• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly accurate symplectic element based on two variational principles

    2018-03-19 02:07:05GuanghuiQingJiaTian
    Acta Mechanica Sinica 2018年1期

    Guanghui Qing·Jia Tian

    1 Introduction

    Classical mixed methods for various physical problems indicate a wide range of possibilities,many with potentially higher accuracy and robustness than those offered by displacement methods or hybrid stress methods.The behaviour of classical mixed methods can frequently reveal weaknesses or lack of robustness in displacement methods which other wise would be difficult to determine.The mixed approximation,if properly understood,expands the potential of the finite element method and presents almost limitless possibilities of detailed improvement.We refer readers to Refs.[1–3]for surveys on the detailed analyses of the classical mixed methods.

    It should mentioned that the discretization of linear elliptic boundary value problems by classical mixed methods typically leads to indefinite linear systems.Thus,some of the solutions or the stable mixed schemes are unavoidable.Consequently,the theoretical process of the classical mixed methods is relatively complex.In other words,the mathematical theory of the classical mixed methods is more involved(and more interesting)than for displacement methods,and the design of stable and effective mixed methods requires more expertise than for displacement methods used widely[3].

    In general,we are accustomed to develop a finite element method by one of various variational principles except domain decomposition methods.However,without any nonconventional stable mixed schemes,compatible and noncompatible generalized mixed elements[1]with eight nodes for 3-D linear elasticity problems were derived by combining the minimum potential energy principle and the Hellinger-Reissner(H-R)mixed variational principle.Of course,based on the generalized H-R mixed variational principle alone,different noncompatible generalized mixed elements[4]can also be directionally constructed.Such as Refs.[1,4]indicate that the development of generalized mixed elements is simple and straightforward.One of the most prominent advantages of generalized mixed methods is that the coefficient matrix of a linear system of equations is not only symmetric,but also invertible(i.e.,there are no zeros on the diagonal).Thus,the stability of a linear system is guaranteed.On the other hand,the generalized mixed methods are also preferable for the introduction of displacement and tractions boundary conditions simultaneously.The convergence rate of both stress and displacement variables of noncompatible generalized mixed method can be close to the exact solutions.Such generalized mixed methods can be easily extended for various linear elasticity problems.

    In modern numerical analysis,the development of numerical schemes that incorporate additional structure enjoyed by the problem being an approximation has become quite popular.The classical instances of such schemes are the symplectic integrators arising in Hamiltonian mechanics and the related energy conserving methods since the Legendre transform gives rise to a natural class of Hamiltonian systems on the cotangent bundle of the configuration space.Compared with other nonsymplectic schemes,the symplectic algorithm[5,6]and multi symplectic algorithm[7,8]are very powerful and successful for the finite and infinite dimensional Hamiltonian systems,respectively.

    In the last more than 20 years,some symplectic finite element methods were developed.For example,semi-analytical partial mixed solutions[9–15].It should be mentioned first that when the governing equations for 2-D or 3-D problems in the state space form being deduced from the constitutive relations and equilibrium equations in linear elasticity,they are oftentimes called the state-vector equations(SVEs).While,if the governing equations are being derived directly from a modified H-R mixed variational principle,they are called as the Hamilton canonical equations(HCEs).SVEs or HCEs for 3-D problems allow introducing the out-plane stresses as primary unknowns owing to a Legendre transformation.Thus,both analytical[16–27]and semi-analytical partial mixed solutions[9–15]of Hamilton HCEs or SVEs fall naturally into the methodologies of a sympectic system.

    Semi-analytical partial-mixed solutions have been proposed first for the analysis of elastic composite structures since the early nineties.They differ by the numerical approximation along the laminate thickness direction or plane and the evaluation method of state matrix exponential.Hence,an in-plane partial mixed approximation and a power series expansion were used,while a mixed finite element and precise time(substituted by the thickness)step integration method were retained.However,the matrix exponent eAz(Ais a coefficient matrix of an ordinary differential equation and variablezrefers to the thickness)requires large computational efforts and is time consuming.Such a solution cannot be suitable for large-scale finite element problems.

    There are some disadvantages in the conventional displacement finite element methods for solving the fracture problem.Hence,many variants of the finite element method(FEM)for evaluating the stress intensity factors(SIFs)have been developed.Such as hybrid singular element[28],extended finite element method[29],classical mixed method combining enriched element[30],recent finite element discretized symplectic method(FEDSM)[31],and so on.FEDSM has three advantages.First,the number of unknown variables is reduced to a very low level.Second,no special finite elements and post-processing are needed to determine SIFs,and the exact solutions in the near fields are obtained at the same time.Third,as the analytical solution is embodied in the transformation,the accuracy of the predicted SIFs and their derivatives is high[31].

    Much of the existing literature shows that if a physical problem is designed to conserve symplectic structure,the corresponding symplectic integratorcan conserve the energy quite well.On the other hand,if the coefficient matrix of displacement element formulations based on various varitional principles is symmetric,the symlectic structure of an element can be deduced[32].This is a key feature that the finite element method conserve the energy on nodes and has high reliability.As a general property,the symplectic integrator or numerical algorithms in terms of the symplectic structure can effectively improve the accuracy of numerical results[19,32–34].

    According to the seminal idea constructing generalized mixed elements,the objective of this work is to develop as imple and straightforward noncompatible symplectic element.We hope such an element is suitable for various complex 3-D linear elasticity problems and it can improve the quality of solutions.

    2 Basic theory

    2.1 Known variational principles for linear elasticity

    Considera solid continuumVwith boundaryS.S=Su∪Sσ,whereSuandSσare the segments ofSwhere displacements and surface tractions are prescribed,respectively.Let?be the gradient operator in the undeformed body which,under the assumption of infinitesimal deformation,is indistinguishable from the deformed body.

    It is well known that,using the constitutive relations,the H-R mixed variational principle reduces to the minimum potential energy principle

    In the following,suppose that the out-plane stress vector is

    and the in-plane stress vector is

    Based on Refs.[17,34],the modified H-R mixed variational principle can be stated as

    The modified energy densityLMHRin Eq.(9)is given by

    where,φ11,φ21,andφ22are submatrices of a material stiffness coefficients:

    ?1,?2,and?3refer to differential operator matrices

    The in-plane stress vectorσican be expressed by both out-plane stress vectorσoand displacement vectoru.

    2.2 Partial-mixed elements

    2.2.1 Shape functions of displacement and out-plane stress

    For an 8-node noncompatible element[35,36]weak discontinuity,the displacement field can be expressed as a sum of the compatible partN qeand the noncompatible partNrre.

    Nrin Eq.(10)may be stated in the following matrix form[36]

    The same shape functions matrixNis also employed to express the out-plane stress vectorσoin this work.

    2.2.2 Compatible partial-mixed element

    Introducing Eqs.(12)and(10)without the noncompatible partNrreinto Eq.(5),yields the following partial-mixed element

    In Eq.(13),Kppis asymmetric and positive definite matrix andKqqpossesses zeros on the diagonal since?2is a differential operator matrix with rank deficiency.Hence,the above partial-mixed element is subject to possible instabilities.Such a feature is the same as the classical mixed elements without employing the nonconventional stable mixed scheme[1–3].

    Therefore,if the out-plane stresses and displacements share the same finite space or any stable mixed element schemes used in classical mixed methods are not employed,we cannot obtain a stable generalized partial mixed element in a compatible displacement mode.

    Substituting Eqs.(12)and(10)into Eq.(5),yields

    We have observed that it is impossible to condense the vectorrein Eq.(14)by a certain Euler–Lagrange(EL)equation ofδΠMHR(pe,qe,re)=0 sinceKrrhere is not a matrix sufficient rank and,of course,it is not invertible.

    Asisknown to all,on substitution ofEq.(10)into the minimum potential energy principle in Eq.(2),the finite element functional∏P(qe,re)can be written as follows

    Fromδ∏P(re)=0,the following expression can be obtained

    Notethat,ifno body force,fTrrein Eq.(16)can beomitted[35–37].

    We have pointed out above that the termfTrrecan be neglected in the noncompatible displacement methods.For the same reason,fTrrein Eq.(15)is also neglected.

    It is of interest to be observed that we can eliminate the vectorrein Eq.(14)by Eq.(16).Thus,the new functionalΠMHR(pe,qe)has the form

    Finding the extremum values of the above equation with respect topeandqe,the following noncompatible partial mixed element with eight nodes can be obtained

    Generally,the submatrixRqqin the above equation is symmetric and there does not exit zeros on the leading diagonal.

    2.3 Symplectic structure of partial-mixed element

    In what follows,Hrefers to the coefficient matrix of Eq.(20)

    In order to prove the symplectic feature of Eq.(21),the identity symplectic matrixJis introduced first

    Suppose that the dimensions ofHis 2m×2m,I mis anm×midentity matrix.Herem=24.Based on the symmetric definition of the matrix in symplectic algebra,the following two expressions are obvious

    Equation(23a)or(23b)shows thatHhas the symplectic structure,so Eq.(20)can be called as thesymplectic element.

    As mentioned in Sect.1,thesymplectic structurewill play a very important role in the finite element analysis(i.e.,it implies the numerical results of finite element analysis are highly stable and reliable[19,32–34]).

    3 Symplectic finite element model and solutions

    3.1 Symplectic finite element model

    The finite element models corresponding to Eqs.(19)and(20)can be written as follows,respectively,

    In general,on the system level the coefficient matrix has a structure equivalent to that of an element.Hence,Eq.(24)or(25)can be termed thesymplectic finite element modelin noncompatible displacement mode.

    3.2 Solution for displacements and out-plane stresses

    Exchanging rows and columns of Eq.(25),and then it can be rewritten as the following form

    Therefore,

    3.3 Simultaneous equations approach for in-plane stresses

    The following simultaneous equation approach for the in plane stresses can avoid the discontinuity of in-plane stresses at a node connecting neighbouring elements,and it can also ensure the accuracy of in-plane stress results.

    Substituting Eqs.(10)and(12)together with Eq.(16)into Eq.(9),the in-plane stress vector of an element

    Assembling Eq.(29)for all elements(i.e.,the standard finite element assemblage process is employed here),yields a set of simultaneous equations,which is similar to the linear system of equations for finite element analysis

    Fig.1 Coordinates and dimensions

    4 Numerical examples and analysis

    4.1 A thick rectangular plate with simply supported edges

    Consider a thick rectangular plate with in-plane dimensions(as shown in Fig.1a)a=b=1.0 and thicknessh=0.10.Compressiblematerial properties:E=210,ν=0.3.Nearly incompressible material properties:E=240,ν=0.49995.Boundary conditions:σ11=u2=u3=0 onx1=0,x1=a;σ22=u1=u3=0 onx2=0,x2=b.The uniform normal load 1.0 is on the upper surface of plate.

    Using the symmetry about thex1andx2-axes,only one quarter of the plate(Fig.1b)is analyzed with uniformmeshes.The notationl×m×nmesh denoteslsubdivisions along thex1-axis andmsubdivisions along thex2-axis with the same type of elements,whilendenotes the element number in thex3direction.

    The convergence rate and accuracy of displacements and stresses at specific locations are depicted in Figs.2–13.Table 1 gives the map of numbers of horizontal axis and mesh models,8 subdivisions in thex3direction for all models.

    On the basis of the results of 14×14×8 mesh,the percentage errors which are illustrated in the legends of Figs.

    Fig.2 Compressible material u1

    Fig.3 Compressible material u3

    Fig.5 Compressible material σ33

    Fig.4Compressible materialσ13are computed by the following formulationin which,Exact denotes the exact solution which is obtained by the method in reference[22]Element denotes the solutions of NCGME8[1]or NCSE8.

    Fig.6 Compressible material σ11

    Fig.7 Compressible material σ12

    Fig.8 Nearly incompressible material u1

    For the results ofu1,u3,σ33,andσ12,Figs.4–9 show that there is no obvious distinction between NCGME8 and NCSE8.But the accuracy of transverseσ13of NCSE8 is superior to NCGME8 and the stressσ11of NCSE8 is characterised by rapid convergence.

    Certainly,like the classical mixed methods,a drawback of NCSE8 is the added number of stress variables means that generally larger size algebraic problems have to be handled.Generally,to obtain conveniently the stable and highly accurate numerical results is the first priority for the design of engineering structures.It can also be realized easily by NCSE8.

    Fig.9 Nearly incompressible material u3

    Fig.10 Nearly incompressible material σ13

    Fig.11 Nearly incompressible material σ33

    Fig.12 Nearly incompressible material σ11

    Fig.13 Nearly incompressible material σ12

    Table 1 Map of numbers of horizontal axis and models

    Table 2 Comparison of time requirement of NCGME8[1]and NCSE8

    Table 3 Comparison of NCGME8 and NCSE8

    For ourprogram in MATHEMATICA?,the time requirements of NCGME8 and NCSE8 are listed in Table 2.For NCSE8,the in-plane stress has to be computed separately by both displacements and out-plane stresses.Thus,the calculating speed of NCSE8 is slightly slow.

    For the nearly incompressible material,NCSE8 yields the reliable and highly accurate results(see Figs.8–13).The accuracy of displacement and stress results of NCSE8 is superior to NCGME8[1]except the stressσ33.On the other hand,whether the displacements or not the stresses of NCSE8,their accuracy are nearly the same.

    Based on the theory in Sect.3 and above numerical experimentation,Table 3 gives a summary of NCGME8[1]and present NCSE8.

    4.2 A square plate with a circular hole at centre

    Fig.14 A square plate with a circular hole at centre

    Fig.15 One quarter of mesh

    Table 4 Stress at edges of hole in square plate under uniaxial tension

    Fig.16 A square plate with edge cracks under uniaxial tension

    Fig.17 Finite element idealization of quarter plate along with boundary conditions(N=4)

    4.3 Convergence in strain energy of a square plate with edge cracks uniaxial tension

    The problem of a square plate with symmetric edge cracks(mode I)is considered next.Figure 16 shows the problem description and Fig.17 illustrates the finite element idealization of a quarter of the plate considered using the symmetry.

    Figure 18 shows a comparison with the solutions obtained using various other elements.Present NCSE8 definitely shows a faster strain energy convergence than the constant stress triangles,the linear stress triangles,and the hybrid stress rectangles with cubic stress distribution within the element and quadratic displacements along the boundaries.

    Table5 Numerical results for square plate with symmetric edge cracks

    Fig.18 Convergence in strain energy.Data lines 1–5 come from Ref.[38]

    5 Conclusions

    In this paper,attention was focused on the symplectic element in noncompatible displacement mode.A systematic mathematical derivation for such an element was presented.The elimination of displacement vector corresponding to points within the element by the formulation derived from the minimum potential energy principle is crucial technology.Just because of the noncompatible displacement mode,there are no zeros on the leading diagonal of a present symplectic element.The simultaneous equation approach for the inplane stresses was also suggested.The simultaneous equation approach can improve the accuracy of in-plane stress results on nodes.

    The symplectic finite element model in terms of NCSE8 seems to give the simplest and most flexible system of equations,since nonconventional solutions or the stable mixed schemes used in classical mixed models is unnecessary.The nodal out-plane stress results are automatically continuous.NCSE8 has advantages of clear concept,easy calculation by a finite element computer program, higher precision and wide applicability for linear elasticity problems.

    Generally,the displacement methods or the hybrid methods can be extended for analyzing the fracture problems.Unlike displacement elements,the present NCSE8 is a mixed one.However,by an enriched mixed element scheme[30]or the idea of FEDSM[31],it is also possible that NCSE8 orthe generalized mixed elements for 2-D problems are extended for evaluating SIFs.This work will be discussed in the next paper.

    If we begin with the modified H-R mixed variational principles for the magneto-piezoelastic anisotropic materials[26],the corresponding symplectic element can also be constructed.

    AcknowledgementsThis work was supported by the National Natural Science Foundations of China(Grant 11502286).

    1.Qing,G.,Mao,J.,Liu,Y.:Generalized mixed finite element method for 3D elasticity problems,Acta Mech.Sin.(2017).(online)http://rdcu.be/tLYj,https://doi.org/10.1007/s10409-017-0690-7

    2.Zienkiewicz,O.C.,Taylor,R.L.,Zhu,J.:The Finite Element Method:Its Basis and Fundamentals.Butterworth-Heinemann,Oxford(2005)

    3.Arnold,D.N.:Mixed finite element methods for elliptic problems.Comput.Methods Appl.Mech.Eng.82,281–300(1990)

    4.Qing,G.,Mao,J.,Liu,Y.:Highly accurate noncompatible generalized mixed finite element method for 3D elasticity problems.J.Mech.Mater.Struct.12,505–519(2017)

    5.Qing,M.,Feng,K.:Collected Works of Feng Kang.Volume I,II.National Defence Industry Press,Beijing(1995).(in Chinese)

    6.Fu,M.H.,Lu,K.L.L.,Lan,H.:High order symplectic conservative perturbation method for time-varying hamiltonian system.Acta Mech.Sin.28,885–890(2012)

    7.Bridges,T.J.,Hydon,P.E.,Lawson,J.K.:Multisymplectic structures and the variational bicomplex.Math.Proc.Camb.Philos.Soc.148,159–178(2010)

    8.Hu,W.-P.,Qin,Y.-Y.,Zhang,W.-R.:Multi-symplecti cmethod for the generalized(2+1)—dimensional KDV–MKDV equation.Acta Mech.Sin.28,793–800(2012)

    9.Zou,G.,Tang,L.:A semi-analytical solution for laminated composite platesin hamiltonian system.Comput.Methods Appl.Mech.Eng.128,395–404(1995)

    10.Sheng,H.,Ye,J.:A three-dimensional state space finite element solution for laminated composite cylindrical shells.Comput.Methods Appl.Mech.Eng.192,2441–2459(2003)

    11.Qing,G.,Qiu,J.,Liu,Y.:A semi-analytical solution for static and dynamic analysis of plates with piezoelectric patches.Int.J.Solids Struct.43,1388–1403(2006)

    12.Qing,G.,Qiu,J.,Liu,Y.:Free vibration analysis of stiffened laminated plates.Int.J.Solids Struct.43,1357–1371(2006)

    13.Qing,G.,Wang,F.,Liu,Y.:State space approach for energy release rate analysis of delaminated laminates with stiffeners.Aiaa J.49,2123–2129(2011)

    14.Andrianarison,O.,Benjeddou,A.:Hamiltonian partial mixed finite element-state space symplectic semi-analytical approach for the piezoelectric smart composites and FGManalysis.Acta Mech.223,1597–1610(2012)

    15.Li,D.,Qing,G.:Free vibration analysis of composite laminates with delamination based on state space theory.Mech.Adv.Mater.Struct.21,402–411(2014)

    16.Fan,J.,Ye,J.:An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers.Int.J.Solids Struct.26,655–662(1990)

    17.Steele,Y.Y.,Kim,C.R.:Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution.J.Appl.Mech.59,587–595(1992)

    18.Tang,L.,Zhou,G.P.:Mixed formulation and Hamilton canonical equations of theory of elasticity.Comput.Struct.Mech.Appl.8,343–349(1991).(in Chinese)

    19.Zhong,W.:New Solution System of Elasticity.Dalian University of Technology Press,Dalian(1995).(in Chinese)

    20.Heyliger,P.,Saravanos,D.:Exact free-vibration analysis of laminated plates with embedded piezo-electric layers.J.Acoust.Soc.Am.98,1547–1557(1995)

    21.Lee,J.S.,Jiang,L.Z.:Exact electrostatic analysis of piezoelectric laminae via state space approach.Int.J.Solids Struct.33,977–990(1996)

    22.Fan,J.:Exact Theory of Laminated Thick Plates and Shells.Science Press,Beijing(1996).(in Chinese)

    23.Chen,W.,Lee,K.Y.,Ding,H.:On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates.J.Sound Vib.279,237–251(2005)

    24.Cheng,Z.,Batra,R.:Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates.AIAA J.38,317–324(2000)

    25.Pan,E.:Exact solution for functionally graded anisotropic elastic composite laminates.J.Compos.Mater.37,1903–1920(2003)

    26.Qing,G.,Qiu,J.,Liu,Y.:Modified H-R mixed variational principle for magneto electroelastic bodies and state-vector equation.Appl.Math.Mech.26,722–728(2005)

    27.Li,R.,Zhong,Y.,Tian,B.:On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates.Mech.Res.Commun.38,111–116(2011)

    28.Tong,P.,Pian,T.H.H.,Lasry,S.J.:A hybrid element approach to crack problems in plane elasticity.Int.J.Numer.Methods Eng.7,297–308(1973)

    29.Belytschko,B.T.:Elastic crack growth in finite elements with minimal remeshing.Int.J.Numer.Methods Eng.45,601–620(1999)

    30.Heyliger,P.R.,Kriz,R.D.:Stress intensity factors by enriched mixed finite elements.Int.J.Numer.Methods Eng.28,1461–1473(1989)

    31.Leung,A.Y.T.,Zhou,Z.,Xu,X.:Determination of stress intensity factors by the finite element discretized symplectic method.Int.J.Solids Struct.51,1115–1122(2014)

    32.Zhong,W.,Gao,Q.:Break the Laminations of Symplecticity.Dalian University of Technology Press,Dalian(2011).(in Chinese)

    33.Yao,W.,Zhong,W.:Symplectic Elasticity.High Education Press,Beijing(2002).(in Chinese)

    34.Zhong,W.:Symplectic System of Applied Mechanics.Science Press,Beijing(2003).(in Chinese)

    35.Taylor,R.L.,Beresford,P.J.,Wilson,E.L.:A non-conforming element for stress analysis.Int.J.Numer.Methods Eng.10,1211–1219(1976)

    36.Chen,W.:A high precision eight-node hexahedron element.Chin.J.Theor.Appl.Mech.18,262–271(1982).(in Chinese)

    37.Tian,S.,Pian,T.H.H.:Variational Principles with Multivariables and Finite Elements with Multivariables.Science Press,Beijing(2011).(in Chinese)

    38.Tong,P.,Pian,T.H.H.:On the convergence of the finite element method for problems with singularity.Int.J.Solids Struct.9,313–321(1973)

    永久免费av网站大全| 人妻 亚洲 视频| 国产精品蜜桃在线观看| a 毛片基地| 国产精品秋霞免费鲁丝片| 一级片免费观看大全| 波野结衣二区三区在线| 国产免费现黄频在线看| 日本黄色日本黄色录像| 人人妻人人爽人人添夜夜欢视频| 少妇被粗大的猛进出69影院 | 亚洲精品美女久久av网站| 国产探花极品一区二区| 波野结衣二区三区在线| 色网站视频免费| 丝袜人妻中文字幕| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品电影小说| 乱人伦中国视频| 免费大片黄手机在线观看| 婷婷色麻豆天堂久久| 国产精品三级大全| 少妇 在线观看| 一区二区日韩欧美中文字幕 | 啦啦啦视频在线资源免费观看| 激情视频va一区二区三区| 国产色婷婷99| 国产永久视频网站| 中文字幕最新亚洲高清| 亚洲成人一二三区av| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 欧美精品av麻豆av| 51国产日韩欧美| 精品一品国产午夜福利视频| 男的添女的下面高潮视频| 777米奇影视久久| 国产在视频线精品| 美女中出高潮动态图| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 精品少妇内射三级| 亚洲精品国产av蜜桃| 国产精品不卡视频一区二区| 久久99蜜桃精品久久| 两个人看的免费小视频| 人妻系列 视频| 亚洲人成网站在线观看播放| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 一本大道久久a久久精品| 老女人水多毛片| 香蕉丝袜av| 美女国产视频在线观看| 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| 哪个播放器可以免费观看大片| 观看美女的网站| 免费看av在线观看网站| 久久精品人人爽人人爽视色| 日韩三级伦理在线观看| 一二三四在线观看免费中文在 | 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频| 日韩制服丝袜自拍偷拍| 精品熟女少妇av免费看| 久久久国产一区二区| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 免费黄色在线免费观看| www.av在线官网国产| 国产一区二区在线观看日韩| 一级毛片我不卡| 日本91视频免费播放| 国产精品久久久久久久电影| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 国产一区二区激情短视频 | av国产精品久久久久影院| 如何舔出高潮| 日本免费在线观看一区| 男女边吃奶边做爰视频| 999精品在线视频| 国产一区二区三区综合在线观看 | 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 欧美性感艳星| 亚洲国产成人一精品久久久| 老司机影院毛片| 我的女老师完整版在线观看| 国产 精品1| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 亚洲av在线观看美女高潮| 99国产综合亚洲精品| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 成年女人在线观看亚洲视频| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 97在线人人人人妻| 国产成人精品久久久久久| 一级片'在线观看视频| 亚洲欧美一区二区三区国产| 亚洲,欧美,日韩| 99香蕉大伊视频| 日韩成人av中文字幕在线观看| 午夜老司机福利剧场| 男人舔女人的私密视频| 国产午夜精品一二区理论片| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 久久久久久人人人人人| 免费观看av网站的网址| 制服人妻中文乱码| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| av黄色大香蕉| 国产女主播在线喷水免费视频网站| 国产片内射在线| 免费看av在线观看网站| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 国产一级毛片在线| 成年美女黄网站色视频大全免费| 久久影院123| 美女视频免费永久观看网站| 狠狠婷婷综合久久久久久88av| 日韩av免费高清视频| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 日本wwww免费看| 99久国产av精品国产电影| 日韩欧美一区视频在线观看| 中文字幕人妻熟女乱码| 国内精品宾馆在线| 熟女av电影| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 国产麻豆69| 国内精品宾馆在线| 国产淫语在线视频| 国产精品.久久久| 大话2 男鬼变身卡| 如日韩欧美国产精品一区二区三区| av免费观看日本| 一级a做视频免费观看| 丰满少妇做爰视频| 999精品在线视频| 免费在线观看完整版高清| 亚洲av国产av综合av卡| 免费av中文字幕在线| 女性被躁到高潮视频| 91成人精品电影| 看十八女毛片水多多多| 亚洲精品,欧美精品| 国产成人精品婷婷| 午夜免费鲁丝| 国产精品久久久久成人av| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 成年动漫av网址| 国产高清不卡午夜福利| av在线观看视频网站免费| 中国三级夫妇交换| 在线观看美女被高潮喷水网站| 视频在线观看一区二区三区| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 亚洲国产色片| 日日撸夜夜添| 国产女主播在线喷水免费视频网站| 一区二区日韩欧美中文字幕 | 亚洲av.av天堂| 国产成人免费无遮挡视频| 婷婷成人精品国产| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 欧美激情极品国产一区二区三区 | 亚洲丝袜综合中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲 欧美一区二区三区| 九色成人免费人妻av| 国产有黄有色有爽视频| 欧美精品高潮呻吟av久久| 国产69精品久久久久777片| 国产精品嫩草影院av在线观看| a级毛片黄视频| 最后的刺客免费高清国语| 久久久国产欧美日韩av| 91国产中文字幕| 毛片一级片免费看久久久久| 午夜福利乱码中文字幕| 观看av在线不卡| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 亚洲精品,欧美精品| 精品少妇内射三级| kizo精华| 爱豆传媒免费全集在线观看| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 午夜久久久在线观看| 香蕉精品网在线| 香蕉丝袜av| 精品一区在线观看国产| videos熟女内射| 亚洲av中文av极速乱| 午夜福利视频精品| 亚洲精品一二三| 国产黄色免费在线视频| 国产白丝娇喘喷水9色精品| 国产老妇伦熟女老妇高清| 日本av手机在线免费观看| 欧美精品av麻豆av| 青青草视频在线视频观看| 天美传媒精品一区二区| av国产精品久久久久影院| 国产精品人妻久久久影院| 天天躁夜夜躁狠狠久久av| 丝袜人妻中文字幕| 22中文网久久字幕| 午夜福利在线观看免费完整高清在| 精品一区二区免费观看| 久久精品久久久久久久性| 国产有黄有色有爽视频| 高清不卡的av网站| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 亚洲欧美中文字幕日韩二区| 久久国产精品大桥未久av| 少妇的逼好多水| 欧美成人精品欧美一级黄| 制服丝袜香蕉在线| 9191精品国产免费久久| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| 中文天堂在线官网| 丝袜美足系列| 国产伦理片在线播放av一区| 少妇的逼好多水| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 免费av不卡在线播放| 亚洲成av片中文字幕在线观看 | 七月丁香在线播放| 中国三级夫妇交换| 久久久久人妻精品一区果冻| 国产色爽女视频免费观看| 91国产中文字幕| 日韩免费高清中文字幕av| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| av.在线天堂| 啦啦啦中文免费视频观看日本| 男人添女人高潮全过程视频| 99热网站在线观看| 国产亚洲欧美精品永久| 久久人妻熟女aⅴ| 精品亚洲成a人片在线观看| 男人爽女人下面视频在线观看| 一区二区三区四区激情视频| 日本爱情动作片www.在线观看| 日本欧美国产在线视频| 色5月婷婷丁香| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 亚洲av电影在线进入| 免费av中文字幕在线| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 99久久综合免费| 日韩电影二区| 极品人妻少妇av视频| 日韩 亚洲 欧美在线| 国产精品.久久久| 国产精品免费大片| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 热re99久久国产66热| 久久婷婷青草| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 妹子高潮喷水视频| 少妇 在线观看| www.色视频.com| 一级毛片 在线播放| 国产精品欧美亚洲77777| 天美传媒精品一区二区| 美国免费a级毛片| 亚洲人与动物交配视频| 亚洲精品国产av蜜桃| 午夜影院在线不卡| 国产av一区二区精品久久| 99re6热这里在线精品视频| 久久久久久久久久久免费av| 国产免费福利视频在线观看| 汤姆久久久久久久影院中文字幕| 日韩av免费高清视频| av在线播放精品| 极品人妻少妇av视频| 中文字幕人妻丝袜制服| 亚洲丝袜综合中文字幕| 日韩一区二区三区影片| 在线观看www视频免费| 最近的中文字幕免费完整| 大香蕉97超碰在线| 热re99久久国产66热| 国产精品久久久久久av不卡| 啦啦啦视频在线资源免费观看| 高清不卡的av网站| 春色校园在线视频观看| 丝袜美足系列| 中文字幕av电影在线播放| 咕卡用的链子| 成人无遮挡网站| 美国免费a级毛片| 久久国产亚洲av麻豆专区| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩成人在线一区二区| 亚洲经典国产精华液单| 中文天堂在线官网| 亚洲av电影在线进入| 亚洲人成网站在线观看播放| 一级黄片播放器| 成人黄色视频免费在线看| 老司机影院毛片| 亚洲精品久久成人aⅴ小说| 女人被躁到高潮嗷嗷叫费观| 最近2019中文字幕mv第一页| 男男h啪啪无遮挡| 亚洲国产色片| 成人无遮挡网站| 久久午夜综合久久蜜桃| 亚洲内射少妇av| 高清黄色对白视频在线免费看| a级片在线免费高清观看视频| 涩涩av久久男人的天堂| 婷婷色av中文字幕| 国产精品一区www在线观看| 嫩草影院入口| 精品第一国产精品| 中文精品一卡2卡3卡4更新| 久久久久精品久久久久真实原创| 最近最新中文字幕大全免费视频 | 亚洲经典国产精华液单| 十分钟在线观看高清视频www| 国产精品久久久久成人av| 久久久久人妻精品一区果冻| 国产精品免费大片| 久久免费观看电影| 久久久国产精品麻豆| 免费看光身美女| 国产一区二区激情短视频 | 人妻少妇偷人精品九色| 男人舔女人的私密视频| 少妇人妻精品综合一区二区| 国产日韩一区二区三区精品不卡| 亚洲国产精品专区欧美| 香蕉国产在线看| 美女主播在线视频| 七月丁香在线播放| 亚洲成国产人片在线观看| 免费大片黄手机在线观看| 夜夜爽夜夜爽视频| 亚洲精品一二三| 亚洲精品美女久久久久99蜜臀 | 亚洲精品色激情综合| 亚洲国产欧美在线一区| 伦理电影免费视频| 人人妻人人添人人爽欧美一区卜| 丰满少妇做爰视频| 国产精品久久久久成人av| 香蕉精品网在线| 在线观看人妻少妇| 久久久精品免费免费高清| 久久鲁丝午夜福利片| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 日韩制服骚丝袜av| 两个人看的免费小视频| 亚洲精品国产av成人精品| 亚洲精品中文字幕在线视频| 精品亚洲乱码少妇综合久久| 成人综合一区亚洲| 国产探花极品一区二区| 国产av码专区亚洲av| 国产极品天堂在线| 亚洲av男天堂| 久久热在线av| 精品少妇内射三级| 妹子高潮喷水视频| 亚洲第一av免费看| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 亚洲综合色惰| 丰满迷人的少妇在线观看| 国产免费一区二区三区四区乱码| 久久久久国产精品人妻一区二区| 高清毛片免费看| 人人妻人人爽人人添夜夜欢视频| 国产极品天堂在线| 精品午夜福利在线看| 久久午夜福利片| 超碰97精品在线观看| 人妻 亚洲 视频| 亚洲,欧美精品.| 九草在线视频观看| 最近最新中文字幕大全免费视频 | 一区二区三区四区激情视频| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 日韩成人伦理影院| 天堂中文最新版在线下载| 国产免费一级a男人的天堂| 制服诱惑二区| 天堂8中文在线网| 丝袜脚勾引网站| 精品人妻在线不人妻| 亚洲精品视频女| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| 一级爰片在线观看| 国产有黄有色有爽视频| 99热网站在线观看| 精品卡一卡二卡四卡免费| 老熟女久久久| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| 18禁观看日本| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码 | 久久久亚洲精品成人影院| 亚洲欧洲日产国产| a级毛片黄视频| 另类亚洲欧美激情| 男女边摸边吃奶| 男男h啪啪无遮挡| 久久久久久人妻| 香蕉丝袜av| 一本—道久久a久久精品蜜桃钙片| 一本久久精品| 国产精品久久久av美女十八| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 亚洲中文av在线| 日日撸夜夜添| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 中文字幕人妻熟女乱码| 制服丝袜香蕉在线| 最近最新中文字幕大全免费视频 | 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 亚洲精品日本国产第一区| 日本黄色日本黄色录像| av免费在线看不卡| 亚洲av综合色区一区| 精品福利永久在线观看| 一区二区三区四区激情视频| 午夜免费观看性视频| 成人国产av品久久久| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| av在线观看视频网站免费| 9191精品国产免费久久| 高清毛片免费看| 亚洲欧美精品自产自拍| 黑人猛操日本美女一级片| 国产爽快片一区二区三区| 国产成人精品无人区| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 美女国产高潮福利片在线看| 亚洲中文av在线| 久久久精品94久久精品| 韩国精品一区二区三区 | 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| a 毛片基地| 九九在线视频观看精品| 日日爽夜夜爽网站| 久久久欧美国产精品| 少妇的丰满在线观看| 香蕉精品网在线| a级毛片在线看网站| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀 | 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 日韩中字成人| 丝袜脚勾引网站| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| 欧美人与性动交α欧美精品济南到 | 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 久久久久视频综合| 日韩一区二区三区影片| 国产高清不卡午夜福利| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 国产黄频视频在线观看| 欧美xxxx性猛交bbbb| 男女下面插进去视频免费观看 | 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 蜜桃国产av成人99| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久com| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 国产激情久久老熟女| 高清在线视频一区二区三区| 国产精品一国产av| 国产亚洲一区二区精品| 超色免费av| 国产69精品久久久久777片| 国产高清不卡午夜福利| 中国国产av一级| 国产在线一区二区三区精| freevideosex欧美| 又黄又粗又硬又大视频| www.av在线官网国产| 国产男女内射视频| 丁香六月天网| 制服诱惑二区| 欧美日韩av久久| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 国产淫语在线视频| 国产国语露脸激情在线看| 99热这里只有是精品在线观看| 寂寞人妻少妇视频99o| 久久99热这里只频精品6学生| 亚洲三级黄色毛片| 99久久中文字幕三级久久日本| 成人二区视频| 一级片免费观看大全| 久久午夜福利片| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 国产xxxxx性猛交| 久久久久久伊人网av| 国产一级毛片在线| 亚洲精品视频女| 曰老女人黄片| 最近最新中文字幕大全免费视频 | 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区 | 久久久久久久精品精品| 国产午夜精品一二区理论片| 亚洲综合色网址| 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 伦理电影大哥的女人| xxxhd国产人妻xxx| 国产成人一区二区在线| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 成年av动漫网址| 久久精品国产自在天天线| 国内精品宾馆在线| av视频免费观看在线观看| 久久人人爽人人爽人人片va| 一个人免费看片子| 日日撸夜夜添| 十八禁高潮呻吟视频| 国产精品秋霞免费鲁丝片| 久久久久久人妻| 免费在线观看黄色视频的| 18禁动态无遮挡网站| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| 两性夫妻黄色片 | 亚洲欧美色中文字幕在线| 亚洲av.av天堂| av在线app专区| 日本vs欧美在线观看视频| 内地一区二区视频在线| 亚洲国产av影院在线观看| 亚洲精品一区蜜桃| 草草在线视频免费看|