• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New true-triaxial rock strength criteria considering intrinsic material characteristics

    2018-03-19 02:07:00QiangZhangChengLiXiaoweiQuanYanningWangLiyuanYuBinsongJiang
    Acta Mechanica Sinica 2018年1期

    Qiang Zhang·Cheng Li·Xiaowei Quan·Yanning Wang·Liyuan Yu·Binsong Jiang

    1 Introduction

    Rock strength is the foundation for rock engineering,including tunnel support design,stability evaluation of rock slopes,and estimation of the bearing capacity of the rocks.The classic Mohr–Coulomb(MC)[1],Griffith[2],and Hoek–Brown(HB)[3]criteria are mainly used for theoretical and numerical simulations,due to their simple expression forms.Most of the triaxial test data are located on the generalized compression meridian curve(σ1≥σ2=σ3).Considering the strength character under high confining pressure,You[4]proposed the exponent strength criterion(EP)for conventional stress state with an exponent function form.A significant disadvantage of these criteria,which are classified as 2D criteria in this paper,is that the intermediate and minimum principal stresses are equal,while the actual in-situ rock is normally subjected to an orthotropic stress state where the three principal stresses are different.For a givenσ3,a large number of tri-axial tests show that,asσ2increases,the rock strength firstly increases to a certain value,then gradually decreases[5–9].

    In the present study,various types of 3D strength criteria including three orthotropic principal stresses are proposed.Those criteria mainly aim at neither the meridian function nor the deviatoric function.Hosein[10]proposed a new polyaxial criterion by introducingσ2,which had the similar expression form as the EP criterion.Lu and Du[11]proposed a nonlinear 3D criterion by employing a power meridian curve,and the intermediate principal stress was considered in the same way as SMP.You[4]improved the EP criterion to a true triaxial criterion(TT)by introducing intermediate principal stress effect with another exponent function.Unfortunately,TT criterion shows unconvex at the extension corner,and the additional two strength parameters has no physical meaning.The second type modifies the commonly used 2D criteria consideringσ2,while the most commonly used MC and HB criteria are usually employed.For MC criterion:the modified MC criteria of MCWW and MCJP were proposed by considering the curve transition form on the deviatoric plane by Zhang et al.[12]and Lee et al.[13],respectively,and Singh et al.[14]derived the piecewise expression of the modified MC criterion considering the ductile character under high confining pressure.Meanwhile,Yu[15]proposed the linear unified strength criterion.For HB criterion:the HBWW[13],Z–Z[16],3D HB[17,18],and HBMN[19]criteria are generally used for comparison with new proposed criteria.These proposed criteria were validated using true triaxial test data collected from previous studies,but some of the test data were incomplete or incorrect as they came from secondary sources,which may influence the accuracy[20–23].

    The former strength criteria mainly focus on neither the deviatoric nor the meridian plane.However,a suitable strength criterion should depend on both the Lode angle dependence function and the meridian function.However,none of those proposed criteria show significant advantages over others.Therefore,with the consideration of intrinsic rock strength characterization,this paper proposed the new criteria with more suitable expression form of Lode angle dependence function and deviatoric function.Finally,14 groups of original triaxial test data of different types of rock collected from previous studies are employed to validate the proposed criteria.

    2 Description of strength criterion

    2.1 General class of strength criteria

    The strength criterion can be expressed in the principle stress space.Considering the symmetry about the hydrostatic axis,Roscoe invariantspandqare employed to describe the space relation between the strength surface and stress state.The principal stressσ1≥σ2≥σ3(compression stress is denoted as positive and tensile stress negative)can be expressed as follows

    In this way,the strength surface can be expressed as functions of the former three variables,and can be expressed in a unified form[24],as shown

    wheref(p)andL(θ)are functions ofpandθ,respectively.

    2.2 Meridian function

    2.2.1 Classic 2D strength criteria

    Although various expression functions were employed to describe rock strength characters,the meridian curves can be classified as linear,parabolic and exponent functions.In this paper,the 2D criteria of MC,HB,and EP are employed to represent the commonly used meridian forms.

    (1)MC criterion

    Due to its simple expression form,the linear MC criterion is widely used for geotechnical materials,and Fig.1 shows the failure surface on the meridian and deviatoric plane.In principal stress space,it can be formulated as follows

    Fig.1 Failure surface on the meridian and deviatoric plane of MC criterion.a Meridian plane.b Deviatoric plane

    Fig.2 Failure surface on the meridian and deviatoric plane of HB criterion.a Meridian plane.b Deviatoric plane

    Fig.3 Failure surface on the meridian and deviatoric plane of EP criterion.a Meridian plane.b Deviatoric plane

    (2)HB criterion

    Based on a large number of test data,Hoek and Brown proposed the empirical HB criterion,whose strength parameters are based on the geological strength index(GSI).The trace of compression and extension on the meridian plane clearly show curve characteristics,and the deviatoric trace is approximately linear,as shown in Fig.2.In the principal stress space,the generalized form can be formulated as follows

    wherefHB(σ3)=σc(miσ3/σc+s)α,σcis the uniaxial compression strength,m i,s,andαare strength parameters.

    (3)EP criterion

    The exponent EP criterion for conventional stress state is proposed by You considering the difference between the generalized compression and extension strength with the same hydrostatic pressure.The failure surface on the meridian and deviatoric plane is shown in Fig.3.In a principal stress space,it can be expressed by

    Clearly,Figs.1 and 2 denote that the trace of former three criteria remains(approximately)linear on the deviatoric plane.Meanwhile,the shape of HB and MC criteria keep self-similar with the increasing hydrostatic pressure.The ratio between compression and extension trends to be 1 when hydrostatic pressure is big enough for HB and EP criteria.But that of MC criterion remains a constant of(3+sin?)/(3? sin?).Unfortunately,the difference between generalized compression and extension strength monotonously increase as hydrostatic pressure for HB and MC criteria.

    However,both the compression and extension meridian trace remain curved lines for EP criterion,the difference between the generalized compression trace and extension trace undergoing a process of first increasing then decreasing.The hydrostatic pressureIc,where the difference between compression and extension has the biggest value,can be easily adjusted by parameterK.Moreover,the compression and extension strength tends to be equal when the hydrostatic pressure is sufficiently high.So,EP criterion can well describe the rock strength characters on meridian plane.So,the meridian trace function of EP is employed in this paper.

    2.2.2 Meridian function of EP[19]

    In thep?qspace,the Roscoe invariantspandqare functions of the first and second invariants of the stress tensors,respectively.For triaxial stress state,they can be written as follows

    On the generalized compression and extension meridian planes,σ2=σ3andσ2=σ1,respectively.Therefore,the Roscoe invariantspandqcan be rewritten as follows

    The compression and extension traces on the meridian plane can be expressed by a tangent modulus.substituting Eq.(7)into Eq.(5),the following slopes can be obtained

    where the superscriptsdenotes secant values,and the subscriptscandedenote triaxial compression and extension,respectively.The tangent modulus of meridian curves can be obtained by differentiation

    Fig.4 Trace of meridian curves and its representation by tangent

    which leads to:

    Figure 4 shows the tangent line of compression and extension meridian plane forEP criterion in thep?qspace.Based on Eqs.(5),(11),and(12),the intersection between the tangent line andpaxial can be obtained as

    In this way,the triaxial compression and extension meridian curves can be formulated by tangent moduli as

    2.3 Deviatoric function

    According to the stability postulate of Drucker,the strength criterion should satisfy requirements for aspect ratio,continuous,differentiable and convex.At least,the continuity and convexity must be satisfied for stable materials.However,most of the generally used 2D criteria are singular on the compression and extension meridian planes.This may induce convergence problems for numerical simulation.Moreover,only the maximum and minimum principal stresses are employed without considering the intermediate principal stress effect for the former 2D criteria.Lots of experiments show thatσ1experiences firstly increase then decrease process asσ2varying fromσ3toσ1.It also means that radiusqgenerally decrease fromqctoqtalong a curved path,but not(approximate)linear forms,on the deviatoric plane.In order to represent the intermediate principal stress effect,various Lode angle dependence functions were proposed[15,25–30].Among those Lode angle dependence functions,three widely used functions are unconditionally convex and smooth for 0.5≤qt/qc≤1.0 without introducing additional parameters as shown in Eqs.(15)–(17).Clearly,LMNis formed using the pricewise trigonometric function,which is smooth and continuous atθ= ± π/6.Meanwhile,LWWandLYMHare derived by mapping a quarter of the elliptic function to?π/6≤θ≤ π/6,andLWWandLYMHare complementary functionsto each other,which will be illustrated in the following section.All of the above three Lode angle dependence functions have only two basic parameters,i.e.Lodeangleand extension–compression ratio,and the extension–compression ratio can bedetermined by its intersection points with the meridian plane.Moreover,none of other strength parameters were introduced.The deviatoric cross sections of the three criteria are shown in Fig.5,and they are employed to modify the EP criterion in the following section.

    Fig.5 Deviatoric cross sections of Lode angle dependence functions L MN,L WW,and L YMH

    Fig.6 Modifying method of classic criteria with Lode angle dependence function

    3 Proposed new true triaxial strength criterion

    3.1 Modifying method

    Figure 6 illustrates the modifying method with the common 2D criterion and Lode angle dependence function.For the commonly used strength criteria,the radiusqof the strength surface on the deviatoric plane approximately decreases linearly from the compression to extension state,without considering the effect ofσ2.As formerly mentioned,the radiusqon the deviatoric plane indirectly reflects the effect ofσ2.For a triaxial stresses state,the invariant valueqshould be located betweenqc(σ1≥σ2=σ3)andqt(σ1=σ2≥σ3)with the samepandθ,and it also should be changed fromqctoqtas the lode angle changing from?π/6 to π/6.Moreover,Eq.(13)shows that the traces of the generalized compression and extension state have the same intersection with thepaxis as the sameσ3.In this way,the actualvalueqcan be simply calculated by tangent modulus and hydrostatic pressure.And the actual tangent modulus should lies betweenqtandqc,which is determined by Lode angle dependence functions of Eqs.(15)–(17).Then,by connecting the generalized compression and extension states on the deviatoric plane along Lode angle dependence function,the intermediate principal stress effect would be included.When the transition from compression to extension occurs,the modified criteria can be formulated by submitting the Lode angle dependence function and meridian plane into Eq.(2).

    Fig.7 Failure surface on the principal space and deviatoric plane of EPWW criterion.a Principal stress space.b Deviatoric plane

    Figure 7 shows the EPWW criterion in both principal stresses space and deviatoric plane,in which the effects of minimum principal stress,hydrostatic pressure,and intermediate effect are clearly shown.Similarly,the new proposed strength criterion can also be obtained by rotating the tangent along the Lode angle dependence function from the extension meridian curve to the compression meridian curve.In this way,it can be formulated as follows

    whereˉLis the complementary function ofL,which should satisfy

    3.2 Relation between Fc and Fe

    In view of the Lode angle dependence functions of Eqs.(16)and(17),they have similar expression forms.The complementary functionLWWcan be expressed as follows

    By submitting Eq.(21)into Eq.(19),the modified criterion based on the Lode angle dependence functionˉLWWand extension meridian curve can be formulated as follows

    Using Eq.(21)andˉβ,Eq.(22)can be rewritten as follows

    4 Identification of modified criteria

    In this section,14 different types of rock triaxial test data are employed to validate the proposed true triaxial strength criteria.All of these test data were collected from the original sources,as listed in Table1.It should be noted that the average strength ofσ1 was employed for groups of data with the sameσ2 andσ3.

    4.1 Evaluation method for best- fitting strength parameters

    The proposed true triaxial criteria have the same strength parameters as the 2D ones.In order to illustrate the reasonable of proposed true triaxial strength criteria(EPWW,EPMN,and EPYMH),the modification of MC and HB by selected three Lode angle dependence functions are carried out in the same way,and also analyzed using 14 types of rock.Equations(18)and(19)are non-linear explicit functions ofp,q,andθ.Therefore,a grid search method is employed to determine the best-fitting strength parameters for each criterion.The accuracy of fitting to the tested triaxial data may be evaluated by the residual standard deviation(RSD),defined by the following

    4.2 Discussion on the best-fitting results

    The RSD of each group criteria for the 14 types of rock are shown in Fig.8.It should be noted that the comparison of the RSD values between the different rock types bears little meaning for their different strength degrees.The proposed true triaxial criteria significantly decrease the RSD foral most all of the rock types in comparison to the 2D criteria for MC,HB,and EP.

    Tables 2–4 show the calculated results for the best-fitting strength parameters of the 14 types of rock.Among the three Lode angle dependence functions,eight types of rock have the minimum RSD values based on theLWWLode angle dependence function for the MC group criteria,six for both the HB group criteria,and 12 for the EP group criteria.This demonstrates that the WW Lode angle dependence function has more reasonable forms for rock strength criteria than the MNand YMHLode angle dependence func-tions.At the same time,EPWW criterion has the lowest RSD for Solnhofen limestone,Shirahama sandstone,KTB amphibolite,Mizuho trachyte,Yamaguchimarble,Manazuru andesite,Orikabe monzonite,Apache Leap tuff,and Maha Sarakhamsalt.Additionally,MCWWhasthelowest RSDfor Yuubari shale,and HBWW has the lowest RSD for Westerly granite and In ad a granite.Thus the lowest RSD group of rock denotes that EP has a more suitable meridian expression for rock as they have the same Lode angle dependence functionLWW.Furthermore,among all of the three group criteria,the EPWW criterion results are the lowest among the RSD values for all rock types,except Yuubari shale for MCWW,Dense marble for HBYMH,Westerly granite and Inadagranite for HBWW,and Dunham dolomite for EPYMH.In this way,we can conclude that the EP criterion and WW Lode angle dependence function show more suitable states among the three commonly used 2D criteria and three Lode angle dependence functions.

    Table 1 Rock types and data source

    Fig.8 Prediction errors for MC,HB,EP,and their generalized 3D forms.a MC,MCWW,MCMN,and MCYMH.b HB,HBWW,HBMN,and HBYMH.c EP,EPWW,EPMN,and EPYMH

    In Fig.9,the strength predictions for the 14 types of rock,based on the EPWW criterion,are compared with the experimentaldata in theσ1?σ2plane.In the figure,the symbols represent the actual experimental data,while the curves are the prediction values.The experimental data with the sameσ3are listed with the same symbols.The effect of the intermediate principal stress on the rock strength is clearly shown.It is evident that the proposed new criteria fit the experimental data quite well.In particular,the predictions for Shirahama sandstone,Yuubari shale,Mizuho trachyte,Yamaguchi marble,and Maha Sarakham salt are all very accurate.Additionally,the EPWW criterion shows accurate prediction values forthe lowervalues ofσ3,such as Dunham dolomite,Solnhofen limestone,Mizuho trachyte,Yamaguchi marble,Manazuru andesite,and Inada granite.The prediction uniaxial compression strength by EPWW shows high accuracy with the experiment values,as the errors of the uniaxial compression between the actual experiments and prediction values are<1.5%for Dunham dolomite,Solnhofen limestone,Mizuho trachyte,Manazuru andesite,and Apache Leap tuff.Obviously,among the twelve compared criteria,EPWW criterion results in much lower RSD,and the bestfitting strength parameters are more reasonable.

    Fig.8 continued

    Table 2 Best fitting parameters for MC,MCWW,MCMN,and MCYMH criteria

    Table 3 Best fitting parameters for HB,HBWW,HBMN and HBYMH criteria

    Table 4 Best fitting parameters for EP,EPWW,EPMN and EPYMH criteria

    Fig.9 Best-fitting the polyaxial test data with the EPWW criterion.a Dunham dolomite.b Solnhofen limestone.c Shirahama sandstone.d Yuubari shale.e KTB amphibolite.f Mizuho trachyte.g Dense marble.h Westerly granite.i Yamaguchi marble.j Manazuru andesite.k Inada granite.l Orikabe monzonite.m Apache Leap tuff.n Maha Sarakham salt

    Fig.9 continued

    Fig.9 continued

    5 Conclusion

    This paper evaluated the proposed new true triaxial criteria,and solved their non-smoothness and non-convexity problems in a simple way.Based on the study,the following conclusions can be drawn.

    The suitability of a criterion mainly dependson the meridian and deviatoric functions.The transition functions of the MC,HB,and EP criteria on deviatoric plane are(approximately)linear,which does not reflect the effect of the intermediate principal stress.This is the common disadvantage of classic 2D strength criteria.Among the former three 2D strength criteria,the EP criterion has good expression forms on the meridian plane,which can accurately denote the hydrostatic pressure effect.

    Among various Lode angle dependence functions,theLWW,LMN,andLYMHsatisfy the requirements of convexity and differential for all ranges ofβ.They are employed to describe the intermediate principal stress effect.And new true triaxial strength criteria of EPWW,EPMN,and EPYMH are proposed.Moreover,the relationship of proposed criteria that based on compression(Fc)and extension(Fe)meridian trace is discussed.It shows thatFcbased onLWW(LYMH)equalsFebased onLYMH(LWW).Meanwhile,FcandFebased onLMNequal each other due to the self-similar characteristics ofLMN.

    In addition,14 types of original triaxial experiment data obtained from original research sources were employed to validate the proposed criteria.The fitting accuracy is comprised with 2D criteria.The results show that the EP criterion andLWWwere more suitable for describing the meridian curves and deviatoric envelope of the rock strength characteristics than the other criteria and Lode angle dependence functions,respectively.Meanwhile,the strength prediction characters were analyzed,and EPWW criterion shows the highest accuracy for strength prediction among the compared twelve criteria.

    AcknowledgementsThis project was supported by the National Natural Science Foundation of China(Grants 51204168,51579239),the China Postdoctoral Science Foundation funded project(Grants 2013M531424,2015M580493),the National Basic Research 973 Program of China(Grants 2013CB036003,2014CB046306),and the Fundamental Research Funds for the Central Universities(Grant 2012QNB23).

    1.Mohr,O.:Welche Umst?nde bedingen die Elastizit?tsgrenze und den Bruch eines Materials?Zeit.des Ver.Deut.Ing.44,1524–1530(1990)

    2.Griffith,A.A.:The phenomena of rupture and flow in solids.Philos.Trans.R.Soc.A Lond.221,163–198(1920)

    3.Hoek,E.,Carranza-Torres,C.T.,Corkum,B.:Hoek–Brown failure criterion—2002 edition.In:Proceedings of the 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference,Toronto,Canada,July 7–10(2002)

    4.You,M.Q.:True-triaxial strength criteria for rock.Int.J.Rock Mech.Min.Sci.46,115–127(2009)

    5.Mogi,K.:Experimental Rock Mechanics.Taylor&Francis,New York(2006)

    6.Michelis,P.:Polyaxial yielding of granular rock.Eng.Mech.111,1049–1066(2011)

    7.Takahashi,M.,Koide,H.:Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m.In:Rock at Great Depth,1.Balkema,Rotterdam,August 30–September 2(1989)

    8.Chang,C.,Hairnson,B.:True triaxial strength and deformability of the German Continental Deep Drilling Program(KTB)deep hole amphibolite.Geophys.Res.105,18999–19013(1987)

    9.Sriapai,T.,Walsri,C.,Fuenkajorn,K.:True-triaxial compressive strength of Maha Sarakham salt.Int.J.Rock Mech.Min.Sci.61,256–265(2013)

    10.Hosein,R.:New empirical polyaxial criterion for rock strength.Int.J.Rock Mech.Min.Sci.48,922–931(2011)

    11.Lu,D.C.,Du,X.L.:Research on nonlinear strength and failure criterion of rock material.Chin.J.Rock Mech.Eng.32,2394–2408(2013)

    12.Zhang,Q.,Wang,S.L.,Ge,X.R.,et al.:A modified Mohr–Coulomb strength criterion considering rock mass intrinsic material strength factorization.Min.Sci.Technol.20,701–706(2010)

    13.Lee,Y.K.,Pietruszczak,S.,Choi,B.H.:Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions.Int.J.Rock Mech.Min.Sci.56,146–160(2012)

    14.Singh,M.,Raj,A.,Singh,B.:Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks.Int.J.Rock Mech.Min.Sci.48,546–555(2011)

    15.Yu,M.H.:Twin Shear Theory and Its Application.Science Press,Beijing(1998)

    16.Zhang,L.Y.,Zhu,H.H.:Three-dimensional Hoek–Brown strength criterion for rocks.J.Geotech.Geoenviron.Eng.ASCE 133,1128–1135(2007)

    17.Zhang,Q.,Zhu,H.H.,Zhang,L.Y.:Modification of a generalized three-dimensional Hoek–Brown strength criterion.Int.J.Rock Mech.Min.Sci.59,80–96(2013)

    18.Jiang,H.,Wang,X.W.,Xie,Y.L.:New strength criteria for rocks under polyaxial compression.Can.Geotech.J.48,1233–1245(2011)

    19.Benz,T.,Schwab,R.,Kauther,R.A.,et al.:A Hoek–Brown criterion with intrinsic material strength factorization.Int.J.Rock Mech.Min.Sci.45,210–222(2008)

    20.Benz,T.,Schwab,R.:A quantitative comparison of six rock failure criteria.Int.J.Rock Mech.Min.Sci.45,1176–1186(2008)

    21.Liolios,P.,Exadaktylos,G.:Comparison of a hyperbolic failure criterion with established failure criteria for cohesive-frictional materials.Int.J.Rock Mech.Min.Sci.63,12–26(2013)

    22.Colmenares,L.B.,Zoback,M.D.:A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks.Int.J.Rock Mech.Min.Sci.39,695–729(2002)

    23.Al-Ajmi,A.M.,Zimmerman,R.W.:Relation between the Mogi and the Coulomb failure criteria.Int.J.Rock Mech.Min.Sci.42,431–439(2005)

    24.Desai,C.S.,Somasundaram,S.,Frantziskonis,G.:A hierarchical approach for constitutive modelling of geologic materials.Int.J.Numer.Anal.Met.10,225–257(1986)

    25.Argyris,J.H.,Faust,G.,Szimmat,J.,et al.:Recent development in the finite element analysis of pressure container reactor vessel.Nucl.Eng.Des.28,42–75(1974)

    26.Bardet,J.P.:Lode dependences for isotropic pressure sensitive elastoplastic materials.J.Appl.Mech.57,498–506(1990)

    27.Jiang,J.,Pietruszczak,S.:Convexity of smooth yield surface of friction materials.Comput.Geotech.5,51–63(1988)

    28.Lade,P.V.,Duncan,J.M.:Elastoplastic stress–strain theory for cohesionless soil.J.Geotech.Eng.Div.101,1037–1053(1975)

    29.Matsuoka,H.,Nakai,T.:Stress-deformation and strength characteristics of soil under three different principal stress.Proc.Jpn.Soc.Civ.Eng.232,59–70(1974)

    30.Willam,K.J.,Warnke,E.P.:Constitutive model for the triaxial behavior of concrete.In:International Association for Bridge and Structural Engineering,Seminar on Concrete Structure Subjected to Triaxial Stresses,Bergamo,Italy,May 17–19(1974)

    31.Haimson,B.,Chang,C.:A new true triaxial cell for testing mechanical properties of rock,and its use to determine rock strength and deformability of Westerly granite.Int.J.Rock Mech.Min.Sci.37,285–296(2000)

    32.Wang,R.R.,Kemen,J.M.R.:A New Empirical Failure Criterion for Rock Under Polyaxial Compressive Stresses.In:The 35th U.S.Symposium on Rock Mechanics,Reno,Nevada,June 5–7(1995)

    tocl精华| АⅤ资源中文在线天堂| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 欧美性长视频在线观看| 男人舔女人下体高潮全视频| av在线天堂中文字幕| 91国产中文字幕| 色av中文字幕| 亚洲最大成人中文| 国产不卡一卡二| 成在线人永久免费视频| 女警被强在线播放| 黄色毛片三级朝国网站| 神马国产精品三级电影在线观看 | 久热这里只有精品99| 欧美日韩亚洲综合一区二区三区_| 久久香蕉激情| 欧美久久黑人一区二区| 精品久久久久久久人妻蜜臀av| 久久久久精品国产欧美久久久| 香蕉av资源在线| 黄片小视频在线播放| 亚洲,欧美精品.| 宅男免费午夜| 天堂动漫精品| 久久亚洲精品不卡| 两个人免费观看高清视频| 自线自在国产av| 欧美av亚洲av综合av国产av| 欧美日本亚洲视频在线播放| 18禁黄网站禁片免费观看直播| 日韩视频一区二区在线观看| 夜夜夜夜夜久久久久| 看黄色毛片网站| 成人av一区二区三区在线看| a级毛片a级免费在线| 日本一区二区免费在线视频| 看免费av毛片| 97碰自拍视频| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影| 黄色女人牲交| 黄片大片在线免费观看| 观看免费一级毛片| 国产高清视频在线播放一区| 91成年电影在线观看| 三级毛片av免费| 脱女人内裤的视频| 日韩欧美 国产精品| 天堂动漫精品| 热99re8久久精品国产| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕| 长腿黑丝高跟| 国产精品野战在线观看| 精品日产1卡2卡| 日本三级黄在线观看| 男男h啪啪无遮挡| 久久久久免费精品人妻一区二区 | 91在线观看av| 亚洲国产精品合色在线| 午夜激情av网站| 亚洲中文字幕日韩| 国内揄拍国产精品人妻在线 | 色综合婷婷激情| 999久久久国产精品视频| 黄色视频不卡| 亚洲成a人片在线一区二区| 一本综合久久免费| 国内揄拍国产精品人妻在线 | 亚洲自偷自拍图片 自拍| 亚洲国产精品sss在线观看| 免费观看人在逋| 免费看日本二区| 在线十欧美十亚洲十日本专区| 搡老岳熟女国产| 大型av网站在线播放| 熟女少妇亚洲综合色aaa.| 亚洲午夜精品一区,二区,三区| avwww免费| 久久精品91无色码中文字幕| 国产精品野战在线观看| 亚洲国产精品sss在线观看| av视频在线观看入口| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 18美女黄网站色大片免费观看| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 91av网站免费观看| √禁漫天堂资源中文www| 少妇熟女aⅴ在线视频| 亚洲中文日韩欧美视频| 黑丝袜美女国产一区| 99精品欧美一区二区三区四区| 日日干狠狠操夜夜爽| 免费在线观看黄色视频的| 一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 天天添夜夜摸| 黄色片一级片一级黄色片| 黑人欧美特级aaaaaa片| 国产伦一二天堂av在线观看| 999久久久国产精品视频| 色综合站精品国产| 一进一出抽搐动态| xxxwww97欧美| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 在线观看www视频免费| 亚洲成人精品中文字幕电影| 天天添夜夜摸| 午夜久久久久精精品| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 久久香蕉精品热| 哪里可以看免费的av片| 性欧美人与动物交配| 美女国产高潮福利片在线看| 亚洲精品色激情综合| 在线观看日韩欧美| 少妇熟女aⅴ在线视频| 少妇被粗大的猛进出69影院| 日本一区二区免费在线视频| 老熟妇乱子伦视频在线观看| 在线免费观看的www视频| 中文字幕人妻熟女乱码| 757午夜福利合集在线观看| 草草在线视频免费看| a在线观看视频网站| 看免费av毛片| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩瑟瑟在线播放| 十八禁网站免费在线| 国产成人av教育| 超碰成人久久| АⅤ资源中文在线天堂| 色av中文字幕| 久久精品人妻少妇| 午夜福利在线观看吧| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 美女午夜性视频免费| 男人的好看免费观看在线视频 | 超碰成人久久| 黄色视频不卡| √禁漫天堂资源中文www| 身体一侧抽搐| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 婷婷亚洲欧美| 波多野结衣高清作品| xxxwww97欧美| 国产一级毛片七仙女欲春2 | 免费在线观看影片大全网站| 色播亚洲综合网| 午夜免费鲁丝| 男人舔女人下体高潮全视频| 国产成人一区二区三区免费视频网站| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 久久伊人香网站| 12—13女人毛片做爰片一| 91av网站免费观看| 99精品在免费线老司机午夜| 一区二区日韩欧美中文字幕| 免费在线观看亚洲国产| 精品国产亚洲在线| 欧美日韩乱码在线| 国产精品一区二区免费欧美| av在线播放免费不卡| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线| 99久久综合精品五月天人人| 男人舔女人的私密视频| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 午夜影院日韩av| 久久精品成人免费网站| 怎么达到女性高潮| 韩国av一区二区三区四区| 国产真实乱freesex| 国产片内射在线| 午夜激情av网站| 欧美av亚洲av综合av国产av| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 看免费av毛片| 亚洲午夜精品一区,二区,三区| 午夜视频精品福利| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 18禁美女被吸乳视频| 欧美色欧美亚洲另类二区| 国产精品野战在线观看| 一进一出抽搐gif免费好疼| 香蕉丝袜av| 欧美大码av| 2021天堂中文幕一二区在线观 | 99国产精品一区二区三区| 久久中文看片网| 美女 人体艺术 gogo| 国语自产精品视频在线第100页| 黄色视频不卡| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 色播亚洲综合网| 正在播放国产对白刺激| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 色播在线永久视频| 中文字幕人妻丝袜一区二区| 日本在线视频免费播放| 无遮挡黄片免费观看| 午夜精品在线福利| 久久国产精品影院| 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 首页视频小说图片口味搜索| 亚洲 国产 在线| cao死你这个sao货| 无限看片的www在线观看| 国产精品二区激情视频| 99热这里只有精品一区 | 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 免费看日本二区| 国产精品综合久久久久久久免费| 久久性视频一级片| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| 日本三级黄在线观看| 国产男靠女视频免费网站| 91国产中文字幕| 757午夜福利合集在线观看| 成人免费观看视频高清| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 中出人妻视频一区二区| 国产三级在线视频| 午夜老司机福利片| 日韩免费av在线播放| 国产成人影院久久av| 国产免费男女视频| 黄色视频,在线免费观看| 国产在线精品亚洲第一网站| 香蕉av资源在线| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| www.自偷自拍.com| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 久久性视频一级片| 亚洲三区欧美一区| 国产精品久久视频播放| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区久久 | 在线视频色国产色| 日韩一卡2卡3卡4卡2021年| 色哟哟哟哟哟哟| 最近最新免费中文字幕在线| 国产亚洲精品一区二区www| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 欧美黑人精品巨大| www.精华液| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 中文字幕精品亚洲无线码一区 | 又紧又爽又黄一区二区| 亚洲激情在线av| 最近在线观看免费完整版| 亚洲在线自拍视频| 悠悠久久av| 国产精品爽爽va在线观看网站 | 搞女人的毛片| 18禁国产床啪视频网站| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 色播在线永久视频| 嫩草影院精品99| 国产1区2区3区精品| 亚洲国产欧洲综合997久久, | 亚洲无线在线观看| 热re99久久国产66热| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 88av欧美| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 午夜久久久久精精品| 一区二区日韩欧美中文字幕| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 国产爱豆传媒在线观看 | 看免费av毛片| 欧美激情极品国产一区二区三区| 看片在线看免费视频| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 亚洲精品国产精品久久久不卡| 欧美一级a爱片免费观看看 | 亚洲人成电影免费在线| 午夜福利高清视频| 午夜老司机福利片| 精品人妻1区二区| 午夜老司机福利片| 日本五十路高清| 久久这里只有精品19| 大型黄色视频在线免费观看| 很黄的视频免费| 欧美+亚洲+日韩+国产| 可以在线观看的亚洲视频| 亚洲成人久久性| 久久午夜亚洲精品久久| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器 | 99久久无色码亚洲精品果冻| 欧美精品亚洲一区二区| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 国产国语露脸激情在线看| 日韩欧美 国产精品| 1024手机看黄色片| 男人舔女人的私密视频| 97超级碰碰碰精品色视频在线观看| 欧美又色又爽又黄视频| 首页视频小说图片口味搜索| 国产一区在线观看成人免费| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 18禁国产床啪视频网站| 精品国产乱子伦一区二区三区| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 91成年电影在线观看| 精品卡一卡二卡四卡免费| 亚洲人成77777在线视频| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 俺也久久电影网| 久久精品91蜜桃| 91国产中文字幕| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 老熟妇仑乱视频hdxx| 女警被强在线播放| 国产野战对白在线观看| 亚洲av电影不卡..在线观看| 久久天堂一区二区三区四区| 久久热在线av| 亚洲国产欧洲综合997久久, | 精品免费久久久久久久清纯| 国产黄片美女视频| 嫁个100分男人电影在线观看| 精品国产亚洲在线| 亚洲成人久久爱视频| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 国内精品久久久久精免费| 哪里可以看免费的av片| 91在线观看av| 99国产精品一区二区蜜桃av| 91老司机精品| 欧美激情 高清一区二区三区| 精品第一国产精品| 国产午夜精品久久久久久| 一区二区三区国产精品乱码| 日韩欧美免费精品| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 最近在线观看免费完整版| 大型黄色视频在线免费观看| 性欧美人与动物交配| 国产不卡一卡二| 国产片内射在线| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 91成年电影在线观看| 中文字幕精品免费在线观看视频| 啪啪无遮挡十八禁网站| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 最好的美女福利视频网| www.精华液| 国产精品免费一区二区三区在线| 丁香六月欧美| 91av网站免费观看| 少妇 在线观看| 精品欧美国产一区二区三| 久久久久久九九精品二区国产 | 中文资源天堂在线| 大型av网站在线播放| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 美女大奶头视频| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| 看黄色毛片网站| 一夜夜www| av免费在线观看网站| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 成人午夜高清在线视频 | 最近在线观看免费完整版| 国产一区二区三区视频了| 麻豆av在线久日| 757午夜福利合集在线观看| 国产一区二区激情短视频| 日本三级黄在线观看| av欧美777| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合 | 午夜久久久在线观看| 亚洲国产毛片av蜜桃av| 国产成人av教育| 日韩欧美 国产精品| 国产亚洲av嫩草精品影院| 欧美日韩精品网址| 日日干狠狠操夜夜爽| 欧美乱色亚洲激情| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 人人澡人人妻人| 午夜免费观看网址| 午夜成年电影在线免费观看| 97人妻精品一区二区三区麻豆 | 亚洲一区中文字幕在线| 欧美激情高清一区二区三区| 中文字幕精品免费在线观看视频| 久久精品91无色码中文字幕| 精品电影一区二区在线| 成人亚洲精品av一区二区| 亚洲av美国av| 91九色精品人成在线观看| 老鸭窝网址在线观看| 欧美日韩黄片免| 桃色一区二区三区在线观看| 香蕉av资源在线| 精品高清国产在线一区| 久久亚洲真实| 18禁观看日本| 老司机福利观看| 日本精品一区二区三区蜜桃| 国产成+人综合+亚洲专区| 1024视频免费在线观看| 嫩草影视91久久| 色av中文字幕| 哪里可以看免费的av片| 色婷婷久久久亚洲欧美| 丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 亚洲精品国产精品久久久不卡| 国产精品乱码一区二三区的特点| 成年人黄色毛片网站| 亚洲美女黄片视频| 级片在线观看| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 国产成人一区二区三区免费视频网站| 亚洲片人在线观看| 免费一级毛片在线播放高清视频| 国产成人精品久久二区二区91| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色| 亚洲成人国产一区在线观看| 香蕉久久夜色| 日本 欧美在线| 好男人电影高清在线观看| 99热这里只有精品一区 | 亚洲专区中文字幕在线| 色av中文字幕| 欧美激情极品国产一区二区三区| 欧美不卡视频在线免费观看 | 亚洲av中文字字幕乱码综合 | 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦 在线观看视频| 757午夜福利合集在线观看| 一本一本综合久久| 欧美在线黄色| 国产99久久九九免费精品| 最近最新中文字幕大全免费视频| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 国产精品九九99| 婷婷亚洲欧美| 人人妻人人澡人人看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美国产精品va在线观看不卡| 制服诱惑二区| 久久国产乱子伦精品免费另类| 久久国产精品人妻蜜桃| 免费观看人在逋| 不卡一级毛片| 特大巨黑吊av在线直播 | 在线十欧美十亚洲十日本专区| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 欧美最黄视频在线播放免费| 免费搜索国产男女视频| 男人舔奶头视频| 午夜久久久久精精品| 亚洲九九香蕉| 一区二区三区激情视频| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区精品| 一级a爱片免费观看的视频| 中文字幕久久专区| cao死你这个sao货| 夜夜看夜夜爽夜夜摸| 久99久视频精品免费| 无遮挡黄片免费观看| 国内精品久久久久精免费| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 91成人精品电影| 高潮久久久久久久久久久不卡| 国产成人精品无人区| 欧美+亚洲+日韩+国产| 中文在线观看免费www的网站 | 久久久久国产一级毛片高清牌| 天堂√8在线中文| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 国产91精品成人一区二区三区| 国产伦一二天堂av在线观看| 欧美人与性动交α欧美精品济南到| 亚洲精品久久成人aⅴ小说| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩高清在线视频| 亚洲国产精品成人综合色| 亚洲精品在线观看二区| 精品久久久久久久久久免费视频| 51午夜福利影视在线观看| 天天躁夜夜躁狠狠躁躁| 国产aⅴ精品一区二区三区波| 亚洲九九香蕉| 悠悠久久av| 高清在线国产一区| 精品国产乱码久久久久久男人| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻熟妇乱又伦精品不卡| 香蕉丝袜av| 亚洲国产高清在线一区二区三 | 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 久久久国产精品麻豆| av电影中文网址| 亚洲精品久久国产高清桃花| 精品电影一区二区在线| 人妻久久中文字幕网| 国产高清激情床上av| 怎么达到女性高潮| 中文字幕另类日韩欧美亚洲嫩草| 中文亚洲av片在线观看爽| 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 日本三级黄在线观看|