• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of surface roughness on cloud cavitation flow around hydrofoils

    2018-03-19 02:06:31JiafengHaoMindiZhangXuHuang
    Acta Mechanica Sinica 2018年1期
    關(guān)鍵詞:規(guī)劃

    Jiafeng Hao·Mindi Zhang·Xu Huang

    1 Introduction

    It is well known that surface roughness is one of the important factors affecting cloud cavitation.Surface roughness influences the boundary layer and turbulent structure,both of which are important for the occurrence of cavitating flow[4–6].Rood[7]summarized that the surface roughness has an effect on the inception of cavitation by itself as a source of nuclei,as well as stimulating flow instabilities.Surface roughness can enhance flow instability through a variety of mechanisms depending on the size and spatial distribution of the roughness elements[8–10].Stutz and Reboud[11,12]studied the influence of roughness on the two-phase flow structure of sheet cavitation within a Venturi-type test section with the help of a double optical probe.The conclusions indicated that surface roughness may not significantly influence the shape and void fraction of cavitation.

    However,the effect of surface roughness on cloud cavitating flow is still not well understood,hence additional study is still required.To further research the effect of the roughness distribution on the flow structure in cloud cavitation,in this present work,experiments were conducted to observe this structure and the development of cavitating flow around Clark-Y hydrofoils.

    2 Experimental setup

    Experiments studies were carried out in a closed-loop cavitation tunnel located at Beijing Institute of Technology.The primary characteristics of the experimental setup are summarized here;more information about the instrumentation with experimental uncertainties and the test section was presented by Biao Huang et al.[13].Ahigh-speed particle image velocimetry(PIV)system provided by Dantec was used;see Ref.[13]for additional information.In the experiments,the development of the cavitating flow around the hydrofoil was observed for various cavitation numbers at velocity ofV∞=8 ms?1.The chord length of the hydrofoils was 70 mm,and the angle of attack was set as 8?.The Reynolds number and cavitation number were defined as in Ref.[1].As cavitating flow can be influenced by surface characteristics[14],two hydrofoils were machined from the same material and subjected to grit blasting to obtain different surface roughnesses.As shown in Fig.1,the surface of hydrofoil A was relatively smooth withRa=0.48μm,while the surface of hydrofoil B was rough withRa=6.9μm.

    During the experiment,we adjusted the speed of the axial flow pump to control the inlet velocity or controlled the ambient pressure to adjust the cavitation number.Furthermore,a series of pictures were obtained during the experiment using high-speed cameras to analyze the structure of cavitation and its development,and for detailed flow visualization.

    The cavitation number is denoted byσ,defined asfollows

    The Reynolds number is defined as follows

    對村莊空間的整治規(guī)劃應(yīng)分為2個方面進行規(guī)劃:首先是村莊布點規(guī)劃,應(yīng)從宏觀角度出發(fā)對鄉(xiāng)村發(fā)展中存在的問題進行有效地解決,提高當?shù)鼐用竦纳a(chǎn)和生活條件。其次是村莊建設(shè)規(guī)劃,主要是從微觀角度上對村莊之間的問題進行解決[2]。

    The location coefficientsx′andy′were defined as follows

    The time coefficientt′was defined as follows

    wherep∞,p v,andV∞are the reference static pressure,saturated vapor pressure of water,and free stream velocity,respectively.ρis the water density.υ,l,andαare the kinetic viscosity,hydrofoilchord length,and angle of attack,respectively.Tis the period of the cavitation flow.

    3 Results and discussion

    3.1 Flow structure of cloud cavitation

    Fig.1 Surface pattern of Clark-Y hydrofoil

    Fig.2 continued

    To investigate the effect of roughness on the cloud cavitating flow,Fig.shows the time evolution of the cloud cavitating flow around hydrofoil A and hydrofoil B withσ=1.02 in upward and side views.As seen in Fig.2a,the period of the cloud cavitation was 52 ms.The development of cloud cavitation consisted of two stages:(1)Fort=t0+0 ms?t0+40 ms,an attached cavity developed along the surface of hydrofoil A fromx′=0.3 to the trailing edge.Some ambient bubbles shed when it reached the trailing edge att=t0+40 ms.This means that the length of the cavity increased by aboutΔx′=0.7 during 40 ms,yielding an average cavity growth rate of 1.2 ms?1;(2)Whent=t0+40 ms?t0+52 ms,the adverse pressure gradient was strong enough to overcome the weaker momentum of the flow in the near-wall region.A reentrant jet formed and pushed the flow along the suction side toward the leading edge of the foil.Based on the development of the front part of the reentrant jetfromx′=0.53 tox′=0.27 att=t0+40 ms?t0+52 ms,the velocity of the reentrant jet was estimated to be 1.5 ms?1.When the reentrant flow reached the vicinity of the cavity leading edge,the cavity fluctuated and shed toward the front,then bubble clusters were shed and collapsed at the end of the period.Whent=t0+50 ms,shedding of bubble clusters resulted in an obvious vortex pair structure,linked with a vortex braid.Lines fromatocindicate the movement of the reentrant jet.

    Fig.2 continued

    Fig.3 a Comparisons of time evolution of cavity area around different hydrofoils obtained by experiment.b Comparisons of cavity area spectrum around different hydrofoils(σ =1.02,R e=5.6×105)

    As shown in Fig.2b,the process of cloud cavitation around hydrofoil B consisted of three stages:(1)Whent=t0+0 ms?t0+28 ms,attached cavities developed along the surface of hydrofoil B fromx′=0.3 to the trail-ing edge,with growth rate of about 1.7 ms?1.(2)Whent=t0+28 ms?t0+50 ms,attached cavities at the leading edge fluctuated violently,then collapsed into bubbles.However,the length of the cavities remained at aboutx′=0.3 untilt= 40 ms,then the attached cavities grew again.The rear part of the cavities developed fromx′=0.25 tox′=0.6,with growth rate of about 2.4 ms?1.(3)Whent=t0+50 ms?t0+57 ms,cavities broke off and shed again.The rear part of the cavities shrank fromx′=0.6 tox′=0.22.

    Comparison of Fig.2a and 2b reveals some differences in the cloud cavitating flow around hydrofoil A and hydrofoil B.Firstly,the flow structure of the cloud cavitation flow was different.The intensive roughness distributed on the surface of hydrofoil B resulted in attached subulate cavities,while the finger-like cavities on the surface of hydrofoil A were caused by flow separation.The period of the cloud cavity around hydrofoil A and hydrofoil B was also different at 52 and 57 ms,respectively.Besides,we observed development of a reentrant jet and cavity collapse on the surface of hydrofoil A,but in the second stage of cavitating flow around hydrofoil B,cavities broke off quickly without an obvious reentrant jet.Secondly,the growth rate of the cloud cavity along the surface of hydrofoil A was about 1.2 ms?1,compared with about 1.7 ms?1for hydrofoil B,illustrating that cavitation due to roughness showed higher evaporation rate,and cavities developed more quickly.The larger-scale flow separation caused by the rougher surface provided an evaporation rate sufficient for formation of subulate cavities.

    To further investigate the cloud cavitating flow around hydrofoil A and hydrofoil B,we applied the method of Zhang et al.[15]to determine the cavity area for each cloud cavitating flow.We applied many image processing functions that differ from those traditionally used as well as an in-house feature-recognition software package to overcome restrictions in commercial software.This enabled successful extraction of the outline,boundary,gray level,and area from images of the flow around the hydrofoilin the cavitation zone.Moreover,the evolution period of cavitation could be estimated based on gray levelimages.Figure 3 a presents the time evolution of the nondimensional cavity area,which changes periodically.As shown in Fig.3a,the curves for the cavity area of the cloud cavitating flow around both hydrofoil A and hydrofoil B present the same fluctuation rule.Increasing cavity area represents the process of cavity growth and accumulation near the trailing region of the hydrofoil,while decreasing cavity area represents the process of shedding and collapse of bubble clusters near the trailing region of the hydrofoil.These curves conform well to the observed development of cloud cavitating flow around the hydrofoils.The curve in Fig.3a shows that the maximum nondimensional cavity area around hydrofoil B was larger than that for hydrofoil A,indicating that the cavitating flow around hydrofoil B was more intense and its evaporation rate was higher.Figure 3b presents comparisons of the cavity area spectrum around the different hydrofoils after fast Fourier transform(FFT)analysis of the cavity area evolution.It is observed that the main frequency of evolution of the cavity area around hydrofoil B was higher than that for hydrofoil A atf=20 Hz andf=17 Hz,respectively.Thus,the main frequency of evolution of cloud cavitation around the different hydrofoils was different.

    3.2 Velocity and vorticity distribution of cloud cavitation

    Cavities broke off quickly without an obvious reentrant jet in the second stage of the cavitating flow around hydrofoil B whenσwas 1.02.As is well known,initiation of typical cloud cavitation begins with the formation of a reentrant jet at the trailing edge of a sheet cavity[10].To further show that the surface roughness had a great influence on the typical cloud cavitation,we compared typical cloud cavitation around hydrofoil B with hydrofoil A(σ=1.02).Forσof 0.87,the velocity and vorticity distribution of typical cloud cavitation around hydrofoil B are discussed based on PIV results.

    In the experiments,the flow field was measured using PIV images acquired at 2000 Hz.Figure 4 presents the time evolution of the profile of the flow field and velocity field.The velocity field diagram is overlaid with a streamline chart.

    As shown in Fig.4,apparently,the whole flow field could be divided into three areas:the near-wall region,the wake region on the suction side,and the free stream area.(1)The near-wall region except at the front of the suction side was an obvious low-velocity area.The velocity in the near-wall region decreased fromx′=0 tox′=0.5,then remained at about 2 ms?1at aboutx′=0.5 with little velocity fluctuation.(2)The velocity in the wake region of the suction side was about 3–5 ms?1.(3)The velocity in the free stream area was about 8–10 ms?1,and at the front part,the velocity reached a maximum of 12 ms?1atx′=0.03–0.05.The velocity distributions of the flow field formed large-scale shearflow regionsamong these three areas,providing energy for development of cavitation and movement of vorticity.

    Whent=0 ms,cavities attached to the front region of hydrofoil B,and the velocity in the near-wall region was low.The few bubbles atx′=0–0.45 had no obvious effect on the velocity distributions,and the streamlines were continuous.As shown in Box 1,a large-scale vortex formed from the bubble cluster in the previous period in the wake region,since the shear flow had a great influence on the process of shedding.Meanwhile,a smaller-scale vortex formed in the downstream area of the large-scale vortex owing to the flow interaction with the pressure side.

    Fig.4 Time evolution of a flow field profile and b velocity field diagram and streamline chart.(Red rectangle is named as Box and the vortexes were enclosed by Boxes)

    Fig.4 continued

    Fig.4 continued

    Whent=t0+22 ms?1,the cavity length increased to 0.8land bubbles in the cavitating wake region shed gradually,decreasing the length of the attached cavity.Box 2 shows the vortex caused by shedding of some bubbles.

    Whent=t0+28 ms,the cavity developed tox′=1.0.During the cavity shedding process,the cavity sheared off from the pressure side and shear flow formed along the suction side in the cavitating wake region.Whent=t0+29 ms,as shown in Box 4,some cavitiesin the cavitating wake region entered the closed region in the form of vortex motion,moved forward at speed of?3 ms?1,then formed a large-scale vortex due to shear flow from the free stream area,as shown in Box 5 att=t0+30 ms.

    Whent=t0+31 ms,the flow velocities of the suction side and pressure side were about 8.7 and 7.2 ms?1,respectively,while the flow velocity in the wake region was only 1.2 ? 2.5 ms?1.When the vortex in Box 5 traveled downstream,two shear flows with opposite direction from the suction and pressure side formed a pair of vortices along the trailing edge,as shown in Box 6.When the vortex pair moved downstream att=t0+32 ms,as shown in Box 7,the anticlockwise vortex on the left developed into a single vortex near the suction surface continuously,while the clockwise vortex on the right disappeared.The bubble cluster at the trailing edge,as shown in Box 8,formed another anticlockwise vortex owing to the shear flows from the suction side.Therefore,a pair of anticlockwise vortices is observed in Boxes 7 and 8.

    Whent=t0+33 ms,fluctuation of the flow from the suction side in Box 9 was caused by cavity shedding in the wake region,and the flow interacted with the anticlockwise vortex at the trailing edge and then moved toward the front att=t0+33.6 ms in Box 10.

    Whent=t0+34 ms,the vortex at the front part of the suction side continued to rotate anticlockwise,but the scale of the vortex in the rear part increased obviously.The flow velocity was?4.3 ms?1atx′=0.95,but reduced to?2.4 ms?1atx′=0.85.Comparing the streamline chart and flow field pro file reveals that bright-white liquid–vapor mixture in the wall region,namely a reentrant jet,was induced toward upstream,as shown in Box 11,which is related to the two-phase flow att=t0+30 ms.

    Whent=t0+35 ms,the reentrant jet developed tox′=0.65,resulting in cavity fracture and shedding,as shown in Box 12.Bubble cluster shedding resulted in formation of some vortices.When t=t0+36 ms,the large-scale bubble cluster at the rear part started to move downstream,forming a vortex due to its rotational motion,as shown in Box 13.The motion of the vortex was affected by two aspects:(1)more bubbles from the upstream moved with the continuous rotation of the vortex,increasing its scale,and(2)flow from the pressure side caused shedding and collapse of bubble clusters continuously.This resulted in formation of a large-scale vortex,as shown in Boxes 14 and 15.Whent=t0+38 ms,the vorticity of the large-scale vortex was 2070 s?1,and its diameter was about 0.4l.Whent=t0+46 ms,the vorticity of the large-scale vortex was 1750 s?1,and its diameter was about 0.6lwith center atx/l=0.98,y/l=0.77.

    Whent=t0+59 ms,large-scale bubble clusters in the wake region shed and collapsed;the streamline chart indicated that the large-scale vortex nearly dissipated.The period of cloud cavitation was over whenσwas 0.87.

    Figure 5 shows the velocity distribution in four red lines whent=t0+33.6 ms in Fig.4.The local thickness of the cavity was about 5 mm atx/l=0.98 andx/l=1.03,but the minimum velocity increased from?4 ms?1atx/l=0.98 to?2 ms?1atx/l=1.03.This means that the reverse velocity ranges significantly over the near-wall region of the rear part of the hydrofoil,resulting in the formation of a reentrant jet.The velocity field diagram indicates that the velocity atx′=0.9?1.0 was larger than?2 ms?1.The bubble density in the stream on the pressure surface and the air content of the liquid around the vortex were lower,leading to extremely low vapor content in the two-phase flows.

    The velocity fields in the period of cloud cavitation were ensemble-averaged to obtain the velocity distributions of the flow field at various values ofx,as presented in Fig..The velocity atx/l=0.16 was nearly 8 ? 10 ms?1,which is the velocity of the main stream(free stream)area.The velocity atx/l=0.25 reduced from 10 to 6.5 ms?1,showing an obvious velocity gradient in the near-wall region.The time-averaged velocity in the near-wall region at aboutx/l=0.85 was nearly 0 ms?1.The flows from the suction surface and pressure surface at the trailing edge were mixed atx/l>1.03,where isa velocity inflection point,indicating that the two shear flows affected the flow field in the wake region.

    Fig.5 Velocity distributions of cloud cavitation flow fields around hydrofoil B when t=t0+33.6 ms

    Fig.6 Time-averaged velocity distributions of cloud cavitation around hydrofoil B at various positions for σ of 0.87

    4 Conclusions

    The different effects of surface roughness on cloud cavitation were investigated experimentally using Clark-Y hydrofoils at fixed angle of attack ofα=8?andR e=5.6×105for two cavitation numbers ofσ=1.02 andσ=0.87,representing sheet and cloud cavitation conditions.High-speed videos of the evolution of the cloud cavitation and measurements of the velocity and vorticity fields by PIV were used to investigate the flow structure.The main results can be summarized as follows

    (1)Surface roughness strongly influenced the development of cloud cavitation.For the smooth surface,it consisted of two stages:①An attached cavity developed along the surface to the trailing edge;②A reentrant jet developed,resulting in shedding and collapse of cluster bubbles or vortex structure.However,for hydro foil B with rougher surface,it comprised three stages:①An attached cavity developed along the surface to the trailing edge;② The development of a reentrant jet resulted in the first shedding of cavities.The interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet.The jet kept moving along the surface to the leading edge of the hydrofoil,resulting in large-scale shedding of cloud bubbles.Several vortices appeared and dissipated during the process;③ The cavity grew and shed again.Besides,the period of cloud cavitation for hydrofoil A was shorter than that for hydrofoil B.

    (2)The roughness significantly influenced the flow pattern and velocity and vorticity distributions of cloud cavitation.At the same cavitation number,for cavitating flow on the smooth surface of hydrofoil A,cloud cavitation occurred in the form of finger-like cavities,but for the rough hydrofoil B,it occurred in the form of attached subulate cavities.The nondimensional cavity area around hydrofoil B was larger than that around hydrofoil A,indicating that the cavitating flow around hydrofoil B was more intense.The growth rate of the cloud cavity along the surface of hydrofoil B was quickerthan that of hydrofoil A,indicating that its evaporation rate was higher.

    (3)At the same cavitation number,the cavity on the rough surface could break off,shed,and collapse one more time in a period,which could lead to more severe cavitation erosion.

    AcknowledgementsThe project was supported from the National Natural Science Foundation of China(Grant 51106009)and the China Scholarship Council(Grant 2011307311).

    1.Wang,G.Y.,Senocak,I.,Shyy,W.,et al.:Dynamics of attached turbulent cavitating flows.Prog.Aerosp.Sci.37,551–581(2001)

    2.Kawanami,Y.,Kato,H.,Yamaguchi,H.,et al.:Mechanism and control of cloud cavitation.J.Fluids Eng.119,788–794(1997)

    3.Sato,K.,Shimojo,S.:Detailed observations on a starting mechanism for shedding of cavitation cloud.In:The 5th International Symposium on Cavitation,Japan,November(2015)

    4.Wang,Z.Y.,Huang,B.,Wang,G.Y.,et al.:Experimental and numerical investigation of ventilated cavitating flow with special emphasis on gas leakage behavior and re-entrant jet dynamics.Ocean Eng.108,191–201(2015)

    5.Huang,X.,Zhang,M.D.,Fu,X.N.:Experimental study of coatings’effect on cavitating flow.J.Ship Mech.19,35–42(2015)

    6.Arndt,R.E.,Ippen,A.T.:Rough surface effects on cavitation inception.J.Fluids Eng.90,249–261(1968)

    7.Rood,E.P.:Review–mechanisms of cavitation inception.J.Fluids Eng.113,85680U–85680U-7(1991)

    8.Chang,J.C.,Huang,S.B.,Lin,C.B.:Effects of inlet surface roughness,texture,and nozzle material on cavitation.Atom.Sprays.16,299–318(2006)

    9.Shimizu,S.,Ihara,A.,Okada,M.O.,et al.:Damage due to spot cavitation on hemispherical cylindrical body.Nippon KikaiGakkai Ronbunshu BHen/Transactions of the Japan Society of Mechanical Engineers Part B.68,1691–1696(2002)

    10.Fathollah,V.,Dorothee,D.,Dierk,R.:Roughness-induced flow instability:a lattice Boltzmann study.J.Fluid Mech.573,191–209(2007)

    11.Stutz,B.,Reboud,J.L.:Two-phase flow structure of sheet cavitation.Phys.Fluids.9,3678–3686(1997)

    12.Stutz,B.:Influence of roughness on the two-phase flow structure of sheet cavitation.J.Fluids Eng.125,652–659(2003)

    13.Huang,B.,Yin,L.Y.,Wang,G.,etal.:Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation.J.Fluids Eng.135,071301(2013)

    14.Williams,M.,Kawakami,E.,Amromin,E.,etal.:Effects of surface characteristics on hydrofoil cavitation.In:Proceedings of the 7th International Symposium on Cavitation,Michigan,August(2009)

    15.Zhang,M.,Song,X.,Wang,G.:Design and application of cavitation flow image programs.Trans.Beijing Inst.Technol.26,17(2006)

    猜你喜歡
    規(guī)劃
    我們的規(guī)劃與設(shè)計,正從新出發(fā)!
    “十四五”規(guī)劃開門紅
    “十四五”規(guī)劃建議解讀
    發(fā)揮人大在五年規(guī)劃編制中的積極作用
    規(guī)劃計劃
    規(guī)劃引領(lǐng)把握未來
    快遞業(yè)十三五規(guī)劃發(fā)布
    商周刊(2017年5期)2017-08-22 03:35:26
    基于蟻群算法的3D打印批次規(guī)劃
    多管齊下落實規(guī)劃
    十三五規(guī)劃
    華東科技(2016年10期)2016-11-11 06:17:41
    欧美3d第一页| 免费观看的影片在线观看| 最黄视频免费看| 精品国产露脸久久av麻豆| 日韩欧美一区视频在线观看 | 美女主播在线视频| 美女脱内裤让男人舔精品视频| 欧美变态另类bdsm刘玥| 欧美3d第一页| 日韩亚洲欧美综合| 亚洲欧美日韩卡通动漫| 啦啦啦在线观看免费高清www| 精品一区二区免费观看| 最新中文字幕久久久久| 亚洲精品乱码久久久久久按摩| www.av在线官网国产| 欧美日本视频| 欧美变态另类bdsm刘玥| 久久久国产一区二区| 亚洲国产精品国产精品| 国产精品一区二区性色av| 精品少妇黑人巨大在线播放| 国产成人aa在线观看| 啦啦啦中文免费视频观看日本| 草草在线视频免费看| 国产av码专区亚洲av| 少妇精品久久久久久久| 九九爱精品视频在线观看| 18禁动态无遮挡网站| 久久99热6这里只有精品| 国产精品一区www在线观看| 美女cb高潮喷水在线观看| 久久午夜福利片| 久久韩国三级中文字幕| 亚洲成人手机| 国产精品女同一区二区软件| 在线观看三级黄色| 精品国产三级普通话版| 国产精品福利在线免费观看| 欧美三级亚洲精品| 一个人看视频在线观看www免费| 又黄又爽又刺激的免费视频.| av线在线观看网站| 直男gayav资源| 亚洲国产成人一精品久久久| 下体分泌物呈黄色| av不卡在线播放| 亚洲,一卡二卡三卡| 18禁在线播放成人免费| 中国三级夫妇交换| 久久久久久久久大av| 亚洲av成人精品一二三区| 日本av免费视频播放| 久久久亚洲精品成人影院| 欧美最新免费一区二区三区| 欧美最新免费一区二区三区| 老司机影院毛片| 大香蕉久久网| 色综合色国产| 精品少妇黑人巨大在线播放| 国产伦理片在线播放av一区| 国产探花极品一区二区| 免费看不卡的av| 欧美变态另类bdsm刘玥| 日韩一区二区视频免费看| 免费少妇av软件| 欧美97在线视频| 精品视频人人做人人爽| 日韩欧美一区视频在线观看 | 一区二区三区免费毛片| 少妇猛男粗大的猛烈进出视频| 毛片一级片免费看久久久久| 黄色怎么调成土黄色| 久久精品久久精品一区二区三区| 成人特级av手机在线观看| 高清av免费在线| 亚洲欧洲日产国产| 观看美女的网站| 亚洲,一卡二卡三卡| 国产男女内射视频| 精品久久国产蜜桃| 亚洲欧洲日产国产| 91久久精品国产一区二区三区| 九色成人免费人妻av| 日本vs欧美在线观看视频 | 永久免费av网站大全| 亚洲第一区二区三区不卡| 亚洲欧美精品自产自拍| 亚洲av日韩在线播放| 国产av码专区亚洲av| 一个人看的www免费观看视频| 国产在线免费精品| 国产在线免费精品| 全区人妻精品视频| 两个人的视频大全免费| 精品人妻偷拍中文字幕| 国产爱豆传媒在线观看| 纵有疾风起免费观看全集完整版| 高清黄色对白视频在线免费看 | 国产又色又爽无遮挡免| 午夜免费观看性视频| 精品一区二区三卡| 久久精品熟女亚洲av麻豆精品| 精品久久久噜噜| 国产又色又爽无遮挡免| 国产精品不卡视频一区二区| 精品国产露脸久久av麻豆| 久久国产精品男人的天堂亚洲 | 各种免费的搞黄视频| 国产 一区精品| 最新中文字幕久久久久| 亚洲av男天堂| 97超视频在线观看视频| 久久久久久久久大av| 日韩三级伦理在线观看| 国产精品人妻久久久影院| 又粗又硬又长又爽又黄的视频| 高清av免费在线| 一级二级三级毛片免费看| 青春草亚洲视频在线观看| 丰满迷人的少妇在线观看| 久久久久久久精品精品| 亚洲欧美日韩卡通动漫| 国产免费视频播放在线视频| 六月丁香七月| 国产在视频线精品| 国产成人aa在线观看| 欧美丝袜亚洲另类| 成人二区视频| 最近2019中文字幕mv第一页| 人妻系列 视频| 亚洲人成网站在线播| 久久精品国产亚洲av天美| 免费黄频网站在线观看国产| 国产大屁股一区二区在线视频| 极品少妇高潮喷水抽搐| 联通29元200g的流量卡| 尾随美女入室| 伊人久久精品亚洲午夜| 黄色配什么色好看| 肉色欧美久久久久久久蜜桃| 午夜福利高清视频| 国产亚洲5aaaaa淫片| 亚洲成人中文字幕在线播放| 爱豆传媒免费全集在线观看| 亚洲国产欧美人成| 免费观看性生交大片5| 亚洲精品国产av成人精品| 国产黄色视频一区二区在线观看| 国产无遮挡羞羞视频在线观看| 丝袜喷水一区| 久久久精品免费免费高清| 亚洲无线观看免费| 看十八女毛片水多多多| 91久久精品电影网| 在线观看免费日韩欧美大片 | 久久99热6这里只有精品| 如何舔出高潮| tube8黄色片| 18+在线观看网站| 老司机影院毛片| 在线观看av片永久免费下载| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡动漫免费视频| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 在线免费观看不下载黄p国产| 精品99又大又爽又粗少妇毛片| 大又大粗又爽又黄少妇毛片口| 精品少妇黑人巨大在线播放| 在线天堂最新版资源| 国内少妇人妻偷人精品xxx网站| 黄片wwwwww| 国产亚洲91精品色在线| 欧美zozozo另类| 简卡轻食公司| 亚洲图色成人| 久久婷婷青草| 亚洲中文av在线| 高清在线视频一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲精品456在线播放app| 亚洲av成人精品一区久久| 菩萨蛮人人尽说江南好唐韦庄| 99re6热这里在线精品视频| 欧美区成人在线视频| 日韩av在线免费看完整版不卡| 美女国产视频在线观看| 色视频在线一区二区三区| av女优亚洲男人天堂| 亚洲国产精品国产精品| 成人综合一区亚洲| 色5月婷婷丁香| av天堂中文字幕网| freevideosex欧美| 亚洲av成人精品一二三区| 日韩av免费高清视频| 成人漫画全彩无遮挡| 亚洲av成人精品一区久久| a级毛片免费高清观看在线播放| 啦啦啦视频在线资源免费观看| 中文乱码字字幕精品一区二区三区| 晚上一个人看的免费电影| 一个人免费看片子| 看十八女毛片水多多多| 日韩一本色道免费dvd| 亚洲自偷自拍三级| 欧美性感艳星| 下体分泌物呈黄色| 亚洲国产精品国产精品| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人 | 一区二区av电影网| 亚洲欧洲日产国产| 午夜老司机福利剧场| 色视频www国产| 大又大粗又爽又黄少妇毛片口| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕| 日韩大片免费观看网站| 久久国产亚洲av麻豆专区| 亚洲国产色片| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 日本免费在线观看一区| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡动漫免费视频| 少妇裸体淫交视频免费看高清| 丝袜脚勾引网站| 丝袜喷水一区| 国产一区二区三区综合在线观看 | 亚洲精品aⅴ在线观看| 亚洲av成人精品一二三区| 我要看日韩黄色一级片| 麻豆精品久久久久久蜜桃| 亚洲国产毛片av蜜桃av| 成人亚洲精品一区在线观看 | 亚洲国产av新网站| 久久人人爽av亚洲精品天堂 | 久久鲁丝午夜福利片| 永久免费av网站大全| 有码 亚洲区| 久久久久久伊人网av| 日本wwww免费看| 免费av中文字幕在线| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 国产色爽女视频免费观看| 久久鲁丝午夜福利片| 国产永久视频网站| 精品国产三级普通话版| 国产亚洲最大av| 亚洲四区av| 又爽又黄a免费视频| www.av在线官网国产| 观看av在线不卡| 一边亲一边摸免费视频| 毛片一级片免费看久久久久| 国产精品久久久久久精品古装| 欧美高清成人免费视频www| 欧美xxⅹ黑人| 久久久成人免费电影| 校园人妻丝袜中文字幕| 久久久色成人| 极品少妇高潮喷水抽搐| 国产精品不卡视频一区二区| av在线蜜桃| 中国三级夫妇交换| 王馨瑶露胸无遮挡在线观看| 国产无遮挡羞羞视频在线观看| 日韩欧美一区视频在线观看 | 又爽又黄a免费视频| 91狼人影院| 午夜日本视频在线| 亚洲内射少妇av| 久久午夜福利片| 熟女人妻精品中文字幕| 久久国产精品男人的天堂亚洲 | 日本欧美视频一区| 亚洲国产日韩一区二区| 久久99精品国语久久久| 亚洲国产欧美在线一区| 一本久久精品| 在线观看人妻少妇| 大香蕉久久网| 精品人妻视频免费看| 久久久久人妻精品一区果冻| 一级黄片播放器| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 欧美日韩精品成人综合77777| 亚洲精品色激情综合| 国模一区二区三区四区视频| 成年av动漫网址| 日韩国内少妇激情av| 国产毛片在线视频| 成年av动漫网址| 精品国产乱码久久久久久小说| 日韩亚洲欧美综合| 亚洲国产日韩一区二区| 深爱激情五月婷婷| 中国美白少妇内射xxxbb| 国产午夜精品一二区理论片| 国产av码专区亚洲av| 日韩中字成人| 91在线精品国自产拍蜜月| 美女高潮的动态| 中文资源天堂在线| 亚洲精品日韩av片在线观看| 精品一区二区免费观看| 国产高清国产精品国产三级 | 亚洲成色77777| 国产午夜精品久久久久久一区二区三区| 精品一区在线观看国产| 国产精品久久久久久精品电影小说 | 最后的刺客免费高清国语| 欧美成人午夜免费资源| 99国产精品免费福利视频| 国产真实伦视频高清在线观看| 久久影院123| 妹子高潮喷水视频| 欧美激情国产日韩精品一区| 久久99精品国语久久久| 久久影院123| 国产视频内射| 精品一品国产午夜福利视频| 身体一侧抽搐| 高清日韩中文字幕在线| 久久午夜福利片| 伊人久久国产一区二区| 免费观看av网站的网址| 久久久久久久久大av| 能在线免费看毛片的网站| 在线观看人妻少妇| 波野结衣二区三区在线| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 老女人水多毛片| 最近中文字幕2019免费版| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 日韩视频在线欧美| 中文天堂在线官网| 激情五月婷婷亚洲| 久久精品久久久久久久性| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 日本av免费视频播放| 中文天堂在线官网| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| kizo精华| 日韩中字成人| 久久午夜福利片| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 亚洲精品456在线播放app| 国产精品不卡视频一区二区| 亚洲精品亚洲一区二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲aⅴ乱码一区二区在线播放| a级毛色黄片| 在线观看免费视频网站a站| 日韩在线高清观看一区二区三区| 亚洲av国产av综合av卡| 精品久久久久久久久亚洲| 在线观看国产h片| a级毛色黄片| 国产成人精品福利久久| 成人国产麻豆网| 成人无遮挡网站| 老师上课跳d突然被开到最大视频| 亚洲成色77777| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 人人妻人人看人人澡| 欧美精品一区二区免费开放| 天天躁日日操中文字幕| 成人综合一区亚洲| 国产精品无大码| 精品久久久久久久末码| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 免费人妻精品一区二区三区视频| av国产精品久久久久影院| 国产乱人偷精品视频| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 免费看日本二区| 久久国产精品大桥未久av | 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜 | 精品一区二区三区视频在线| 亚洲精品一区蜜桃| 永久网站在线| 成人漫画全彩无遮挡| 国产在线一区二区三区精| 成人毛片60女人毛片免费| 国产综合精华液| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 少妇精品久久久久久久| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 久久久久人妻精品一区果冻| 香蕉精品网在线| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 国产精品久久久久久精品古装| 欧美区成人在线视频| 搡老乐熟女国产| 日日啪夜夜爽| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 欧美97在线视频| 欧美日韩在线观看h| 性色avwww在线观看| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件| 亚洲欧美日韩另类电影网站 | 少妇人妻一区二区三区视频| 亚洲综合精品二区| 人人妻人人爽人人添夜夜欢视频 | 丝袜喷水一区| 国产精品久久久久久久电影| 一级片'在线观看视频| 干丝袜人妻中文字幕| 我的老师免费观看完整版| 欧美日韩视频高清一区二区三区二| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 能在线免费看毛片的网站| 在线播放无遮挡| 欧美精品一区二区免费开放| 亚洲av免费高清在线观看| 看免费成人av毛片| 有码 亚洲区| 欧美成人午夜免费资源| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 国产美女午夜福利| 亚洲色图av天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 国产免费一区二区三区四区乱码| 天堂8中文在线网| 26uuu在线亚洲综合色| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品久久久久久久性| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| h视频一区二区三区| 免费播放大片免费观看视频在线观看| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 国产精品爽爽va在线观看网站| 欧美成人午夜免费资源| 国产成人精品久久久久久| 午夜福利视频精品| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 国产精品久久久久久精品古装| 亚洲av日韩在线播放| 男男h啪啪无遮挡| 日韩电影二区| 日日撸夜夜添| 欧美丝袜亚洲另类| 岛国毛片在线播放| 国产精品一及| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 久久97久久精品| 人人妻人人看人人澡| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 大香蕉久久网| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 六月丁香七月| 内射极品少妇av片p| 在线观看三级黄色| 久久久久久久大尺度免费视频| 男人舔奶头视频| 久久久久精品性色| 国产av精品麻豆| 免费观看无遮挡的男女| 色5月婷婷丁香| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| 最新中文字幕久久久久| 热re99久久精品国产66热6| 两个人的视频大全免费| 97热精品久久久久久| 国产欧美亚洲国产| 99九九线精品视频在线观看视频| 国产欧美日韩精品一区二区| 日韩大片免费观看网站| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久小说| 天堂俺去俺来也www色官网| 久久精品人妻少妇| 大香蕉97超碰在线| 国产熟女欧美一区二区| 丰满少妇做爰视频| 岛国毛片在线播放| 偷拍熟女少妇极品色| 成年女人在线观看亚洲视频| 亚州av有码| 精品亚洲成国产av| 亚洲综合色惰| 免费看av在线观看网站| 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 中文字幕精品免费在线观看视频 | 九九在线视频观看精品| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 国产亚洲最大av| 人妻 亚洲 视频| 大码成人一级视频| 极品少妇高潮喷水抽搐| 国产精品秋霞免费鲁丝片| 欧美极品一区二区三区四区| 国产精品无大码| 美女高潮的动态| 在线观看免费日韩欧美大片 | 日产精品乱码卡一卡2卡三| 亚洲国产色片| 国产精品久久久久久久电影| 插阴视频在线观看视频| 熟女电影av网| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 久久97久久精品| 久久久久国产网址| 激情五月婷婷亚洲| 国产日韩欧美亚洲二区| 精品一区二区免费观看| 日日啪夜夜爽| 亚洲av.av天堂| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 亚洲av男天堂| 国产乱人偷精品视频| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 中文字幕免费在线视频6| av国产免费在线观看| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 成人国产麻豆网| 高清毛片免费看| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| 久久久久久久久久久丰满| 日韩伦理黄色片| av线在线观看网站| 久久久久久伊人网av| videos熟女内射| 亚州av有码| 久久婷婷青草| 国产精品欧美亚洲77777| 日韩电影二区| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 久久国产精品男人的天堂亚洲 | 日韩中文字幕视频在线看片 | 日韩中文字幕视频在线看片 | 亚洲精品乱久久久久久| 99热这里只有是精品50| 啦啦啦在线观看免费高清www| 久热这里只有精品99| 男女国产视频网站| 亚洲性久久影院| 啦啦啦视频在线资源免费观看| 一个人看的www免费观看视频| 性色avwww在线观看| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡 | 日韩av免费高清视频| 国产精品国产av在线观看| 舔av片在线| 伊人久久精品亚洲午夜| av卡一久久| 人妻夜夜爽99麻豆av| 午夜激情福利司机影院| av免费观看日本| 又爽又黄a免费视频| 夫妻午夜视频| 亚洲,欧美,日韩| 能在线免费看毛片的网站|