure of continuation ends if the orbit intersects the asteroid.

    In the orbital continuation,bifurcations might occur,the topological cases of Floquet multipliers might transfer,and stabilities of periodic orbits mights witch[33,36].PDB takes place when and only when two or four Floquet multipliers crash at(?1,0)and leave thex-axis or unit cycle[11].The NSB takes place when and only when two Floquet multipliers collide at eiβ(β∈(0,π))and 2 Floquet multipliers crash at e?iβ(β∈(0,π))synchronously,then all leave the unitcycle.

    3 Periodic orbits around the equilibrium points and large-scale periodic orbits

    The periodic orbits in the vicinity of the primary can be classified as two types.Type 1:the orbital families of this type extend like a tree ring around a certain equilibrium point,as shown in Fig.1.They are periodic orbits around the equilibrium points.Type 2:the families of this type usually extend to greater area in the vicinity of asteroid and are not dominated by a certain equilibrium point.They are large-scale periodic orbits.However,whether Type 1 or Type 2,most of the orbits are unstable,except the periodic orbits near the equatorial plane.We pay our attention to bifurcations in the continuation of retrograde near-circular orbits near the equatorial plane.Moreover,four regions and their stabilities are studied in this section.

    3.1 The periodic orbits around equilibrium points of the primary

    The number of orbital families of this type of periodic orbit depends on the topological structures of the eigenvalues of non-degenerate and non-resonance equilibrium points,specifically the dimension of central manifolds[37].Through calculation,six families of periodic orbits around the equilibrium points are found,as shown in Fig.1.Family 1(a)and Family 1(b)are around equilibrium pointE1,Family 2 is around equilibrium pointE2,Family 3(a)and Family 3(b)are around equilibrium pointE3,and Family 4 is around equilibrium pointE4.Family 1(b)and Family 3(b)are near the equatorial plane,but the others are approximately perpendicular to the plane.These show a typical distribution of the periodic orbits around the equilibrium points for elongated asteroids,such as asteroids216 Kleopatra and 433 Eros[6,23].Orbit 1(a),Orbit 1(b),Orbit 2,Orbit 3(a),Orbit 3(b),and Orbit 4 are the basic orbits of these six orbital families,respectively.The other orbits of the same family are continued from these basic orbits.The initials of these basic orbits with respect to the body-fixed frame are listed in Table 2.Figure 2 presents the transfers of the Floquet multipliers during the continuations.Two real-saddle bifurcations occur during the orbital continuation of Family 2.A real-saddle bifurcation is a type of bifurcation where in the continuation of orbits,two pairs of conjugated Floquet multipliers run into each other at the real axis synchronously and then run on the realaxis[38].These show that these six families of orbits are all unstable.

    Table 2 The initials of basic orbits belonging to six orbital families around the equilibrium points with respect to the body-fixed frame

    Fig.2 The transfers of the Floquet multipliers of six orbital families around the equilibrium points during the continuations.“2”means two Floquet multipliers overlap together.“R”and“I”refer to real axis and image axis of the complex plane,respectively

    3.2 Large-scale periodic orbits

    These families of periodic orbits are not around certain equilibrium points and usually have large scales.Six families of large-scale periodic orbits are found,as shown in Fig.3.Orbit 5,Orbit 6,Orbit 7,Orbit 8,Orbit 9,and Orbit 10 are basic orbits of Family 5,Family 6,Family 7,Family 8,Family 9,and Family 10,respectively.Initials of six basic orbits with respect to the body-fixed frame are listed in Table 3.The transfers of the Floquet multipliers during the continuations of six families are presented in the Fig.4.A PDB occurs during the continuation of Family 9.These six families of periodic orbits are also unstable.

    Fig.3 The transfers of the Floquet multipliers of six families of large-scale periodic orbits during the continuations.“2”means two Floquet multipliers overlap together

    Table 3 The initials of basic orbits belonging to six families of large-scale periodic orbits with respect to the body-fixed frame

    Fig.4 The transfer of topological cases of Floquet multipliers’topological cases in the continuation of the retrograde near-circular periodic orbits near the equatorial plane.“6”and “2”mean six and two Floquet multipliers overlap together,respectively

    3.3 Stabilities of retrograde near-circular periodic orbits near the equatorial plane

    It is convincing that there exist more families of large-scale periodic orbits around the primary.However,most of these orbits are unstable,which are less meaningful to the missions since probes are more likely to escape from nominal orbits with out control.Dactylisn’t supposed to be in an unstable orbit since it has been flying around the primary for a long time.However,we find that most of retrograde nearcircular periodic orbits near the equatorial plane are stable.Several orbits of the family have similar orbital parameters to that of Dactyl,making the research on this family has much scientific meaning.This family of periodic orbits were first proposed by Scheeres et al.[22],and their stable conditions are given in Ref.[39].

    Periodic orbits of the family are continued based on Jacobi constant varying from 4.833×10?3m2/s2to 8.789×10?4m2/s2in steps of? 1.2× 10?7m2/s2.The direction of continuation is shown by the arrow in Fig.5.The orbital scale decreases and other parameters vary correspondingly.When a particle is sufficiently remote from the primary,the primary’s irregularity has little effect on the gravity.Therefore,the particle orbits a body that is almost the same as a uniform mass sphere.The Floquet multipliers’topological case appears as Case 4 at infinity,as shown in Fig.4.During the continuation,two PDBs and one NSB occur one by one.These bifurcations divide the space into two stable regions and two unstable regions,as shown in Fig.5.They can be called stable region I,unstable region II,stable region III,and unstable region IV,respectively.Periodic orbits in stable regions are all stable,but in unstable regions are all unstable.The ranges of Jacobi constants for these regions are listed in Table 5.The entire transfer process of the Floquet multipliers’topological cases are listed as follows:

    as shown in Fig.4,and the forms of these cases are listed in Table 4.The first PDB occurs when the Jacobi constantC=1.052 and orbital periodT=2.699;the second PDB occurs when Jacobi constantC=1.01986 and orbital periodT=2.62683;the Neimark-Sackerbifurcation occurs when Jacobi constantC=0.949763 and orbital periodT=2.46352.IfC<0.878945,the orbits intersect the primary;therefore,C=0.878945 is the end of the continuation.Two PDBs occur at the orbits near two unstable saddle equilibrium pointsE1andE3,and the Neimark-Sackerbifurcation occurs where the orbit is very close to the surface of the primary,since asteroid’s irregularity makes a leap effect.Long-term integrations indicate that periodic orbits in unstable regions are more likely to diverge,but in stable regions can remain stable for a long time.If there is a ring formed by dust near the primary similar to that of Saturn,a division may exist between two stable regions(Table 5).

    Fig.5 Stable regions and unstable regions

    4 Quasi-periodic orbits near the equatorial plane and the motion of moonlet Dactyl

    The moonlet Dactylorbits the primary in stable region I.The observed parameters of Dactyl’s orbit around the primary are presented in Table 6(the data is from website:http://www.johnstonsarchive.net/astro/asteroidmoons.html).The periodic orbits with similar parameters in stable region I are also listed in Table 6.The periodic orbit 11 has a similar semimajor axis to that of Dactyl,and the periodic orbit 12 has a similar orbital period to that of Dactyl.However,it is obvious that Dactyl is not in these orbits.These orbits are more circular and closer to equatorial plane.However,the similarities imply Dactyl may be in a quasi-periodic orbit near the region.

    Dozens of quasi-periodic orbits exist in the stable region I.They can be obtained by adding perturbations at the initial parameters of periodic orbits.Perturbations of 0.25%,0.5%,1.0%are added at the initials of periodic orbit 11,respectively.The Poincare sectionsVz?Zare calculated for 2000 days based on RK 7(8)integration methods to show the behaviors of the orbits,as shown in Fig.6.The graphics are similar to petalages and the particles run within a closed area like an egg in the order of tens of meters with respect toZ-axis,and in the order of microns per second with respect toVz-axis.Particles intersect the cores of the graphics at a higher rate.

    Poincare sectionsVz?Zare also calculated in region II.Perturbations of 0.25%,0.5%,1.0%are added at the initials of a periodic orbit in region II,as shown in Fig.7.The graphics in Fig.7 are extremely different from those in Fig.6.These graphics resemble an oblique figure“8”,and the particles are active at the joining region of two rings.The oblique figure“8”is on the order of several kilometers with respect to theZ-axis,and on the order of meters per second with respect to theVz-axis.These reflect that the intersection points in Fig.7 distribute in a much largerrange comparing with those in Fig.6.There are remarkably different motions of quasiorbits in region I and region II,and orbits in region II are more reactive to perturbations.

    Table 4 Topological cases of Floquet multipliers belonging to pure-periodic cases,PDB,and NSB,respectively[34]

    Table 5 Parameters for the regions represented in Fig.5

    We choose a group of orbital initials similar to those of Dactyl from the two-body model and calculate its evolution for 2000 days.The orbit is called quasi-orbit 13.The calculation result suggests that the particle orbits the primary stably.The trajectory is within a 3-D space similar to a tire around the body,as shown in Fig.8.The Poincare sectionsVz?Zrelative to the orbit is also shown in Fig.8,and it is very similar to those in Fig.6.Figure 9 presents the evolutions of the orbital parameters,which coincide well with Dactyl’s observed parameters.Short-term and longterm periodic variations coexist in the evolution of each parameter.It has serious possibility that Dactyl is in a suchlike quasi-periodic orbit in region I around the primary.

    These quasi-periodic orbits are very appropriate to park probes,since less propulsion is required for station-keeping for their st abilities.Moreover,the stable relative motion to the primary makes it easy for global mapping of the asteroid.In addition,alternative distances between probe and the primary will balance the requirement of the safety and observation.

    Table 6 Comparison of average orbital parameters between Dactyl’s orbit and the periodic orbits in region I

    Fig.6 The Poincare sections Vz?Z calculated in stable region I.a 0.25%perturbation.b 0.5%perturbation.c 1.0%perturbation

    Fig.7 The Poincare sections Vz?Z calculated in unstable region II.a 0.25%perturbation.b 0.5%perturbation.c 1.0%perturbation

    5 Conclusions

    Periodic orbits around the primary found in the binary system 243 Ida show sophisticated geometric natures.They can be classified as the orbits around equilibrium points and largescale orbits.The continuation results suggest the abundance and denseness of periodic orbits.The transfers of the Floquet multipliers’topological cases relative to each family indicate most of mentioned periodic orbits are unstable,except the orbits near the equatorial plane.These orbits are near circular.During the continuation of the retrograde orbits,two PDBs and one NSB occur one by one,leading to two stable regions and two unstable regions.Periodic orbits in the stable regions are all stable,but in the unstable regions are unstable.Moreover,many stable quasi-periodic orbits exist in these regions.Poinc are sectionsVz?Zcalculated in region I and region II show different styles of motions of quasi-periodic orbits.Orbits in unstable region II are more likely to diverge.Combining with the observed orbital parameters of Dactyl,it has serious possibility that Dactyl is in a quasi-periodic orbit around the primary in stable region I,which gives an explanation for the motion stability of the binary system.Furthermore,these also suggest a feasible region to park probes in missions.

    Fig.8 3-D Quasi-periodic orbit and Poincare sections Vz?Z relative to the quasi-periodic orbit.The red circles in left figure are periodic orbit 11 and 12

    Fig.9 The evolution of the quasi-periodic orbit 13.The red dot lines represent the observed orbital parameters of Dactyl

    AcknowledgementsWe are grateful to the anonymous reviewers for expeditious review and useful comments.This research was supported by the National Natural Science Foundation of China(Grant11572166).

    1.Belton,M.J.,Chapman,C.R.,Veverka,J.,et al.:First images of asteroid 243 Ida.Science 265,1543–1547(1994)

    2.Helfenstein,P.,Veverka,J.,Thomas,P.C.,et al.:Galileo photometry of asteroid 243 Ida.Icarus 120,48–65(1996)

    3.Chapman,C.R.,Klaase,K.,Belton,M.J.S.,etal.:Asteroid 243 Ida and its satellite.Meteoritics 29,455(1994)

    4.Kevin,J.W.,Seth,A.J.:Formation and evolution of binary asteroids.In:Asteroids IV,375–393.University of Arizona,Tucson(2015)arXiv:1506.06689v1

    5.Takahashi,Y.,Scheeres,D.J.,Werner,R.A.:Surface gravity fields for asteroids and comets.J.Guid.Control.Dyn.36,362–374(2013)

    6.Chanut,T.G.G.,Winter,O.C.,Tsuchida,M.:3D stability orbits close to 433 Eros using an effective polyhedral model method.Mon.Not.R.Astron.Soc.438,2672–2682(2014)

    7.Marchis,F.,Berthier,J.,Burns,K.J.,etal.:Characteristics of known triple asteroid systems in the main belt.Bull.Am.Astron.Soc.42,1050(2010)

    8.Taylor,P.A.,Margot,J.L.:Binary asteroid systems:tidal end states and estimates of material properties.Icarus 212,661–676(2011)

    9.Ostro,S.J.,Hudson,R.S.,Nolan,M.C.,et al.:Radar observations of asteroid 216 Kleopatra.Science 288,836–839(2000)

    10.Hartmann,W.K.:The shape of Kleopatra.Science 288,820–821(2000)

    11.Jiang,Y.,Baoyin,H.,Li,H.:Periodic motion near the surface of asteroids.Astrophys.Space Sci.360,1–10(2015)

    12.Elipe,A.,Riaguas,A.:Nonlinear stability under a logarithmic gravity field.Int.Math.J.3,435–453(2003)

    13.Blesa,F.:Periodic orbits around simple shaped bodies.Monogr.Semin.Mat.García Galdeano 33,67–74(2006)

    14.Liu,X.,Baoyin,H.,Ma,X.:Equilibria,periodic orbits around equilibria,and heteroclinic connections in the gravity field of a rotating homogeneous cube.Astrophys.Space Sci.333,409–418(2011)

    15.Li,X.,Qiao,D.,Cui,P.:The equilibria and periodic orbits around a dumbbell-shaped body.Astrophys.Space Sci.348,417–426(2013)

    16.Zeng,X.,Baoyin,H.,Li,J.:Updated rotating mass dipole with oblateness of one primary(II):out-of-plane equilibria and their stability.Astrophys.Space Sci.361,1–9(2015)

    17.Gabern,F.,Koon,W.S.,Marsden,J.E.:Binary asteroid observation orbits from a global dynamical perspective.SIAM J.Appl.Dyn.Syst.5,252–279(2006)

    18.Shang,H.,Wu,X.,Cui,P.:Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions.Astrophys.Space Sci.355,69–87(2014)

    19.Yu,Y.,Baoyin,H.:Routing the asteroid surface vehicle with detailed mechanics.Acta Mech.Sin.30,301–309(2014)

    20.Wang,X.,Jiang,Y.,Gong,S.:Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies.Astrophys.Space Sci.353,105–121(2014)

    21.Werner,R.A.,Scheeres,D.J.:Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia.Celest.Mech.Dyn.Astron.65,313–344(1997)

    22.Scheeres,D.J.,Ostro,S.J.,Hudson,R.S.,et al.:Orbits close to asteroid 4769 Castalia.Icarus 121,67–87(1996)

    23.Yu,Y.,Baoyin,H.:Generating families of3D periodic orbits about asteroids.Mon.Not.R.Astron.Soc.427,872–881(2012)

    24.Ni,Y.,Jiang,Y.,Baoyin,H.:Multiple bifurcations in the periodic orbit around Eros.Astrophys.Space Sci.361,1–15(2016)

    25.Lan,L.,Yang,M.,Baoyin,H.,et al.:The periodic dynamics of the irregular heterogeneous celestial bodies.Astrophys.Space Sci.362,38(2017)

    26.Stooke,P.:Stooke small bodies maps V2.0.MULTI-SA-MULTI-6-STOOKEMAPS-V2.0.NASA Planetary Data System(2012)

    27.Wang,X.,Li,J.,Gong,S.:Bifurcation of equilibrium points in the potential field of asteroid 101955 Bennu.Mon.Not.R.Astron.Soc.455,3724–3734(2016)

    28.Arnold,V.I.:Mathematical Methods of Classical Mechanics.Springer,Berlin(1978)

    29.Szebehely,V.:Theory of Orbits—The Restricted Problem ofThree Bodies.Academic Press,New York(1967)

    30.Jiang,Y.,Baoyin,H.:Orbital mechanics near a rotating asteroid.J.Astrophys.Astron.35,17–38(2014)

    31.Jiang,Y.:Equilibrium points and periodic orbits in the vicinity of asteroids with an application to 216 Kleopatra.Earth Moon Planets 115,31–44(2015)

    32.Scheeres,D.J.:Orbital mechanics about small bodies.Acta Astronaut.7,14–21(2012)

    33.Hénon,M.:Exploration numérique du problème restreint.II.Masses égales,stabilité des orbites périodiques.Ann.Astrophys.28,992–1007(1965)

    34.Jiang,Y.,Yu,Y.,Baoyin,H.:Periodic orbits,stability and bifurcations in the potential field of highly irregular-shaped celestial bodies.Nonlinear Dyn.81,119–140(2014)

    35.Mu?oz-Almaraz,F.J.,Freire,E.,Galán,J.,et al.:Continuation of periodic orbits in conservative and Hamiltonian systems.Physica D Nonlinear Phenom.181,1–38(2003)

    36.Tresaco,E.,Elipe,A.,Riaguas,A.:Computation of families of periodic orbits and bifurcations around a massive annulus.Astrophys.Space Sci.338,23–33(2012)

    37.Jiang,Y.,Baoyin,H.,Li,J.,et al.:Orbits and manifolds near the equilibrium points around a rotating asteroid.Astrophys.Space Sci.349,83–106(2014)

    38.Jiang,Y.,Yu,Y.,Baoyin,H.:Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies.Nonlinear Dyn.81,119–140(2015)

    39.Scheeres,D.J.,Williams,B.G.,Miller,J.K.:Evaluation of the dynamic environment of an asteroid:applications to 433 Eros.J.Guid.Control.Dyn.23,466–475(2000)

    有码 亚洲区| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| 精品久久国产蜜桃| 精品午夜福利在线看| 国产成人91sexporn| 国产极品粉嫩免费观看在线 | 国产一区二区在线观看日韩| 国产又色又爽无遮挡免| 又爽又黄a免费视频| 久久久国产欧美日韩av| 妹子高潮喷水视频| 国产精品久久久久久精品古装| 在线观看免费高清a一片| 你懂的网址亚洲精品在线观看| 秋霞在线观看毛片| 亚洲一级一片aⅴ在线观看| 精品人妻偷拍中文字幕| 在线看a的网站| 岛国毛片在线播放| 免费少妇av软件| 免费看日本二区| 人妻人人澡人人爽人人| 少妇的逼好多水| 视频区图区小说| 中文天堂在线官网| 国产精品.久久久| 国产亚洲一区二区精品| 最后的刺客免费高清国语| 亚洲情色 制服丝袜| 看非洲黑人一级黄片| 老司机影院毛片| 黄色欧美视频在线观看| 男人爽女人下面视频在线观看| 激情五月婷婷亚洲| 3wmmmm亚洲av在线观看| 亚洲第一区二区三区不卡| 久久久欧美国产精品| 午夜精品国产一区二区电影| 国产精品熟女久久久久浪| 丰满迷人的少妇在线观看| 日本wwww免费看| 亚洲精品aⅴ在线观看| 亚洲国产日韩一区二区| 亚洲精品456在线播放app| av女优亚洲男人天堂| av女优亚洲男人天堂| 国产视频内射| 中国国产av一级| 国产伦精品一区二区三区视频9| 最近中文字幕2019免费版| 国产精品.久久久| 精品国产一区二区三区久久久樱花| 国产免费一级a男人的天堂| 五月开心婷婷网| 精品视频人人做人人爽| 日韩精品免费视频一区二区三区 | 国产成人精品福利久久| 国产毛片在线视频| 国产在线一区二区三区精| 我要看黄色一级片免费的| 国产视频首页在线观看| 久久影院123| 男女边吃奶边做爰视频| 狂野欧美激情性xxxx在线观看| 大话2 男鬼变身卡| 美女中出高潮动态图| 久久精品国产亚洲网站| 亚洲情色 制服丝袜| 亚洲精品国产色婷婷电影| 久久精品久久久久久噜噜老黄| 九九在线视频观看精品| 十八禁网站网址无遮挡 | 成人国产麻豆网| 汤姆久久久久久久影院中文字幕| 中文欧美无线码| 久久99蜜桃精品久久| 欧美日韩在线观看h| 日本黄色日本黄色录像| 免费人成在线观看视频色| 久久精品国产亚洲网站| 我要看黄色一级片免费的| 国产精品久久久久成人av| 最近手机中文字幕大全| 丰满乱子伦码专区| 97超视频在线观看视频| 2022亚洲国产成人精品| 天天操日日干夜夜撸| 免费av不卡在线播放| 内射极品少妇av片p| 美女中出高潮动态图| 三上悠亚av全集在线观看 | 麻豆成人av视频| 男人添女人高潮全过程视频| 女性被躁到高潮视频| 少妇裸体淫交视频免费看高清| 啦啦啦在线观看免费高清www| 五月伊人婷婷丁香| 欧美亚洲 丝袜 人妻 在线| 你懂的网址亚洲精品在线观看| 国产精品一区二区三区四区免费观看| 97超碰精品成人国产| 黄色配什么色好看| 免费看光身美女| 免费人成在线观看视频色| 一级爰片在线观看| 久久精品国产鲁丝片午夜精品| 在线观看www视频免费| 99久国产av精品国产电影| 热re99久久国产66热| 日本爱情动作片www.在线观看| 亚洲内射少妇av| 中国三级夫妇交换| 日韩精品有码人妻一区| 亚洲av国产av综合av卡| freevideosex欧美| 寂寞人妻少妇视频99o| 国产女主播在线喷水免费视频网站| 国产真实伦视频高清在线观看| 久久久久久伊人网av| 欧美国产精品一级二级三级 | 91精品国产国语对白视频| 日本猛色少妇xxxxx猛交久久| 日本与韩国留学比较| 精品久久久久久电影网| 国产精品三级大全| 国语对白做爰xxxⅹ性视频网站| 最近的中文字幕免费完整| 欧美xxxx性猛交bbbb| 热99国产精品久久久久久7| 国产 精品1| 国产在线一区二区三区精| 超碰97精品在线观看| 欧美精品高潮呻吟av久久| 亚洲第一av免费看| 香蕉精品网在线| 午夜激情福利司机影院| 国产精品一区www在线观看| 简卡轻食公司| 成人二区视频| 国产日韩欧美亚洲二区| 青春草视频在线免费观看| 欧美成人精品欧美一级黄| 久久国产亚洲av麻豆专区| 亚洲精品久久久久久婷婷小说| 你懂的网址亚洲精品在线观看| 亚洲av国产av综合av卡| 美女主播在线视频| 中文精品一卡2卡3卡4更新| www.色视频.com| 国产一区亚洲一区在线观看| 有码 亚洲区| 久久久久人妻精品一区果冻| 天堂8中文在线网| 99久久综合免费| 国产精品久久久久久精品电影小说| 自线自在国产av| 两个人免费观看高清视频 | 免费看不卡的av| 夜夜爽夜夜爽视频| 国产伦在线观看视频一区| 欧美日韩综合久久久久久| 亚洲精品乱码久久久久久按摩| 熟女电影av网| 看十八女毛片水多多多| 一级毛片我不卡| 亚洲va在线va天堂va国产| 在现免费观看毛片| 亚洲人与动物交配视频| 少妇人妻精品综合一区二区| 中文乱码字字幕精品一区二区三区| 日本黄色片子视频| 国产又色又爽无遮挡免| 成人亚洲欧美一区二区av| 亚洲av欧美aⅴ国产| 午夜免费男女啪啪视频观看| 欧美97在线视频| 亚洲第一av免费看| 国产片特级美女逼逼视频| 午夜91福利影院| 大片电影免费在线观看免费| 又粗又硬又长又爽又黄的视频| 26uuu在线亚洲综合色| 精品国产一区二区久久| 免费播放大片免费观看视频在线观看| 亚洲精品,欧美精品| 91aial.com中文字幕在线观看| 交换朋友夫妻互换小说| 国产免费一级a男人的天堂| 国产永久视频网站| 2022亚洲国产成人精品| 国产一区二区三区av在线| 国产一区二区三区av在线| 69精品国产乱码久久久| 国产精品福利在线免费观看| 欧美bdsm另类| 99九九线精品视频在线观看视频| 在线观看免费高清a一片| 国产精品国产三级国产专区5o| 免费黄色在线免费观看| 国产淫片久久久久久久久| 曰老女人黄片| 国产美女午夜福利| 少妇熟女欧美另类| 丁香六月天网| 人妻制服诱惑在线中文字幕| 国产极品天堂在线| av免费在线看不卡| 成人18禁高潮啪啪吃奶动态图 | 中国美白少妇内射xxxbb| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 黑人高潮一二区| 国产精品女同一区二区软件| 97在线视频观看| 国产成人精品婷婷| 青青草视频在线视频观看| 成人无遮挡网站| 国产69精品久久久久777片| 午夜影院在线不卡| 国产白丝娇喘喷水9色精品| 久久人妻熟女aⅴ| 精品熟女少妇av免费看| 免费观看av网站的网址| 国产女主播在线喷水免费视频网站| 在线观看av片永久免费下载| 国产一区二区在线观看av| 日韩成人av中文字幕在线观看| 国产精品一区www在线观看| 久久久国产欧美日韩av| 国产成人freesex在线| h日本视频在线播放| 亚洲av国产av综合av卡| 日韩制服骚丝袜av| 国产一区亚洲一区在线观看| av在线播放精品| 美女视频免费永久观看网站| 国产在线男女| 日韩av在线免费看完整版不卡| 亚州av有码| 狂野欧美激情性xxxx在线观看| 国产一区二区在线观看av| 日韩av免费高清视频| 人人妻人人添人人爽欧美一区卜| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 免费少妇av软件| 人妻一区二区av| 午夜福利在线观看免费完整高清在| av网站免费在线观看视频| 久久国产乱子免费精品| 国产一区亚洲一区在线观看| 欧美性感艳星| 国产老妇伦熟女老妇高清| 中文字幕制服av| 亚洲精华国产精华液的使用体验| 国产一区二区三区综合在线观看 | 精品久久国产蜜桃| 人人澡人人妻人| 久久韩国三级中文字幕| 2021少妇久久久久久久久久久| 国产片特级美女逼逼视频| 国产精品蜜桃在线观看| 欧美97在线视频| 国产欧美亚洲国产| av网站免费在线观看视频| 26uuu在线亚洲综合色| 午夜久久久在线观看| 91在线精品国自产拍蜜月| 99久国产av精品国产电影| 三级经典国产精品| a级毛片在线看网站| 国产伦精品一区二区三区视频9| 多毛熟女@视频| 久久综合国产亚洲精品| 久久国内精品自在自线图片| 在线免费观看不下载黄p国产| 国产爽快片一区二区三区| 国产av一区二区精品久久| 久久久久久久久久人人人人人人| 亚洲av国产av综合av卡| 色吧在线观看| 久久精品久久精品一区二区三区| 在线 av 中文字幕| 国产高清三级在线| 少妇的逼水好多| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 美女福利国产在线| 九九爱精品视频在线观看| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 男女国产视频网站| 青春草国产在线视频| 国产精品99久久久久久久久| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 少妇熟女欧美另类| av黄色大香蕉| 免费人成在线观看视频色| 免费观看av网站的网址| 亚洲国产精品专区欧美| 午夜福利影视在线免费观看| 成人美女网站在线观看视频| 亚洲国产精品一区二区三区在线| 日本色播在线视频| av又黄又爽大尺度在线免费看| 久久久国产一区二区| 大香蕉97超碰在线| 观看免费一级毛片| 一级,二级,三级黄色视频| 国产成人精品婷婷| 91久久精品国产一区二区三区| 天堂8中文在线网| 久久久久久久国产电影| 黑丝袜美女国产一区| 我的女老师完整版在线观看| 中文字幕av电影在线播放| 国产精品熟女久久久久浪| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区四那| 国产成人精品久久久久久| 国产男人的电影天堂91| 99热6这里只有精品| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 性色avwww在线观看| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| 尾随美女入室| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 免费人妻精品一区二区三区视频| 久久综合国产亚洲精品| 精品一区二区三区视频在线| 国产精品久久久久久精品电影小说| 丝瓜视频免费看黄片| 中文资源天堂在线| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区国产| 十八禁高潮呻吟视频 | 观看美女的网站| 亚洲成人一二三区av| 欧美+日韩+精品| 午夜日本视频在线| 成人特级av手机在线观看| 国产美女午夜福利| kizo精华| 欧美亚洲 丝袜 人妻 在线| 国国产精品蜜臀av免费| 韩国高清视频一区二区三区| 久久久久国产网址| 欧美精品一区二区免费开放| 亚洲欧洲精品一区二区精品久久久 | 伊人久久精品亚洲午夜| 国产精品成人在线| 18禁在线播放成人免费| a级毛色黄片| 亚洲精品一二三| 亚洲精品亚洲一区二区| 夫妻午夜视频| 午夜激情福利司机影院| 国产午夜精品一二区理论片| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 精品一区二区三区视频在线| 成人综合一区亚洲| 永久免费av网站大全| 九色成人免费人妻av| 欧美日韩av久久| 午夜免费观看性视频| 男的添女的下面高潮视频| 精品久久久久久久久av| 麻豆成人午夜福利视频| 日韩精品免费视频一区二区三区 | 午夜日本视频在线| 精品久久国产蜜桃| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 丰满人妻一区二区三区视频av| 肉色欧美久久久久久久蜜桃| 欧美bdsm另类| 久久人人爽av亚洲精品天堂| 91精品国产九色| h日本视频在线播放| 有码 亚洲区| 久久精品久久久久久久性| 国产精品.久久久| 一边亲一边摸免费视频| 久热久热在线精品观看| 99国产精品免费福利视频| 日本色播在线视频| 国精品久久久久久国模美| av在线老鸭窝| 国产一区二区三区av在线| 日韩免费高清中文字幕av| 在线播放无遮挡| 七月丁香在线播放| 秋霞在线观看毛片| 国产乱人偷精品视频| 国产伦理片在线播放av一区| 在线观看av片永久免费下载| 美女国产视频在线观看| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 女人精品久久久久毛片| 久久99热6这里只有精品| 免费av不卡在线播放| 丰满乱子伦码专区| 亚洲国产成人一精品久久久| 80岁老熟妇乱子伦牲交| 在线观看av片永久免费下载| 青青草视频在线视频观看| 99久久人妻综合| 看十八女毛片水多多多| 各种免费的搞黄视频| 青春草国产在线视频| 亚洲第一区二区三区不卡| 偷拍熟女少妇极品色| tube8黄色片| 欧美日韩在线观看h| 精品国产国语对白av| 又黄又爽又刺激的免费视频.| 中文天堂在线官网| 精品少妇内射三级| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影小说| 国产精品99久久久久久久久| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 日日摸夜夜添夜夜添av毛片| 婷婷色麻豆天堂久久| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 婷婷色麻豆天堂久久| 婷婷色综合www| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片我不卡| 老女人水多毛片| 亚洲成色77777| 日韩av免费高清视频| 香蕉精品网在线| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 男女啪啪激烈高潮av片| 美女大奶头黄色视频| 一级a做视频免费观看| 嘟嘟电影网在线观看| 欧美日韩一区二区视频在线观看视频在线| 午夜久久久在线观看| 国产精品伦人一区二区| 一级毛片黄色毛片免费观看视频| a级毛片免费高清观看在线播放| 中文字幕制服av| 两个人的视频大全免费| 黄色怎么调成土黄色| 一个人免费看片子| 在线观看免费日韩欧美大片 | av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 日本猛色少妇xxxxx猛交久久| 男人狂女人下面高潮的视频| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区三区| 蜜桃久久精品国产亚洲av| 天天躁夜夜躁狠狠久久av| 精品卡一卡二卡四卡免费| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 欧美日本中文国产一区发布| 少妇的逼好多水| 久久久国产欧美日韩av| 伊人亚洲综合成人网| 久久6这里有精品| 久久国产精品男人的天堂亚洲 | 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 在线观看美女被高潮喷水网站| 国产伦精品一区二区三区四那| 各种免费的搞黄视频| 成人二区视频| 久久久亚洲精品成人影院| 一本久久精品| 欧美最新免费一区二区三区| 精品少妇久久久久久888优播| 日韩成人伦理影院| 多毛熟女@视频| 美女中出高潮动态图| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 日韩av免费高清视频| 精品一区二区三卡| 亚洲精品色激情综合| 精品亚洲成国产av| 欧美日韩精品成人综合77777| 51国产日韩欧美| 国产熟女欧美一区二区| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 午夜av观看不卡| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 日本黄大片高清| 亚洲精品日本国产第一区| 男女免费视频国产| 高清不卡的av网站| 国产精品.久久久| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 国产日韩一区二区三区精品不卡 | av卡一久久| 黄色配什么色好看| 久久ye,这里只有精品| 日韩电影二区| 大码成人一级视频| 国产日韩欧美在线精品| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 亚洲av男天堂| 观看免费一级毛片| 日韩大片免费观看网站| 99久久人妻综合| 久久久久精品久久久久真实原创| 久久99热6这里只有精品| 精品人妻偷拍中文字幕| 女性被躁到高潮视频| 成年美女黄网站色视频大全免费 | 午夜福利视频精品| 日本黄色日本黄色录像| 美女xxoo啪啪120秒动态图| a级片在线免费高清观看视频| 一级毛片久久久久久久久女| 久久av网站| 久久综合国产亚洲精品| 亚洲无线观看免费| 国产精品女同一区二区软件| 亚洲国产精品999| 久久人人爽av亚洲精品天堂| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 老熟女久久久| 又大又黄又爽视频免费| 内地一区二区视频在线| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 成人毛片a级毛片在线播放| 简卡轻食公司| 亚洲精品自拍成人| 乱系列少妇在线播放| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 91久久精品国产一区二区成人| 国产成人freesex在线| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 狂野欧美激情性xxxx在线观看| 久热这里只有精品99| 亚洲精品国产成人久久av| 日韩一区二区视频免费看| 亚洲精品国产成人久久av| 亚洲精华国产精华液的使用体验| 我要看日韩黄色一级片| 99re6热这里在线精品视频| 久久6这里有精品| 成人免费观看视频高清| 国产精品久久久久久av不卡| 久久久久国产网址| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院 | 嫩草影院新地址| 亚洲性久久影院| 少妇裸体淫交视频免费看高清| 国产毛片在线视频| 人人澡人人妻人| 国产精品99久久久久久久久| 在线观看美女被高潮喷水网站| 亚洲性久久影院| 黄色怎么调成土黄色| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 国产一区二区三区综合在线观看 | a级片在线免费高清观看视频| 青春草亚洲视频在线观看| 亚洲性久久影院| 日本爱情动作片www.在线观看| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜爱| 久久久国产精品麻豆| 春色校园在线视频观看| 美女大奶头黄色视频| 国产亚洲一区二区精品|