• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crack deflection occurs by constrained microcracking in nacre

    2018-03-19 02:07:04JingruSongCuncaiFanHansongMaLihongLiangYueguangWei
    Acta Mechanica Sinica 2018年1期

    Jingru Song·Cuncai Fan·Hansong Ma·Lihong Liang·Yueguang Wei

    1 Introduction

    Almost all engineering structural materials are required to be both strong and tough(damage-tolerant),but these two mechanical properties are mutually exclusive[1].For some mineralized biological tissues,this conflict has been resolved by incorporating hard minerals into soft organic matrices,producing sophisticated composites with certain combinations of stiffness,toughness,and strength to meet the physiological demand for structural support and armored protection[2–4].Mollusk shell is an extraordinary example that exhibits excellent mechanical properties. In past decades,it has been of great interest to material scientists and engineers,as it promises to be a model for synthetic ceramic composite[5–8].

    In the present study,we use the three-point bending test of dehydrated nacre in situ with a scanning electron microscope(SEM)to discern how cracksevolve and form the consequent deflection outline.Finally,a crack propagation model is proposed based on our experiments,which will help us obtain a comprehensive understanding of the underlying mechanisms for nacre’s superior fracture toughness.

    Fig.1 Schematic of bending tested specimens(units in millimeter).Red circle denotes the position of SEM imaging

    2 Experimental methods

    The hard shells ofHyriopsis cumingii,a kind of limnetic oyster,were obtained from south of China and cut into strips using a low-speed diamond saw,with the outer periostracum and prismatic layers ground off.Then,they were rinsed thoroughly in constant irrigation of water.The specimens for SEM observation were mechanically polished and subsequently etched with 10 wt% ethylenediaminetetraacetic acid disodium salt(EDTA-2Na)solutions for 10 min.The specimens for bending tests were cut into small beams,carefully polished,and then stored at room temperature for 3 months to ensure complete dehydration.All specimens were coated with a thin film of gold prior to SEM imaging.

    The shapes and sizes of the specimens used in the bending test are shown in Fig.1.The first specimen(see Fig.1a)was tested as in previously reported investigations:controlled bending deflection was gradually applied to the specimen(at the rate of 0.55μm/s)until it eventually ruptured,followed by the analysis of its macro-appearance,loading–displacement curve measurement,and failure microstructure.By comparison,the second notched specimen was mounted to a micromechanical tester which was integrated with an SEM to image the nacre surface(the area of the red circle in Fig.1b)during the experiment.Once the crack was initiated on the surface at the notch root,the loading was temporarily suspended for SEM imaging.As the crack tip terminated in the nacre,additional controlled deflection was applied again and immediately suspended if the crack resumed extending.This method allowed control over the crack growth rate and the real-time monitoring of morphology evolutions during testing.The fracture mechanism for the nacre material will be developed and the fracture process will be modeled.

    3 Experimental observation and measurement

    3.1 Hierarchical structure

    Nacre has a complex hierarchical architecture that spans multiple length scales from nanometers to millimeters.Figure 2a presents a schematic of nacre.On the platelet surface,it is polygon-shaped(see Fig.2e),while on the cross-sectional surface,it exhibitsa so-called brick-and-mortar structure(see Fig.2b).In general,there are two kinds of nacre:columnar nacre and sheet nacre[12].The distinction between them lies in the stacking mode of aragonite platelets and the ultrastructural features on their surfaces.Here,our sample from the shell ofHyriopsis cumingiiis of the sheet type,whose aragonite platelets are randomly stacked,with no nano-apsperites on the surface and no mineral bridges between them,as shown in Fig.2b,c.Based on these observations,the aragonite platelets were measured as 4.60±1.67μm in length,and 0.93±0.17μm in thickness.

    In addition,the magnified images revealed the existence of organic biopolymer(about 30 nm in thickness)between platelets.This inter-platelet organic matrix(IPOM)can be subdivided into two types:inter-laminar organic matrix(ILOM,black arrow in Fig.2d)and inter-crystalline organic matrix(ICOM,black arrow in Fig.2f).According to the “organic matrix-mediated”theory of surface-templated growth,ILOM precedes ICOM during the biomineralization process;thus they may be different in both structure and composition[26–29].Also,it is worth noting that intracrystalline organic biopolymer embedded inside individual mineral platelets has recently been detected using different techniques[30–34].In our experiment,the closer examination in Fig.2g on the etched platelet surface clearly exposes the nanograins inside aragonite platelets,consistent with the literature description that the aragonite in nacre is constructed with highly oriented nanoparticles and biopolymers[35,36].It is believed that these organic inclusions have a substantial effect on the mineral platelet’s mechanical properties[37,38].

    Fig.2 Hierarchical structure of nacre.a A schematic showing how polygonal aragonite platelets are arranged to form a lamellar structure in nacre.Magnified figures of nacre on cross-sectional surface(b–d)and platelet surface(e–g).ICOM inter-crystalline organic matrix,ILOM inter-laminar organic matrix

    Fig.3 Load–deflection curves of the specimen without a notch and the specimen with a single notch

    3.2 Three-point bending test

    The resulting load–deflection curves are shown in Fig.3.In the first experiment of the sample without a notch(see Fig.1a),the dry nacre behaved like a ceramic material and failed in a brittle fashion(see Fig.3).

    Figure 4 shows its surface morphology after failure.The overall failure form seems to be a combination of two main failure mechanisms from the compressive and tensile zones of the two sides.The magnified image in Fig.4b seems to indicate that the main crack traveled both around and through mineral platelets with broken and intact platelets(white arrow).However,a branch crack(see Fig.4c),which developed and was accompanied by the main crack that came from the tensile zone and terminated in the compressive zone,behavesquite differently.Closer examination along the branch crack exposed the unexpected evolution of a crack which may be the second joint of two failure mechanisms from the compressive and tensile regions,respectively.In the position farbehind the crack tip(see Fig.4d),the fracture path behaves like that of the main crack,but when the observed view moves toward the crack tip(see Fig.4e),no broken platelets are found,indicating that the crack propagated strictly along the biopolymers between aragonite platelets.This assumption is confirmed by the SEM micrograph in the area just ahead of the crack tip(see Fig.4f),which clearly shows the successive stair-like stepson the surface,extending up and down along the biopolymer interlayer.

    To fully investigate how crack deflection occurs in nacre,another three-point bending test with a single-notched sample was performed in situ in the SEM.This technique allows us to monitor the evolution of damage mechanisms ahead of the crack tip.In this experiment,a stable fracture from three cycles of loading and unloading(see Fig.3)was observed.

    Fig.4 Crack path profile and damage morphology in nacre under a three-point bending test.a The fracture path observation of broken sample.b A closer examination of the white boxed area in c showing the main crack path profile with both broken and intact aragonite platelets(white arrow).c A close-up view of the white boxed area in a showing a branch crack that develops from the main crack.d–f Magnified figures of the branch crack toward the crack tip in positions marked “d”,“e”,and “f”in c

    When the load reached around 40 N,a crack initiated at the notch,shown in the white boxed area in Fig.5a.After unloading,the crack propagated slowly with a reduction in load from the point ofAtoBin Fig.3,and finally ended in nacre.During the second loading from the point ofBtoCin Fig.3,the crack resumed propagating.Once unloaded,the crack propagated further with another,smaller reduction in load from the point ofCtoD.Interestingly,the area just ahead of the crack tip began to take the shape of arborization(see Fig.5b).A closer examination of this area in Fig.5c clearly demonstrates the formation of multiple microcracks contained within the ICOM.At the beginning of the third loading from the point ofDtoEin Fig.3,the crack traveled through these constrained microcracks,as shown in Fig.5d.At the same time,some pre-existing microcracks(indicated by the dotted ovals in Fig.5c,d)were preserved beside the main crack,while some new microcracks were produced continually(indicated by the dotted squares).In conclusion,these observations clearly reveal that crack deflection in nacre occurs by constrained microcracking,and this mechanism allowed for stable growth of the crack until the final failure at the point ofFin Fig.3.

    3.3 Crack propagation process

    To better understand the development and morphology of microcracking in nacre,a schematic model is proposed in Fig.6.The application of deflection results in the initiation of a crack at the notch root and the subsequent formation of a microcrack zone ahead of the crack tip.These microcracks are confined between aragonite platelets in ICOM(stage I).With continued loading,the main crack propagates through this zone.Meanwhile,some new microcracks are being produced ahead of the main crack tip(indicated by the dotted square),while some pre-existing microcracks(indicated by dotted ovals)are preserved beside the main crack(stage II).Stage II continues until a local saturation of microcracks in the area ahead of the crack tip is achieved.The main crack propagates again to repeat stage I,followed by stage II.This pattern of alternating stages I and II is repeated as the main crack continues to propagate stably through the nacre.

    Over recent decades,it has been understood that nacre’s principal toughening strategy is at the crack deflection along the biopolymer interface.Our findings,however,clearly show that the crack deflection in nacre does not happen directly,but rather occurs by constrained microcracking ahead of the main crack tip.The presence of such microcracks initiated ahead of the main growing crack can effectively release the local stress concentration that would otherwise cause the nacre to fracture,thus enhancing the crack extension resistance.Most importantly,as with other biological mineralized composites such as bone,microcracking is advantageous for the development of crack deflection,as fracture is closely associated with the intrinsic(damage)mechanisms ahead of the crack tip that promote cracking[39–41].The crack deflection in return provides the greatest contribution to nacre’s toughness.Nevertheless,our experiments were conducted under a quasi-static state.Some recent studies have shown that nacre exhibits much higher fracture strength under high-strain-rate loading,which is attributed to the fracture transition from crack deflection to invasion through the aragonite platelets[42,43].Here,we can reasonably speculate that the fracture transition might be caused by the suppression of nucleation of microcracks under a high strain-rate state.

    Fig.5 In situ SEM micrographs reveal the evolution of damage mechanisms ahead of the crack tip.a A crack initiates at the notch.b The crack terminates in nacre with a shape of arborization atcrack tip(white boxed).c,d Sequential snapshots show that crack deflection occurs by constrained microcracking,with some microcracks preserved(in dotted ovals)and some newly produced(in dotted squares).The black arrows in c and the dotted line with arrow in d show the main crack path profile under continued loading;the light areas in d indicate electrical charging in the SEM resulting from the deformation of the gold coating during crack propagation

    In addition,our investigations are significant in uncovering the evolution of damage morphology in nacre.Consistent with the common belief that the organic biopolymer layers are so well bonded to the mineral platelets,microcracking is able to be activated,followed by crack deflection.Therefore,the aragonite platelets invariably remain shielded from the propagating crack,resulting in a “ragged platelet”morphol-ogy.However,with increasing displacement,some separated platelets are broken off due to the interaction between adjacent ones.This is very important,considering a recently proposed assumption that crack invasion might occur at the crack tip,as the intra-crystalline organic matrix inside individual platelets serves as defects,leading to cracking[38].Our research,on the other hand,indicates that such organic inclusions actually strengthen the mineral platelet by modifying it into a nanoparticle architecture which becomes insensitive to flaws[6].This is verified by the direct evidence that the microcracks arise from ICOM instead of from the inside the aragonite platelets;however,more quantitative details are needed to further evaluate nacre’s mechanical design.

    Fig.6 Schematic model showing the development of crack deflection through microcracking in nacre

    Fig.7 Crack propagation model for nacre under three-point bending due to interfacial shear sliding

    4 Modeling of the energy release rate

    Referring to the experimental observation in Fig.5,we present a small-scale damage zone model as shown in Fig.7,near the notch,a crack forms and propagates due to bending and interfacial shear sliding between bricks.

    When the damage zone is small,the energy release rate is written as follows

    whereΠis the total potential of the system,ais crack length,andBis the width of the beam.

    whereUis the strain energy of the beam,Pis the load,and

    Δis the deflection of the central point of the beam(point acted on by load).For the case of small beam deformation and small-scale damage,Uis bending energy

    for a three-point bend beam,whereLis beam length,Eis Young’s modulus,andIis inertial momentum

    for the rectangular section of the beam,wherehis the height of beam.Equation(2)can be rewritten as follows

    whereΔ0is the deflection at the central point of the beam when the beam is without a notch,

    The load–deflection curves for un-notched and notched beams are shown in Fig.3a,b,respectively.

    The crack propagation condition can be expressed as follows

    whereΓ0is the elastic fracture toughness(or elastic fracture energy density),andΓDis the damage dissipation energy density due to sliding between bricks.Based on the model sketched in Fig.7,we further assume that shear stress within the organic layer can be described as

    where|Δu|is the relative sliding displacement between two bricks,(τs,γs)is the shear strength and shear strain of the organic layer,andlis the sliding zone length between two neighboring bricks.ThusΓcan be expressed as

    whereρ=1/tis the density of a “brick”in the vertical direction,tis brick thickness,anddis the width of the damage zone.

    5 A simple comparison of model results with experimental results for the energy release rate

    From experimental observation,as seen in Fig.4,the form of failure for both a notched and un-notched specimen is cross-section fracture.From the load–displacement curve,as shown in Fig.3,one can obtain the average energy release rates by calculating the area under the load–displacement curves divided by the cross-section area of the specimen:ˉG=Γ0≈200 J·m?2for a specimen without a notch,andˉG≈303 J·m?2for a specimen with a notch.On the other hand,one can also use the theoretical model given in Sect.4(see Eqs.(7)–(9))to calculate the energy release rate.From Fig.2b,c,t~ 0.93μm,l~ 4.6μm,and from Fig.5c or d,d~ 18μm,in addition toτs≈ 37 MPa,andγs=τs/μs≈0.038 from Refs.[44,45],one can obtain the energy release rateˉG=Γ0+ΓD≈325 J·m?2,whereΓ0≈200 J·m?2is the energy release rate of a specimen without a notch.

    6 Conclusions

    The nacreous layer from the shell ofHyriopsis cumingiihas a sophisticated structure with a rigid hierarchical design that can generate high fracture toughness,primarily by crack deflection.Under a quasi-static loading state,crack deflection occurs by constrained microcracking.This crack propagation model contributes to our understanding of the toughening mechanisms of nacre in at least two ways:First,the microcracking just ahead of the crack tip can effectively release the local stress concentration,thus enhancing the crack extension resistance.Second,the formation of microcracking is advantageous for the main crack to propagate along biopolymer layers and to dissipate the most energy,namely becoming tougher.Furthermore,this model also contributes to uncovering the evolution of damage morphology and the distinctive mechanical responses between high strain rate and a quasi-static state.In summary,it is expected that the present experimental findings shall be quite helpful to inspire us in replicating nacre’s mechanical design.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grants 91216108,11432014,11672301,11372318,and 11502273)and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant XDB22040501).

    1.Ritchie,R.O.:The conflicts between strength and toughness.Nat.Mater.10,817–822(2011)

    2.Wegst,U.G.K.,Ashby,M.F.:The mechanical efficiency of natural materials.Philos.Mag.84,2167–2186(2004)

    3.Launey,M.E.,Ritchie,R.O.:On the fracture toughness of advanced materials.Adv.Mater.21,2103–2110(2009)

    4.Song,J.R.,Fan,C.C.,Ma,H.S.,et al.:Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell.Acta.Mech.Sin.31,364–372(2015)

    5.Kamat,S.,Su,X.,Ballarini,R.,et al.:Structural basis for the fracture toughness of the shell of the conch Strombus gigas.Nature 405,1036–1040(2000)

    6.Gao,H.,Ji,B.,J?ger,I.L.,et al.:Materials become insensitive to flaws at nanoscale:lessons from nature.Proc.Nat.Acad.Sci.100,5597–5600(2003)

    7.Mayer,G.:Rigid biological systems as models for synthetic composites.Science 310,1144–1147(2005)

    8.Mayer,G.:New toughening concepts for ceramic composites from rigid natural materials.J.Mech.Behav.Biomed.Mater.4,670–681(2011)

    9.Currey,J.D.,Taylor,J.D.:The mechanical behaviour of some molluscan hard tissues.J.Zool.173,395–406(1974)

    10.Jackson,A.P.,Vincent,J.F.V.,Turne,R.M.:Comparison of nacre with other ceramic composites.J.Mater.Sci.25,3173–317(1990)

    11.Jackson,A.P.,Vincent,J.F.V.,Turner,R.M.:The mechanical design of nacre.Proc.R.Soc.Lond.B Biol.Sci.234,415–440(1988)

    12.Wang,R.Z.,Suo,Z.,Evans,A.G.,et al.:Deformation mechanisms in nacre.J.Mater.Res.16,2485–2493(2001)

    13.Evans,A.G.,Suo,Z.,Wang,R.Z.,et al.:Model for the robust mechanical behavior of nacre.J.Mater.Res.16,2476(2001)

    14.Zuo,S.C.,Wei,Y.G.:Microstructure observation and mechanical behavior modeling for limnetic nacre.Acta.Mech.Sin.24,83–89(2008)

    15.Barthelat,F.,Tang,H.,Zavattieri,P.D.,et al.:On the mechanics of mother-of-pearl:a key feature in the material hierarchical structure.J.Mech.Phys.Solids 55,306–337(2007)

    16.Wang,R.,Gupta,H.S.:Deformation and fracture mechanisms of bone and nacre.Annu.Rev.Mater.Res.41,41–73(2011)

    17.Wang,R.Z.,Wen,H.B.,Cui,F.Z.,et al.:Observations of damage morphologies in nacre during deformation and fracture.J.Mater.Sci.30,2299–2304(1995)

    18.Jackson,A.P.,Vincent,J.F.V.,Turner,R.M.:The mechanical design of nacre.Proc.R.Soc.Lond.B 234,415–440(1988)

    19.Sarikaya,M.,Gunnison,K.E.,Yasrebi,M.,et al.:Mechanical property-microstructural relation ships in abalone shell.Mater.Res.Soc.174,109–116(1990)

    20.Yao,H.M.,Song,Z.G.,Xu,Z.P.,et al.:Cracks fail to intensify stress in nacreous composites.Compos.Sci.Technol.81,24–29(2013)

    21.Xie,Z.Q.,Yao,H.M.:Crack deflection and flaw tolerancein“brickand-mortar”structured composites.Int.J.Appl.Mech.6,1450017(2014)

    22.Feng,Q.L.,Cui,F.Z.,Pu,G.,etal.:Crystal orientation,toughening mechanisms and a mimic of nacre.Mater.Sci.Eng.C 11,19–25(2000)

    23.Song,F.,Zhang,X.H.,Bai,Y.L.:Microstructure and characteristics in the organic matrix layers of nacre.J.Mater.Res.17,1567–1570(2002)

    24.Meyers,M.A.,Chen,P.Y.,Lin,A.Y.M.,et al.:Biological materials:structure and mechanical properties.Prog.Mater Sci.53,1–206(2008)

    25.Katti,K.S.,Katti,D.R.,Pradhan,S.M.,et al.:Platelet interlocks are the key to toughness and strength in nacre.J.Mater.Res.20,1097–1100(2005)

    26.Bevelander,G.,Nakahara,H.:An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs.Calcif.Tissue Res.3,84–92(1969)

    27.Weiner,S.,Traub,W.,Parker,S.B.:Macromolecules in mollusc shells and their functions in biomineralization.Philos.Trans.R.Soc.Lond.B Biol.Sci.304,425–434(1984)

    28.Sch?ffer,T.E.,Ionescu-Zanetti,C.,Proksch,R.,et al.:Doesabalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?Chem.Mater.9,1731–1740(1997)

    29.Levi-Kalisman,Y.,Falini,G.,Addadi,L.,et al.:Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.J.Struct.Biol.135,8–17(2001)

    30.Pokroy,B.,Quintana,J.P.,El’ad,N.C.,et al.:Anisotropic lattice distortions in biogenic aragonite.Nat.Mater.3,900–902(2004)

    31.Rousseau,M.,Lopez,E.,Stempflé,P.,et al.:Multiscale structure of sheet nacre.Biomaterials 26,6254–6262(2005)

    32.Oaki,Y.,Imai,H.:The hierarchical architecture of nacre and its mimetic material.Angew.Chem.Int.Ed.44,6571–6575(2005)

    33.Xie,L.,Wang,X.X.,Li,J.:The SEM and TEM study on the laminated structure of individual aragonitic nacre tablet in freshwater bivalveH.cumingiiLea shell.J.Struct.Biol.169,89–94(2010)

    34.Younis,S.,Kauffmann,Y.,Bloch,L.,et al.:Inhomogeneity of nacre lamellae on the nanometer length scale.Cryst.Growth Des.12,4574–4579(2012)

    35.Takahashi,K.,Yamamoto,H.,Onoda,A.,et al.:Highly oriented aragonite nanocrystal-biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata.Chem.Commun.8,996–997(2004)

    36.Li,X.,Huang,Z.:Unveiling the formation mechanism of pseudosingle-crystal aragonite platelets in nacre.Phys.Rev.Lett.102,075502(2009)

    37.Li,X.,Chang,W.C.,Chao,Y.J.,et al.:Nanoscale structural and mechanical characterization of a natural nanocomposite material:the shell of red abalone.Nano Lett.4,613–617(2004)

    38.Huang,Z.,Li,X.:Origin of flaw-tolerance in nacre.Sci.Rep.3,1693(2013)

    39.Vashishth,D.,Tanner,K.E.,Bonfield,W.:Contribution,development and morphology of microcracking in cortical bone during crack propagation.J.Biomech.33,1169–1174(2000)

    40.Nalla,R.K.,Kinney,J.H.,Ritchie,R.O.:Mechanistic fracture criteria for the failure of human cortical bone.Nat.Mater.2,164–168(2003)

    41.Launey,M.E.,Buehler,M.J.,Ritchie,R.O.:On the mechanistic origins of toughness in bone.Annu.Rev.Mater.Res.40,25–53(2010)

    42.Huang,Z.,Li,H.,Pan,Z.,et al.:Uncovering high-strain rate protection mechanism in nacre.Sci.Rep.1,148(2011)

    43.Huang,Z.,Pan,Z.,Li,H.,et al.:Hidden energy dissipation mechanism in nacre.J.Mater.Res.29,1573–1578(2014)

    44.Lin,A.Y.M.,Meyers,M.A.:Interfacial shear strength in abalone nacre.J.Mech.Behav.Biomed.Mater.2,607–612(2009)

    45.Bezares,J.,Asaro,R.J.,Hawley,M.:Macromolecular structure of the organic framework of nacre inHaliotis rufescens:implications for mechanical response.J.Struct.Biol.170,484–500(2010)

    国产欧美日韩一区二区三区在线 | 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线 | 日韩视频在线欧美| 国产成人av激情在线播放 | 国产黄色免费在线视频| 老司机影院毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品456在线播放app| 高清av免费在线| 久久鲁丝午夜福利片| 国产精品国产av在线观看| 久久精品国产鲁丝片午夜精品| 精品少妇内射三级| a级毛片免费高清观看在线播放| 中文精品一卡2卡3卡4更新| 99热网站在线观看| 一区在线观看完整版| 18在线观看网站| 三级国产精品欧美在线观看| 成人亚洲欧美一区二区av| 99视频精品全部免费 在线| 亚洲欧美色中文字幕在线| 免费观看的影片在线观看| 久久久久久伊人网av| 少妇高潮的动态图| 国产日韩欧美视频二区| 少妇的逼好多水| 永久网站在线| 夜夜爽夜夜爽视频| 亚洲精品国产av成人精品| 久久人人爽av亚洲精品天堂| 亚洲av.av天堂| 久久久久久伊人网av| 日本wwww免费看| www.色视频.com| 亚洲国产av新网站| 菩萨蛮人人尽说江南好唐韦庄| 视频区图区小说| 人妻夜夜爽99麻豆av| 在线观看一区二区三区激情| av国产精品久久久久影院| 精品熟女少妇av免费看| 亚洲精品久久成人aⅴ小说 | 国产精品一二三区在线看| videossex国产| 搡老乐熟女国产| 日本vs欧美在线观看视频| 一区二区三区精品91| 夜夜看夜夜爽夜夜摸| 久久久久国产网址| 中文字幕人妻熟人妻熟丝袜美| 欧美 日韩 精品 国产| 国产黄片视频在线免费观看| 久久 成人 亚洲| 国产成人a∨麻豆精品| 午夜老司机福利剧场| 婷婷色综合www| 观看美女的网站| 在线观看国产h片| 久久午夜综合久久蜜桃| 一级二级三级毛片免费看| 草草在线视频免费看| 久久精品久久久久久噜噜老黄| 精品久久久久久久久亚洲| 3wmmmm亚洲av在线观看| 日本色播在线视频| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久久电影| 国产有黄有色有爽视频| 精品熟女少妇av免费看| 日韩视频在线欧美| 国产日韩欧美视频二区| 亚洲精品av麻豆狂野| 18在线观看网站| 国产又色又爽无遮挡免| 亚洲图色成人| 亚洲不卡免费看| 乱码一卡2卡4卡精品| 国产淫语在线视频| 免费看av在线观看网站| 啦啦啦中文免费视频观看日本| 欧美少妇被猛烈插入视频| 黑人猛操日本美女一级片| 搡老乐熟女国产| 中文精品一卡2卡3卡4更新| xxx大片免费视频| 欧美少妇被猛烈插入视频| 9色porny在线观看| 国产免费视频播放在线视频| 亚洲成人手机| 亚洲精品国产av成人精品| 国产精品久久久久久精品电影小说| av女优亚洲男人天堂| 国产精品嫩草影院av在线观看| 老司机影院成人| 国产欧美另类精品又又久久亚洲欧美| 精品人妻偷拍中文字幕| 国产成人精品久久久久久| 国产av一区二区精品久久| 一级黄片播放器| 亚洲,一卡二卡三卡| 男女边吃奶边做爰视频| 欧美日韩成人在线一区二区| 久久99蜜桃精品久久| 九九在线视频观看精品| 满18在线观看网站| 日产精品乱码卡一卡2卡三| 日本午夜av视频| 亚洲综合色惰| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 五月伊人婷婷丁香| 这个男人来自地球电影免费观看 | 国产乱人偷精品视频| 亚洲精品av麻豆狂野| 精品少妇久久久久久888优播| 亚洲精品乱久久久久久| 亚洲美女黄色视频免费看| av网站免费在线观看视频| 全区人妻精品视频| 波野结衣二区三区在线| 伊人久久精品亚洲午夜| 亚洲精品一二三| 少妇被粗大的猛进出69影院 | 亚洲,一卡二卡三卡| 最近中文字幕高清免费大全6| 久久午夜福利片| 日韩亚洲欧美综合| a级毛色黄片| 极品少妇高潮喷水抽搐| h视频一区二区三区| 亚洲av成人精品一区久久| 国产淫语在线视频| 人妻制服诱惑在线中文字幕| 久久人妻熟女aⅴ| 中文欧美无线码| 亚洲精品日韩在线中文字幕| 成人手机av| 最近最新中文字幕免费大全7| 日韩av免费高清视频| 最近中文字幕高清免费大全6| 啦啦啦中文免费视频观看日本| 国产精品久久久久久av不卡| 国产片特级美女逼逼视频| 日韩一区二区三区影片| 午夜精品国产一区二区电影| 亚洲少妇的诱惑av| 亚洲人成网站在线播| 国产精品99久久99久久久不卡 | 我的老师免费观看完整版| 精品国产一区二区三区久久久樱花| 全区人妻精品视频| 午夜日本视频在线| 国产一区二区在线观看av| 亚洲精品国产色婷婷电影| 伦理电影免费视频| 97在线视频观看| 777米奇影视久久| 亚洲情色 制服丝袜| 王馨瑶露胸无遮挡在线观看| 久久久久精品性色| a 毛片基地| 内地一区二区视频在线| 久热这里只有精品99| 国产免费现黄频在线看| 亚洲一区二区三区欧美精品| 我的女老师完整版在线观看| 国产男女内射视频| 91精品国产国语对白视频| 曰老女人黄片| 国产爽快片一区二区三区| 午夜视频国产福利| 免费大片黄手机在线观看| 人体艺术视频欧美日本| 欧美激情 高清一区二区三区| 精品久久久噜噜| 蜜桃在线观看..| 午夜影院在线不卡| 丁香六月天网| 精品人妻一区二区三区麻豆| 51国产日韩欧美| 妹子高潮喷水视频| 五月天丁香电影| 91精品国产九色| videos熟女内射| 熟女av电影| 亚洲av日韩在线播放| 亚洲熟女精品中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 一级a做视频免费观看| 91精品国产国语对白视频| a 毛片基地| 在线亚洲精品国产二区图片欧美 | 精品人妻熟女毛片av久久网站| 插逼视频在线观看| 高清午夜精品一区二区三区| 亚洲精品美女久久av网站| 国产精品99久久久久久久久| 国产成人freesex在线| 国产白丝娇喘喷水9色精品| 久久国产精品大桥未久av| 国产精品久久久久久久电影| 亚洲精品aⅴ在线观看| 只有这里有精品99| 欧美bdsm另类| 亚洲欧美成人综合另类久久久| 亚洲欧洲国产日韩| av天堂久久9| 亚洲国产精品成人久久小说| 国产精品一二三区在线看| 在线观看一区二区三区激情| 性高湖久久久久久久久免费观看| 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 久久青草综合色| 51国产日韩欧美| 在线观看一区二区三区激情| 国产av精品麻豆| 精品国产露脸久久av麻豆| 中文欧美无线码| a级毛片免费高清观看在线播放| 嫩草影院入口| 在线亚洲精品国产二区图片欧美 | 日韩制服骚丝袜av| 精品午夜福利在线看| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 国产色婷婷99| 美女脱内裤让男人舔精品视频| 亚洲国产日韩一区二区| 大话2 男鬼变身卡| 免费观看a级毛片全部| 欧美另类一区| 在线 av 中文字幕| 一边摸一边做爽爽视频免费| 一级黄片播放器| 亚洲精品国产av蜜桃| av在线老鸭窝| 精品亚洲乱码少妇综合久久| 国产乱人偷精品视频| 亚洲精品久久成人aⅴ小说 | 亚洲欧美一区二区三区黑人 | av黄色大香蕉| 亚洲国产毛片av蜜桃av| 伦精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲国产av影院在线观看| 国产精品女同一区二区软件| 国产精品久久久久久精品电影小说| 亚洲成人一二三区av| 久久久a久久爽久久v久久| 少妇高潮的动态图| 男人操女人黄网站| 18禁在线播放成人免费| 少妇熟女欧美另类| 黄色欧美视频在线观看| 成人亚洲精品一区在线观看| av免费观看日本| 亚洲情色 制服丝袜| 韩国av在线不卡| 久久久精品免费免费高清| 国产成人精品久久久久久| 插逼视频在线观看| 最新中文字幕久久久久| 久久久久精品久久久久真实原创| 美女主播在线视频| 亚洲av男天堂| 久久久久久伊人网av| 久久久精品94久久精品| 国产日韩一区二区三区精品不卡 | av电影中文网址| 精品人妻熟女av久视频| 91精品国产九色| 蜜桃在线观看..| 男女边摸边吃奶| 一级片'在线观看视频| 亚洲av免费高清在线观看| 久久久久久久久久久丰满| 女人久久www免费人成看片| 美女主播在线视频| 久久99热这里只频精品6学生| 免费日韩欧美在线观看| 香蕉精品网在线| 另类亚洲欧美激情| 麻豆成人av视频| 不卡视频在线观看欧美| 美女脱内裤让男人舔精品视频| 日韩av在线免费看完整版不卡| 美女主播在线视频| 黑人猛操日本美女一级片| 99九九在线精品视频| 国产69精品久久久久777片| 亚洲欧美色中文字幕在线| 国产成人精品福利久久| a级毛片在线看网站| 一本—道久久a久久精品蜜桃钙片| 欧美日韩视频高清一区二区三区二| 日韩免费高清中文字幕av| 久热久热在线精品观看| 另类亚洲欧美激情| 男女免费视频国产| 日日撸夜夜添| 国产av国产精品国产| 水蜜桃什么品种好| 国产精品蜜桃在线观看| 18+在线观看网站| 欧美日韩成人在线一区二区| 2018国产大陆天天弄谢| 人妻少妇偷人精品九色| 精品一品国产午夜福利视频| 亚洲精品视频女| 中国国产av一级| 国产精品久久久久久精品古装| 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到 | 精品亚洲成a人片在线观看| 不卡视频在线观看欧美| 亚洲精品日韩av片在线观看| 黄色怎么调成土黄色| 中文天堂在线官网| av播播在线观看一区| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| av视频免费观看在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频高清一区二区三区二| 蜜桃国产av成人99| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 亚洲,一卡二卡三卡| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 色吧在线观看| a 毛片基地| 欧美亚洲日本最大视频资源| 久久久a久久爽久久v久久| 亚洲,欧美,日韩| 纵有疾风起免费观看全集完整版| 在线观看免费日韩欧美大片 | 麻豆精品久久久久久蜜桃| 国产色婷婷99| 免费大片黄手机在线观看| av在线观看视频网站免费| 桃花免费在线播放| 久久 成人 亚洲| 三级国产精品片| 久热这里只有精品99| av在线观看视频网站免费| 国产高清有码在线观看视频| 纯流量卡能插随身wifi吗| 插逼视频在线观看| 国国产精品蜜臀av免费| 一边摸一边做爽爽视频免费| 人妻制服诱惑在线中文字幕| 99热网站在线观看| 久久久久网色| 蜜桃在线观看..| 大香蕉久久成人网| 97在线视频观看| 一边摸一边做爽爽视频免费| 欧美97在线视频| 看免费成人av毛片| 欧美日韩视频精品一区| av一本久久久久| 日韩 亚洲 欧美在线| 亚洲精品久久成人aⅴ小说 | 久久久久精品久久久久真实原创| 久久精品久久精品一区二区三区| 亚洲成人一二三区av| 99re6热这里在线精品视频| 国产一区二区三区av在线| 18禁在线播放成人免费| 建设人人有责人人尽责人人享有的| a级片在线免费高清观看视频| 91久久精品电影网| 97在线视频观看| 国产精品一二三区在线看| 欧美+日韩+精品| 观看av在线不卡| 久久久久久久精品精品| 国产一级毛片在线| 色94色欧美一区二区| 我的女老师完整版在线观看| 午夜91福利影院| 一个人免费看片子| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 狂野欧美白嫩少妇大欣赏| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 久久久久精品性色| 精品人妻熟女毛片av久久网站| 久久久久久久久大av| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 色网站视频免费| 色哟哟·www| 91精品国产九色| 寂寞人妻少妇视频99o| 欧美国产精品一级二级三级| 国产日韩欧美视频二区| 久久精品人人爽人人爽视色| 国产男女内射视频| 如何舔出高潮| 免费观看av网站的网址| 激情五月婷婷亚洲| 三上悠亚av全集在线观看| 在线看a的网站| 色视频在线一区二区三区| 一个人免费看片子| 一区二区三区精品91| 一级毛片我不卡| 在线播放无遮挡| 色婷婷av一区二区三区视频| 免费黄色在线免费观看| 另类亚洲欧美激情| 亚洲av中文av极速乱| 成人18禁高潮啪啪吃奶动态图 | 欧美成人午夜免费资源| 久久久久国产网址| 九九久久精品国产亚洲av麻豆| 91精品国产国语对白视频| 赤兔流量卡办理| 男女啪啪激烈高潮av片| av一本久久久久| 三级国产精品片| 午夜福利,免费看| 日本wwww免费看| 国内精品宾馆在线| 国产不卡av网站在线观看| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| 搡老乐熟女国产| 久久久a久久爽久久v久久| 日本av免费视频播放| 亚洲av免费高清在线观看| 国产在线视频一区二区| 久久久精品94久久精品| 十八禁高潮呻吟视频| 国产黄频视频在线观看| 春色校园在线视频观看| 麻豆成人av视频| 一本色道久久久久久精品综合| 99热6这里只有精品| 日韩成人伦理影院| 国产一区二区三区av在线| 在现免费观看毛片| 中文字幕久久专区| 婷婷色麻豆天堂久久| 精品少妇内射三级| 日韩一区二区视频免费看| 国产黄色视频一区二区在线观看| 高清视频免费观看一区二区| 国产欧美日韩综合在线一区二区| 美女cb高潮喷水在线观看| 国产不卡av网站在线观看| 成人国产麻豆网| 曰老女人黄片| 免费大片黄手机在线观看| 黑人高潮一二区| 另类精品久久| 天堂中文最新版在线下载| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 国产极品天堂在线| 中文精品一卡2卡3卡4更新| 制服人妻中文乱码| 丝袜喷水一区| 欧美亚洲 丝袜 人妻 在线| 春色校园在线视频观看| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜免费资源| 国产黄频视频在线观看| 日韩亚洲欧美综合| 国产精品.久久久| 久久影院123| 免费人成在线观看视频色| 国产精品无大码| 曰老女人黄片| 国产av精品麻豆| 久久97久久精品| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 在线播放无遮挡| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 黄色欧美视频在线观看| 视频在线观看一区二区三区| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| av播播在线观看一区| videossex国产| 日韩在线高清观看一区二区三区| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 国产一区二区三区综合在线观看 | 高清黄色对白视频在线免费看| 一级二级三级毛片免费看| 丝袜喷水一区| 成人国产麻豆网| 麻豆乱淫一区二区| 寂寞人妻少妇视频99o| 午夜91福利影院| 伦理电影大哥的女人| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| 在线观看人妻少妇| 成人国产麻豆网| 欧美成人精品欧美一级黄| 国产黄频视频在线观看| 午夜激情福利司机影院| 欧美精品一区二区大全| 99久国产av精品国产电影| av有码第一页| xxxhd国产人妻xxx| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 91国产中文字幕| 狂野欧美激情性bbbbbb| 久久99一区二区三区| 天堂8中文在线网| 在线观看免费视频网站a站| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频| 22中文网久久字幕| 最后的刺客免费高清国语| 91精品三级在线观看| 夫妻午夜视频| 国产日韩欧美在线精品| 色婷婷av一区二区三区视频| 欧美 日韩 精品 国产| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 肉色欧美久久久久久久蜜桃| 卡戴珊不雅视频在线播放| 午夜福利,免费看| 一级毛片电影观看| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 午夜福利视频在线观看免费| 亚洲国产精品专区欧美| 伊人久久国产一区二区| 美女国产视频在线观看| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 国产伦精品一区二区三区视频9| 乱人伦中国视频| 精品一区二区免费观看| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 丝袜在线中文字幕| 日本色播在线视频| 天堂俺去俺来也www色官网| 成人毛片a级毛片在线播放| 简卡轻食公司| 久久热精品热| 午夜激情福利司机影院| 午夜日本视频在线| 国产视频内射| 国产精品一国产av| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| a 毛片基地| 亚洲av中文av极速乱| 国产视频内射| 国产 一区精品| 中文字幕亚洲精品专区| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 午夜av观看不卡| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| 国产深夜福利视频在线观看| 亚洲国产精品专区欧美| 午夜福利视频在线观看免费| av福利片在线| 18禁观看日本| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 色婷婷av一区二区三区视频| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 在线观看人妻少妇| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品456在线播放app| 日本与韩国留学比较| 天堂俺去俺来也www色官网| 欧美bdsm另类| 日本免费在线观看一区| 女性被躁到高潮视频| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| freevideosex欧美| 国产精品久久久久久精品古装| 久久精品国产自在天天线| 老熟女久久久| 日韩三级伦理在线观看| 日韩一区二区视频免费看| 久久久久人妻精品一区果冻|