• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of a viscoelastic target on the impact response of a flat-nosed projectile

    2018-03-19 02:07:09HuLiuJialingYangHuaLiu
    Acta Mechanica Sinica 2018年1期
    關(guān)鍵詞:轉(zhuǎn)型農(nóng)業(yè)發(fā)展

    Hu Liu·Jialing Yang·Hua Liu

    1 Introduction

    With the increasing requirement of high speed vehicles in the areas of aerospace and transportation,dynamic material characterization has attracted more attention because these structures are exposed to severe loading conditions such as explosion and impact.In 1948,a simple one-dimensional analysis model was proposed by Taylor[1]and Whiffin[2]to estimate the dynamic behavior of steel specimens at high strain rate,which is referred to as Taylor cylinder impact.In this test,a cylindrical flat-nosed projectile strikes a rigid anvil target normally and the material strength can be predicted by measuring the final deformed shape of the projectile.

    In order to predict the dynamic behavior of materials more precisely,much effort has been made to improve the classic Taylor model.The study of Hawkyard[3]proposed an energy equilibrium equation to replace the momentum equilibrium across the plastic wavefront,and the mushrooming deformation of the projectile predicted by the energy-based approach was in good agreement with experiments[2].Also,Lee and Tupper[4]modified the theoretical model taking into account the strain hardening effect and elastic wave propagation in the projectile.In their work,Hashmi and Thompson[5]used the Taylor cylinder impact to determine the dynamic behavior of materials which considered both the strain-hardening and strain-rate effects.Then Hutchings[6]extended the classic Taylor theory to analyze the dynamic response of polymer materials at high strain rate.The study of Wang et al.[7]carried out the Taylor experiment to predict the dynamic behavior of porous materials.Work by Wang et al.[8]adopted the Taylor impact method to investigate the dynamic constitutive relation of cellular materials.It should be noted that most investigations were proposed by firing a cylindrical flat-nosed projectile onto a rigid wall,while the elastic or viscoelastic effect of the target bar was seldom considered.In fact,no target bar is perfectly rigid,and the energy dissipation of the target affects the deformation behavior of the projectile.

    Many researchers have recognized this problem and some improvements were made.For example,Critescu and Bell[9]introduced a symmetric Taylor test to eliminate the assumption of regarding the target bar as an ideally rigid material in the classic Taylor model.Experimentally,the symmetric Taylor impact configuration was performed by striking a stationary rod target with an identical rod projectile of the same material and diameter.This method was also employed by Willmott and Radford[10]to observe the deformation and fracture behavior of glass materials,and the strain signals in the target bar were recorded by using gauges.Undoubtedly,because the projectile and target bar were made from the same material,the target bar also underwent plastic deformation,which made it difficult to obtain accurate strain signals.

    In their study,Yang et al.[11]proposed an improved model by using a flat-nosed projectile striking against a stationary semi-infinite output bar,and the stiffness of the target bar was much higher than that of the flat-nosed projectile to ensure that no plastic deformation occurred during the impact process.A theoretical model combining plastic shock wave propagating in the flat-nosed projectile and elastic wave traveling in the output bar was derived in their study.The effect of the elastic target bar on the plastic behavior of metallic materials could be accurately predicted by Yang’s model.Actually,this strategy is widely adopted and called the Taylor-cylinder Hopkinson impact test[12,13].Compared with the traditional Spite Hopkinson Pressure Bar(SHPB)test,this technique achieves much higher strain rates(in the range of 103–107s?1),and the strain signals recorded in the target bar can provide a validation of the theoretical prediction.

    Recently,the dynamic behavior of soft materials such as rubber and polymer has aroused wide concern.Taylor and SHPB tests are carried out to determine their dynamic behavior.For instance,Turgutlu et al.[14]studied the mushrooming deformation of low density polyethylene samples by using a flat-ended polymeric cylindrical projectile striking against a rigid target bar normally.Also,Sarva et al.[15]conducted the direct Taylor impact to examine the dynamic mechanical behavior of polycarbonates under high-rate loading conditions experimentally and numerically.Employing SHPB tests,Wang et al.[16]analyzed the high strain-rate mechanical behavior of low impedance materials.In their experiment,the polymeric input and output bars were used to provide accurate strain signals,and they also discussed the influence caused by the viscoelastic Hopkinson bars.Work by Zhao et al.[17,18]studied the dynamic behavior of low impedance materials at high strain rate by using the PMMA viscoelastic Hopkinson bar.The wave propagation attenuation and dispersion characteristics in viscoelastic Hopkinson bars were analyzed by Bacon[19].Subsequently,the viscoelastic Hopkinson bars are used to test low stiffness materials at high strain rate,and the viscoelastic behavior of Hopkinson bars has also aroused worldwide concern[20–22].Most recently,Othman[23]set up a polymeric SHPB experiment to test soft materials,and a complex Young’s modulus model was proposed to analyze the viscoelastic behavior of polymeric Hopkinson bars.Work of Butt et al.[24–26]proposed a parametric identification method to determine the viscoelastic material parameters of PMMA Hopkinson bar.Furthermore,Harrigan et al.[27–29]replaced the traditional metal bars with much weaker polymer bars to test the low stiffness materials in SHPB experiments.As mentioned,the viscoelastic effect of the device should be taken into consideration when using the SHPB technique to obtain the constitutive relation of soft materials.Similarly,the Taylor-cylinder Hopkinson impact test can also be used to evaluate the stress–strain relation of soft materials at high stain rate.The only difference between the classic Taylortest and the Taylor-cylinder Hopkinson impact is that the rigid anvil in the Taylor test is replaced by an output target bar in the Taylor-cylinder Hopkinson impact[12,13].Meanwhile,in order to avoid the wave impedance mismatch between the flat-nosed projectile and the target bar,much weaker materials of the target bar are used to ensure the accuracy of the recorded strain signals.Unfortunately,many materials used in the target bar may exhibit viscosity properties,but most studies ignored the potential influence caused by the viscoelastic target bar.

    The aim of this paper is to investigate the effect of viscoelastic target on the impact response of the flat-nosed projectile at high rate.An extended theoretical model is proposed by using a flat-nosed projectile striking against a semi-infinite viscoelastic target bar normally.The present model offers guidelines on how to make use of Taylor cylinder Hopkinson impact to identify the dynamic material parameters more accurately.

    2 Problem formulation and basic equations

    A cylindrical flat-nosed projectile striking axially against a semi-infinite stationary target bar is considered,as shown in Fig.1a.The cylindrical target bar is made of viscoelastic material instead of rigid material in the classic Taylor model.Similar to the classic Taylor impact,the flat-nosed projectile is regarded as a homogeneous continuum,which obeys the rigid,perfectly plastic constitutive law,and the yield strength of the flat-nosed projectile isσY.The length and initial velocity of the flat-nosed projectile isL0andU0,respectively.Letρ0andρ1denote the densities of the flat-nosed projectile and the target bar,respectively.A0andA1are the initial cross-sectional areas of the flat-nosed projectile and target bar,respectively.As shown in Fig.1b,when the flat-nosed projectile strikes against the target bar,the impinging layer of the projectile yields instantly,and a plastic shock wave will travel leftwards with a speedV.The remaining region of the flat-nosed projectile stays un-deformed,and the velocity of this un-deformed region is denoted asU1.The deformed region of the flat-nosed projectile and the impinging layer of the target bar will move with a common velocityU2.A viscoelastic wave will propagate rightwards in the semiin finite target bar as long as the target bar is struck by the flat-nosed projectile.LetY,σ,andεdenote the traveling distance of viscoelastic wave,the stress and strain in the viscoelastic target bar,respectively.During the impact process,the cross-sectional area across the shock front of the flatnosed projectile increases fromA0toA,and denoteXandHthe lengths of the un-deformed and deformed regions of the flat-nosed projectile,respectively.The impact process is terminated at instanttfas the plastic wave front in the flatnosed projectile stops moving.DenoteH f,X f,andZ fas the final deformed length,the un-deformed length and total length of the flat-nosed projectile,respectively,as illustrated in Fig.1c.

    From kinematic consideration,the governing equations can be written as

    Fig.1 Impact process of the flat-nosed projectile striking a viscoelastic bar.a Before impact;b intermediate phase;c final deformation

    The conservation of mass for the flat-nosed projectile across the plastic wave front is

    In the classic Taylor model,it is assumed that the crosssectional areaA0of the flat-nosed projectile increases toAimmediately when passing through the plastic wave front.In his work,Qian[30]noticed that a very short period was actually needed to complete the area expansion process and the momentum conservation equation across the plastic wave front modified by Qian is adopted here,which reads

    One can see that the only difference is that the coefficient 1 in the classical Taylor model is replaced by 2/3 in Qian’s model[11,30].

    Assume that the initial length dl0of an element along the striking direction changes to dlafter compression.The volume of the element is assumed to be unchanged during the compression process,therefore,the longitudinal compressive plastic strain at any point in the deformed section of the projectile can be determined by

    Substituting the above equation into Eq.(4),the following relationship can be obtained

    Substituting Eq.(7)into Eqs.(1)and(2),respectively,one has

    Substituting Eqs.(6)and(7)into Eq.(5),leads to

    As depicted in Fig.1b,a viscoelastic wave is initiated and travels towards the rear end of the viscoelastic bar as the target bar is struck by the flat-nosed projectile.The equation of motion at the any cross sectionYalong the axis of the target bar is

    The continuity equation can be expressed as

    whereσ(Y,t),Ub(Y,t),andε(Y,t)represent the stress,particle velocity and strain at any cross sectionYin the time domain.The viscoelastic behavior of the target bar can be determined by

    whereE(t)is the relaxation function,which can be characterized by using a simple three-element linear viscoelastic solid,as sketched in Fig.2.In this model,EeandE vdenote the stiffness of the springs andηis the viscosity of the dashpot.

    The Laplace transformation gives

    wheresis the conversion form in the Laplace domain with respect to timet.ˉσ(Y,s)andˉε(Y,s)are the axial stress and strain in Laplace domain,respectively.ˉE(s)is the complex Young’s modulus which consists of two lineal springs and a dashpot,as shown in Fig.2,and it can be given as

    Fig.2 A simple three-element model to represent the viscoelasticity of the target bar

    whereE e,E v,andηare the characteristic parameters of the viscoelastic material.

    Combining Eqs.(11)and(12)to eliminateUb(Y,t),one can get the equation of longitudinal motion in the time domain,and employing the Laplace transform to this equation gives

    The following equation can be derived from Eqs.(14)and(16)by eliminatingˉε(Y,s)

    The solution to Eq.(17)can be expressed as

    whereA(s)andB(s)represent the Laplace transforms of the stresses at the cross sectionY=0 due to the waves traveling along the positive and negative directions,respectively.λ(s)represents the wave propagation coefficient,and can be defined by

    Both force and velocity are continuous at the interface between the flat-nosed projectile and the target bar,hence,one has

    The stress in the rear end of the target bar should vanish,i.e.,

    Substituting Eqs.(21)and(22)into Eq.(18),we can obtain the stress at any cross sectionY

    Together with Eq.(20),one has

    Combining with Eq.(15),this equation can be rewritten as

    whereαgives the stiffness ratio between the two linear springs,βdenotes the relaxation time.

    Employing the inverse-Laplace transformation toˉG b(s),one obtains

    The total length of the flat-nosed projectile during the impact process can be calculated as

    The following non-dimensional variables are introduced

    wherexandhare the non-dimensional lengths of the undeformed and deformed regions of the flat-nosed projectile,respectively;u1andu2are the non-dimensional velocities corresponding to the un-deformed and deformed regions of the flat-nosed projectile;τdenotes then on-dimensional time;nais the cross-sectional area ratio of the target bar to the flat nosed projectile;nmis the material parameter ratio of the flat-nosed projectile to the target bar;ξis the ratio ofnatonm;γgives the non-dimensional relaxation time.It is found that the impact response of the flat-nosed projectile will be influenced by the material parametersnm,α,andγ.When the non-dimensional relaxation timeγ→ ∞,the current model will reduce to the flat-nosed projectile striking against an elastic bar model,while the non-dimensional relaxation timeγ→∞and the material parameter rationm→0,the current model can be degenerated into the classic Taylor model.

    The non-dimensional governing equations(3),(8)–(10),and(29)can be recast to

    These equations can be numerically solved by using the finite difference method.

    3 Validation of the theoretical model

    3.1 Verification with finite element(FE)simulation

    In this section,an FE model is established to simulate the flat-nosed projectile striking onto the viscoelastic target bar.The flat-nosed projectile and the target bar are made from low-density polyethylene and epoxy,respectively.The detail material parameters are shown in Table 1.The flat-nosed projectile is modeled as a cylindrical flat-nosed projectile with an initial velocityU0=50 m/s.The diameter and length of the projectile are set asd0=28 mm andL0=0.2 m,respectively.A long stationary output bar with lengthL=2 m and diameterd=40 mm is employed to make sure that no wave reflects from the un-impacted end of the target bar during the impact process.The explicit nonlinear program ABAQUS/Explicit is used.Both the projectile and the target bar are modeled by an 8-node solid element with reduced integration(C3D8R).An element size of 0.5 mm for the flat-nosed projectile and 2 mm for the target bar are used.The present element size has been verified to be effective to produce reliable results via a mesh sensitivity analysis.The surface-to-surface contact with out friction is defined between the projectile and the target bar.The detailed FE model is shown in Fig.3.

    Table 1 Material parameters for the low-density polyethylene projectile and the epoxy target bar

    Fig.3 FE model for the flat-nosed projectile striking the viscoelastic target bar.a Whole model;b an enlarged view

    Fig.4 Stress and deformation distribution of the projectile at the instant as the impact terminates

    Table 2 Comparisons between the theoretical and FE predictions

    3.2 Verification with previous literature

    In this section,two degenerated models are given to validate the present model.In the first example,the non-dimensional relaxation timeγis set as∞in the present model.To compare with Yang’s elastic target bar model[11],the parametersnm=0.0324,na=2,andu0=0.5 are used.As shown in Fig.5,it is clear that the changing trends for the plastic straine,the deformed and un-deformed lengths of the flat-nosed projectile(handx)predicted by the two models are identical,indicating the present theoretical model can be reduced to Yang’s elastic target bar model when the viscosity of the target bar is neglected.

    The second example is the case that the parametersγ→∞andnm→0 in the present theoretical model.The dynamic responses of this degenerated model and the classic Taylor model(rigid target bar model)are compared in Fig.6.The modified momentum conservation equation is adopted in the classic Taylor model,i.e.,the coefficient 1 in the classic Taylor model is replaced by 2/3.The initial velocity of the flat-nosed projectileu0=0.5 is adopted in the comparison.One can find that the plastic straine,the lengths of the deformed and un-deformed regions of the flat-nosed projectile(handx)predicted by the two models have the same trend,which indicates that the present model can be degenerated into the rigid target bar model as the non-dimensional relaxation timeγ→ ∞and material rationm→0.

    Fig.5 Dynamic response for the present model with γ → ∞ and elastic target bar model in Ref.[11].a e versus τ;b x and h versus e

    Fig.6 Dynamic response for the present model with γ → ∞ and nm → 0 and the rigid target bar model in Ref.[1].a e versus τ;b x and h versus e

    In order to illustrate further the differences among the viscoelastic,elastic,and rigid target bar models,plastic strains,deformations and velocity histories are compared.A low-density polycarbonate cylindrical flat-nosed projectile striking on the epoxy target bar is considered here,and the material parameters are the same as those in Table 1.The non-dimensional initial velocityu0and the cross-sectional area rationaare set as 0.5 and 2,respectively.As depicted in Fig.7,the plastic straine,the length of the un-deformed region of the flat-nosed projectilex,and the velocities of the un-deformed and deformed region of the flat-nosed projectileu1andu2decrease versus time,while the length of the deformed regionhincreases with time during the impact process.These characteristic variables for the rigid,elastic,and viscoelastic bar models at two selected instants are also compared in Table 3.It can be found that the viscoelastic bar will affect the dynamic response of the flat-nosed projectile significantly.From Fig.7 and Table 3,we can find that compared with the rigid target model,the plastic strainebecomes smaller,the length of the un-deformed region of the flat-nosed projectilexbecome longer,and the velocities of the un-deformed and deformed region of the flat-nosed projectileu1andu2become larger for the elastic and viscoelastic target bar models.Meanwhile,the viscosity of the target bar will enlarge the residual velocity and reduce the plastic deformation of the flat-nosed projectile.

    Fig.7 Dynamic responses for the rigid,elastic,and viscoelastic target bar models.a e versus τ;b x versus e;c h versus e;d u1 versus e;e u2 versus e

    4 Numerical results and discussions

    The coupled effect of the viscoelastic target bar is investigated in this section.The non-dimensional initial velocityu0=0.5 and the cross-sectional area ratio of the flat-nosed projectile to the target barna=2 are used in the following numerical examples.

    Figure 8 depicts the relationship between the final impact responses of the flat-nosed projectile and the material rationm.The stiffness ratio of the two elastic springsαand the non-dimensional relaxation timeγare set as 1 and 0.01,respectively.As shown in the figure,the initial maximum straine0,the final length of the deformed region of the flat-nosed projectileh f,and the duration of impactτfdecrease by increasing the value ofnm,whereas the final length of the un-deformed region of the flat-nosed projectilex f,the final total length of the flat-nosed projectilez f,and the residual velocity of the flat-nosed projectileu fshow an opposite trend.This is because the impact process terminates at the instant when the projectile and the target bar reach a common velocity,i.e.,the residual velocity.Asn mincreases,the elastic effect of the target bar becomes more evident,which leads to a larger residual velocity of the projectile and the target bar.Accordingly,the plastic energy dissipation of the projectile decreases as the input energy of the projectile is specified,which results in a smaller deformed length of the flat-nosed projectile.In addition,the duration of impact also decreases with increasingn mbe cause the impact process will terminate at a larger value of residual velocity.The changing trend exhibited in Fig.8 is consistent with Yang’s analyses[11].

    Table 3 Comparisons of rigid,elastic and viscoelastic bar models at two selected instants

    Fig.8 Final dynamic responses of the flat-nosed projectile as a function of the material ratio nm.a e0;b x f;c h f;d z f;e u f;f τf

    The final deformation,the initial maximum plastic strain,the residual velocity,and the impact duration versus the parameterαare sketched in Fig.9.The material rationm=0.0324 and the non-dimensional relaxation timeγ=0.01 are adopted.It is obvious that the final deformation(includingh f,x f,andz f),the duration of impactτf,and the residual velocity of the flat-nosed projectileu fare sensitive toαwhenαis small,whilst they tend to be constant whenαis larger than 2.Initially,an increase can be observed for the length of the deformed region of the flat-nosed projectileh f,and the duration of the impactτf,while the final undeformed and total length of the flat-nosed projectilex fandz f,the residual velocity of the flat-nosed projectileu fshow an opposite trend.Form Fig.9a,the stiffness ratioαshows an insignificant effect on the initial maximum plastic straine0.

    通過(guò)調(diào)查,我縣玉米種植結(jié)構(gòu)調(diào)整模式主要是玉米改種雜糧的播種面積較大,其次是蔬菜,豆類,薯類,食用菌等,中藥材種植較少。近年來(lái),我縣及時(shí)調(diào)整農(nóng)業(yè)發(fā)展策略,種植業(yè)結(jié)構(gòu)不斷優(yōu)化,糧經(jīng)作物種植逐漸擴(kuò)大。雜糧類以有機(jī)谷子種植調(diào)整轉(zhuǎn)型為主;以設(shè)施農(nóng)業(yè)發(fā)展蔬菜、食用菌轉(zhuǎn)型為輔;引導(dǎo)農(nóng)民發(fā)展高效農(nóng)業(yè),種植名、特、優(yōu)、新品種,促進(jìn)農(nóng)業(yè)、農(nóng)村快速發(fā)展

    Fig.9 Final dynamic responses of the flat-nosed projectile as a function of the stiffness ratio α.a e0;b x f;c h f;d z f;e u f;f τf

    Figure 10 plots the final responses of the flat-nosed projectile versus the parameterγ,which can reflect the viscous effect of the target bar directly.Asγincreases,the viscosity of the target bar decreases.The other two parameters are defined asα=1 andnm=0.0324,respectively.As can be observed,the influence of the non-dimensional relaxation timeγon the initial maximum plastic straine0is insignificant.Whereas the final deformation(includingh f,x f,andz f)of the flat-nosed projectile,the residual velocityu fand the duration of impactτfare sensitive to the non-dimensional relaxation time parameterγ.Asγincreases,there is an increase in length of the deformed region of the flat-nosed projectileh f,and duration of impactτf,while a decrease in residual velocityu f,final un-deformed lengthx fand final total lengthz fof the flat-nosed projectile can be found.This is because if a viscoelastic target barisused,the material viscosity will cause viscous friction among molecules at a micro level and energy dissipation at a macro level,and leads to wave attenuation and dispersion during propagation.As the in put energy of the projectile is fixed,the residual velocity of the projectile and target bar increases as the viscosity of the target bar increases.Similar to the analysis in Fig.8,both the plastic energy dissipated by the projectile and the duration of impact will decrease when the residual velocity becomes larger.In this case,we can find the deformed length of the projectile and the duration of impact increase with increasingγin Fig.10.The result approaches an elastic case asγ→∞.

    Fig.10 Final dynamic responses of the flat-nosed projectile as a function of the non-dimensional relaxation time γ.a e0;b x f;c h f;d z f;e u f;f τf

    5 Conclusions

    An extended Taylor impact model based on the classic Taylor impact theory in conjunction with the wave propagation analysis in the viscoelastic target bar is proposed.The influence of the viscoelastic target bar on the Taylor impact of the flat-nosed projectile is investigated in detail.The FE simulation is also carried out to verify the present theoretical model and an excellent agreement is achieved.The time histories of the flat-nosed projectile based on the rigid,elastic,and viscoelastic target bar models are compared to illustrate the influence of the viscoelastic target bar.Several special cases are displayed,which demonstrate that the current theoretical model can be degenerated into the elastic and rigid target bar models.The final impact responses of the flat-nosed projectile are also analyzed in detail.Some concluding remarks can be drawn:

    (1)The present model can be deduced to a flat-nosed projectile striking onto an elastic bar model as the viscosity of the output target bar is neglected.Meanwhile,the classic Taylor model can also be treated as a special case of the present model.

    (2)The material ratio of the target bar to the flat-nosed projectile,the stiffness ratio of the two springs,and the relaxation time of the target bar show important influence on the final dynamic responses of the flat-nosed projectile.

    (3)The viscoelastic effect of the target bar can enlarge the residual velocity and reduce the impact duration and the plastic deformation of the flat-nosed projectile significantly.

    From the present study,it is suggested that the viscoelastic effect of the output bar should not be neglected and a careful estimation is needed in the Taylor-cylinder Hopkinson impact test of low-density materials.

    AcknowledgementsThe work was supported by the National Natural Science Foundation of China(Grant 11472034).

    1.Taylor,G.:The use of flat-ended projectiles for determining dynamic yield stress.I.Theoretical considerations.Proc.R.Soc.Lond.A 194,289–299(1948)

    2.Whiffin,A.C.:The use of flat-ended projectiles for determining dynamic yield stress.II.Tests on various metallic materials.Proc.R.Soc.Lond.A 194,300–322(1948)

    3.Hawkyard,J.B.:A theory for the mushrooming of flat-ended projectile simpinging on a flatrigid anvil,using energy considerations.Int.J.Mech.Sci.11,313–333(1969)

    4.Lee,E.H.,Tupper,S.J.:Analysis of plastic deformation in a steel cylinder striking a rigid target.Trans.ASME J.Appl.Mech.21,63–70(1954)

    5.Hashmi,M.S.J.,Thompson,P.J.:A numerical method of analysis for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil.Int.J.Mech.Sci.19,273–283(1977)

    6.Hutchings,I.M.:Estimation of yield stress in polymers at high strain-rates using G.I.Taylor’s impact technique.J.Mech.Phys.Solids 26,289–301(1978)

    7.Wang,B.,Zhang,J.,Lu,G.:Taylor impact test for ductile porous materials–part 2:experiments.Int.J.Impact Eng.28,499–511(2003)

    8.Wang,L.L.,Yang,L.M.,Ding,Y.Y.:On the energy conservation and critical velocities for the propagation ofa“steady-shock”wave in a bar made of cellular material.Acta Mech.Sin.29,420–428(2013)

    9.Critescu,N.,Bell,J.F.:On unloading in the symmetrical impact of two aluminum bars.In:Inelastic Behavior of Solids,397–422.McGraw-Hill,New York(1970)

    10.Willmott,G.R.,Radford,D.D.:Taylor impact of glass rods.J.Appl.Phys.97,093522(2005)

    11.Yang,J.,Luo,M.,Chen,L.:Effect of elastic target material on Taylor model.Arch.Appl.Mech.80,929–947(2010)

    12.Lopatnikov,S.L.,Gama,B.A.,Haque,M.J.,et al.:Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment.Compos.Struct.61,61–71(2003)

    13.Liu,H.,Zhang,Z.,Liu,H.,et al.:Effect of elastic target on Taylor-Hopkinson impact of low-density foam material.Int.J.ImpactEng.94,109–119(2016)

    14.Turgutlu,A.,Al-Hasasni,S.,Akyurt,M.:Impact deformation of polymeric projectiles.Int.J.Impact Eng.18,119–127(1996)

    15.Sarva,S.,Mulliken,A.D.,Boyce,M.C.:Mechanics of Taylor impact testing of polycarbonate.Int.J.Solids Struct.44,2381–2400(2007)

    16.Wang,L.,Labibes,K.,Azari,Z.,et al.:Generalization of split Hopkinson bar technique to use viscoelastic bars.Int.J.Impact Eng.15,669–686(1994)

    17.Zhao,H.,Gary,G.:A new method for the separation of waves.Application to the SHPB technique for an unlimited duration of measurement.J.Mech.Phys.Solids 45,1185–1202(1997)

    18.Zhao,H.,Gary,G.,Klepaczko,J.:On the use of a viscoelastic split Hopkinson pressure bar.Int.J.Impact Eng.19,319–330(1997)

    19.Bacon,C.:An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar.Exp.Mech.38,242–249(1998)

    20.Benatar,A.,Rittel,D.,Yarin,A.L.:Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods.J.Mech.Phys.Solids 51,1413–1431(2003)

    21.Bussac,M.N.,Collet,P.,Gary,G.,et al.:Viscoelastic impact between a cylindrical striker and a long cylindrical bar.Int.J.Impact Eng.35,226–239(2008)

    22.Assie,A.E.,Eltaher,M.A.,Mahmoud,F.F.:Modeling of viscoelastic contact-impact problems.Appl.Math.Model.34,2336–2352(2010)

    23.Othman,R.:On the use of complex Young’s modulus while processing polymeric Kolsky-Hopkinson bars’experiments.Int.J.Impact Eng.73,123–134(2014)

    24.Butt,H.S.U.,Xue,P.,Jiang,T.Z.,et al.:Parametric identification for material of viscoelastic SHPB from wave propagation data incorporating geometrical effects.Int.J.Mech.Sci.91,46–54(2015)

    25.Butt,H.S.U.,Xue,P.:Determination of the wave propagation coefficient of viscoelastic SHPB:significance for characterization of cellular materials.Int.J.Impact Eng.74,83–91(2014)

    26.Jiang,T.Z.,Xue,P.,Butt,H.S.U.:Pulse shaper design for dynamic testing of viscoelastic materials using polymeric SHPB.Int.J.Impact Eng.79,45–52(2015)

    27.Harrigan,J.J.,Ahonsi,B.,Palamidi,E.,et al.:Experimental and numerical investigations on the use of polymer Hopkins on pressure bars.Philos.Trans.R.Soc.A 372,20130201(2014)

    28.Aleyaasin,M.,Harrigan,J.J.:Wave dispersion and attenuation in viscoelastic polymeric bars:analysing the effect of lateral inertia.Int.J.Mech.Sci.52,754–757(2010)

    29.Ahonsi,B.,Harrigan,J.J.,Aleyaasin,M.:On the propagation coefficient of longitudinal stress waves in viscoelastic bars.Int.J.Impact Eng.45,39–51(2012)

    30.Qian,W.:Penetration Mechanics.National Defense Industry Press,Beijing(1984).(in Chinese)

    31.Luyt,A.S.,Molef i,J.A.,Krump,H.:Thermal,mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites.Polym.Degrad.Stab.91,1629–1636(2006)

    猜你喜歡
    轉(zhuǎn)型農(nóng)業(yè)發(fā)展
    國(guó)內(nèi)農(nóng)業(yè)
    國(guó)內(nèi)農(nóng)業(yè)
    國(guó)內(nèi)農(nóng)業(yè)
    人口轉(zhuǎn)型為何在加速 精讀
    擦亮“國(guó)”字招牌 發(fā)揮農(nóng)業(yè)領(lǐng)跑作用
    邁上十四五發(fā)展“新跑道”,打好可持續(xù)發(fā)展的“未來(lái)牌”
    轉(zhuǎn)型
    童話世界(2018年13期)2018-05-10 10:29:31
    砥礪奮進(jìn) 共享發(fā)展
    改性瀝青的應(yīng)用與發(fā)展
    北方交通(2016年12期)2017-01-15 13:52:53
    灃芝轉(zhuǎn)型記
    中文字幕另类日韩欧美亚洲嫩草| 婷婷亚洲欧美| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 一进一出抽搐gif免费好疼| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| 亚洲av电影在线进入| 人成视频在线观看免费观看| 午夜老司机福利片| 国产高清videossex| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 国产亚洲精品第一综合不卡| 国产一区二区在线av高清观看| 欧美zozozo另类| 国产视频内射| 91九色精品人成在线观看| 日本黄色视频三级网站网址| 黄色女人牲交| 免费搜索国产男女视频| 人妻久久中文字幕网| 一区二区三区国产精品乱码| 12—13女人毛片做爰片一| 在线永久观看黄色视频| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 国产精品乱码一区二三区的特点| 男人舔奶头视频| 亚洲熟妇熟女久久| 99久久国产精品久久久| 亚洲精品av麻豆狂野| 老司机在亚洲福利影院| 国产成人系列免费观看| 色综合站精品国产| 两人在一起打扑克的视频| 50天的宝宝边吃奶边哭怎么回事| 一二三四在线观看免费中文在| 亚洲全国av大片| 欧美激情 高清一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国内精品久久久久久久电影| 亚洲中文日韩欧美视频| 午夜视频精品福利| 色播在线永久视频| 热re99久久国产66热| 变态另类成人亚洲欧美熟女| 一区二区日韩欧美中文字幕| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av高清一级| 欧美乱妇无乱码| 正在播放国产对白刺激| 久久国产精品影院| 亚洲熟妇中文字幕五十中出| 久热这里只有精品99| 99国产综合亚洲精品| 91国产中文字幕| 亚洲国产精品久久男人天堂| 麻豆成人av在线观看| 亚洲自拍偷在线| 日韩欧美免费精品| 亚洲欧美精品综合久久99| 丰满人妻熟妇乱又伦精品不卡| 国产又黄又爽又无遮挡在线| 国产精品野战在线观看| 一级a爱视频在线免费观看| 亚洲自拍偷在线| 日本免费a在线| 国产单亲对白刺激| 手机成人av网站| 男女下面进入的视频免费午夜 | 成年人黄色毛片网站| 国产精品永久免费网站| 又紧又爽又黄一区二区| 午夜免费观看网址| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 国产成人影院久久av| 欧美国产日韩亚洲一区| 国产精品1区2区在线观看.| 国产在线观看jvid| 欧美成人性av电影在线观看| 两人在一起打扑克的视频| 午夜日韩欧美国产| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品综合一区在线观看 | 亚洲,欧美精品.| 一边摸一边抽搐一进一小说| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| or卡值多少钱| 免费看日本二区| 日韩精品中文字幕看吧| 丰满的人妻完整版| 在线观看日韩欧美| 欧美绝顶高潮抽搐喷水| 美女午夜性视频免费| 俄罗斯特黄特色一大片| 夜夜夜夜夜久久久久| 91在线观看av| 在线永久观看黄色视频| 午夜福利视频1000在线观看| www国产在线视频色| 国产成+人综合+亚洲专区| 成人国产一区最新在线观看| 在线永久观看黄色视频| 午夜精品在线福利| 国产亚洲精品一区二区www| 色在线成人网| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 欧美日韩精品网址| 草草在线视频免费看| 亚洲精华国产精华精| 黄色丝袜av网址大全| 日本成人三级电影网站| 一二三四社区在线视频社区8| 久久久久国内视频| 精品高清国产在线一区| 成人三级黄色视频| 久久久久九九精品影院| 免费观看精品视频网站| 精品人妻1区二区| 18禁美女被吸乳视频| 精品久久蜜臀av无| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 日本 欧美在线| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 国产av不卡久久| 免费在线观看亚洲国产| 亚洲一区中文字幕在线| 国产不卡一卡二| 男女之事视频高清在线观看| 成年人黄色毛片网站| 精品日产1卡2卡| 色婷婷久久久亚洲欧美| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 中文字幕最新亚洲高清| 久久婷婷成人综合色麻豆| 在线天堂中文资源库| 欧美人与性动交α欧美精品济南到| 91老司机精品| 亚洲国产精品sss在线观看| 欧美成人性av电影在线观看| 欧美久久黑人一区二区| 国内少妇人妻偷人精品xxx网站 | 美女高潮喷水抽搐中文字幕| 久久香蕉激情| 777久久人妻少妇嫩草av网站| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久人妻精品电影| 狂野欧美激情性xxxx| 欧美精品啪啪一区二区三区| 一区福利在线观看| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 亚洲电影在线观看av| 男人舔女人下体高潮全视频| 久久久精品欧美日韩精品| 在线看三级毛片| 老司机在亚洲福利影院| 变态另类丝袜制服| 日本在线视频免费播放| 亚洲专区中文字幕在线| 亚洲人成网站高清观看| 91九色精品人成在线观看| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 99热这里只有精品一区 | 国产精品亚洲av一区麻豆| 手机成人av网站| 哪里可以看免费的av片| 亚洲成a人片在线一区二区| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 日本精品一区二区三区蜜桃| 这个男人来自地球电影免费观看| 色尼玛亚洲综合影院| 国产亚洲av高清不卡| 国产av不卡久久| 欧美黄色淫秽网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲avbb在线观看| 嫩草影视91久久| 欧美在线一区亚洲| netflix在线观看网站| 久久狼人影院| 亚洲成人久久爱视频| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 亚洲色图 男人天堂 中文字幕| 国产激情欧美一区二区| 午夜福利欧美成人| 在线观看免费午夜福利视频| 白带黄色成豆腐渣| 免费看美女性在线毛片视频| 两个人看的免费小视频| 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 色播在线永久视频| 999久久久国产精品视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久香蕉激情| 黑人巨大精品欧美一区二区mp4| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 黄色成人免费大全| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观 | 久久久久久免费高清国产稀缺| 国产一区二区在线av高清观看| 国产国语露脸激情在线看| 亚洲在线自拍视频| 久久久国产欧美日韩av| 久久性视频一级片| av免费在线观看网站| 女生性感内裤真人,穿戴方法视频| 欧美色欧美亚洲另类二区| 一级a爱视频在线免费观看| 亚洲久久久国产精品| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av| 国产av一区二区精品久久| 黄片大片在线免费观看| 99久久99久久久精品蜜桃| 一区福利在线观看| 热99re8久久精品国产| 美女国产高潮福利片在线看| 亚洲精品粉嫩美女一区| 日本在线视频免费播放| 午夜影院日韩av| 男人操女人黄网站| 亚洲午夜精品一区,二区,三区| 免费电影在线观看免费观看| 国产成人av教育| 国产亚洲精品久久久久久毛片| 久久久水蜜桃国产精品网| 婷婷丁香在线五月| 色在线成人网| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 国产亚洲精品久久久久5区| 国产精品一区二区免费欧美| 国产一区在线观看成人免费| 国产真实乱freesex| 又黄又爽又免费观看的视频| 亚洲精品国产精品久久久不卡| 性欧美人与动物交配| 在线观看66精品国产| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9| 国产又黄又爽又无遮挡在线| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 亚洲黑人精品在线| 中文字幕久久专区| 2021天堂中文幕一二区在线观 | 久久精品亚洲精品国产色婷小说| 婷婷精品国产亚洲av在线| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 长腿黑丝高跟| 国产亚洲欧美98| 女同久久另类99精品国产91| АⅤ资源中文在线天堂| 99久久国产精品久久久| 搡老熟女国产l中国老女人| 国产男靠女视频免费网站| www.999成人在线观看| 嫁个100分男人电影在线观看| 老司机福利观看| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 久久人妻av系列| 国产爱豆传媒在线观看 | 国产三级在线视频| 成在线人永久免费视频| 午夜老司机福利片| 超碰成人久久| 精品国产一区二区三区四区第35| 亚洲狠狠婷婷综合久久图片| 真人一进一出gif抽搐免费| 黄色丝袜av网址大全| 亚洲色图av天堂| 91麻豆精品激情在线观看国产| 亚洲国产精品成人综合色| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 国产一区在线观看成人免费| 男女视频在线观看网站免费 | 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情综合另类| 久久久久久免费高清国产稀缺| 国产亚洲精品久久久久5区| 可以在线观看毛片的网站| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 老汉色∧v一级毛片| 成在线人永久免费视频| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 亚洲五月天丁香| 欧美性长视频在线观看| 叶爱在线成人免费视频播放| 国产精品电影一区二区三区| 88av欧美| 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| 国产又黄又爽又无遮挡在线| av在线播放免费不卡| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 欧美乱妇无乱码| 亚洲熟女毛片儿| 亚洲精华国产精华精| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久久久电影| 老汉色∧v一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 老熟妇乱子伦视频在线观看| 一夜夜www| 9191精品国产免费久久| 天堂√8在线中文| 国产在线精品亚洲第一网站| 在线永久观看黄色视频| svipshipincom国产片| 亚洲欧美日韩无卡精品| 老司机午夜十八禁免费视频| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 亚洲成人久久性| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看 | 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 久久热在线av| 久久久久久久久久黄片| xxx96com| 哪里可以看免费的av片| 黑人欧美特级aaaaaa片| 草草在线视频免费看| 国产v大片淫在线免费观看| 亚洲真实伦在线观看| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 男人的好看免费观看在线视频 | 国内揄拍国产精品人妻在线 | 欧美一区二区精品小视频在线| 免费看十八禁软件| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 精品国产国语对白av| 男女床上黄色一级片免费看| 亚洲人成网站高清观看| 国产成年人精品一区二区| 天堂影院成人在线观看| 国产一卡二卡三卡精品| 久久人妻av系列| 亚洲成av片中文字幕在线观看| 国产精品永久免费网站| 国产精品久久久久久精品电影 | 久久99热这里只有精品18| 成人亚洲精品av一区二区| 国产在线观看jvid| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 桃色一区二区三区在线观看| 欧美精品亚洲一区二区| 久久香蕉国产精品| 国产成人av激情在线播放| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 午夜影院日韩av| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 99热这里只有精品一区 | 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| netflix在线观看网站| 免费高清在线观看日韩| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 日韩国内少妇激情av| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 免费电影在线观看免费观看| 亚洲在线自拍视频| a级毛片a级免费在线| 亚洲国产欧美网| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| av有码第一页| 国产亚洲精品av在线| 黄色视频,在线免费观看| 91九色精品人成在线观看| 极品教师在线免费播放| 国产成+人综合+亚洲专区| 制服丝袜大香蕉在线| 国产免费男女视频| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女| 禁无遮挡网站| 亚洲av成人不卡在线观看播放网| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 欧美不卡视频在线免费观看 | 可以在线观看的亚洲视频| ponron亚洲| 成年免费大片在线观看| 99re在线观看精品视频| 在线播放国产精品三级| 88av欧美| 国产亚洲精品av在线| 中文字幕另类日韩欧美亚洲嫩草| 搞女人的毛片| 国产成人影院久久av| 国产午夜福利久久久久久| 最近在线观看免费完整版| 日韩免费av在线播放| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 成人手机av| 99久久久亚洲精品蜜臀av| 99久久国产精品久久久| 无遮挡黄片免费观看| 老司机福利观看| 免费电影在线观看免费观看| 国产精品电影一区二区三区| 精品久久久久久久毛片微露脸| 亚洲国产欧美网| 欧美日韩乱码在线| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 国产精品美女特级片免费视频播放器 | 亚洲欧美精品综合一区二区三区| 大型av网站在线播放| 变态另类成人亚洲欧美熟女| 国产亚洲av嫩草精品影院| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区| 丁香欧美五月| 久久久久久久久免费视频了| 哪里可以看免费的av片| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 亚洲专区国产一区二区| 青草久久国产| 久热爱精品视频在线9| av视频在线观看入口| 久久精品亚洲精品国产色婷小说| 日本a在线网址| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 午夜免费成人在线视频| 精品日产1卡2卡| 国产成年人精品一区二区| 看片在线看免费视频| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 麻豆av在线久日| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 白带黄色成豆腐渣| 亚洲精华国产精华精| 久热爱精品视频在线9| 一本一本综合久久| 欧美av亚洲av综合av国产av| 在线播放国产精品三级| 久久婷婷人人爽人人干人人爱| 国产日本99.免费观看| av中文乱码字幕在线| 久久午夜亚洲精品久久| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 国产视频一区二区在线看| 99精品久久久久人妻精品| 国产三级在线视频| 最新美女视频免费是黄的| av有码第一页| www日本在线高清视频| 国产高清有码在线观看视频 | 黄色成人免费大全| 三级毛片av免费| 久热这里只有精品99| 午夜免费鲁丝| 午夜亚洲福利在线播放| 久久香蕉精品热| 精品一区二区三区四区五区乱码| 亚洲国产毛片av蜜桃av| 亚洲第一电影网av| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 18美女黄网站色大片免费观看| 中文亚洲av片在线观看爽| 99riav亚洲国产免费| 日本黄色视频三级网站网址| 很黄的视频免费| 免费av毛片视频| 黑人操中国人逼视频| 亚洲国产精品成人综合色| 身体一侧抽搐| 午夜福利成人在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲一区二区三区不卡视频| 久久久久国内视频| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 国产精品一区二区三区四区久久 | 欧美激情 高清一区二区三区| 啦啦啦观看免费观看视频高清| 91成年电影在线观看| 手机成人av网站| 国产成人av教育| 国产欧美日韩一区二区三| 中文字幕av电影在线播放| 欧美日韩亚洲综合一区二区三区_| 欧美不卡视频在线免费观看 | 欧美大码av| 99国产综合亚洲精品| 色老头精品视频在线观看| 后天国语完整版免费观看| 波多野结衣av一区二区av| 国产精品永久免费网站| 久久久国产精品麻豆| 日韩国内少妇激情av| 成人手机av| 无遮挡黄片免费观看| 久久国产精品人妻蜜桃| 久久中文字幕人妻熟女| 久久香蕉精品热| 少妇的丰满在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 十分钟在线观看高清视频www| 午夜a级毛片| 看黄色毛片网站| 高清毛片免费观看视频网站| 午夜福利在线在线| 久久人妻av系列| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片午夜丰满| 久久精品夜夜夜夜夜久久蜜豆 | 国内精品久久久久精免费| 啦啦啦 在线观看视频| 国产成+人综合+亚洲专区| 俺也久久电影网| 亚洲第一av免费看| 久久 成人 亚洲| 18禁裸乳无遮挡免费网站照片 | 国产精华一区二区三区| 男女午夜视频在线观看| 在线播放国产精品三级| or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久午夜电影| 欧美不卡视频在线免费观看 | 久久久久久久久免费视频了| 天天添夜夜摸| 老汉色∧v一级毛片| 麻豆成人午夜福利视频| 好男人电影高清在线观看| 国产成人精品久久二区二区免费| 久久久久久国产a免费观看| 午夜激情av网站| 精品无人区乱码1区二区| 香蕉av资源在线| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频1000在线观看| 在线视频色国产色| 国产激情欧美一区二区| 一个人观看的视频www高清免费观看 | 日本一区二区免费在线视频| 久久精品aⅴ一区二区三区四区|