• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amplitude modulation and extreme events in turbulent channel flow

    2018-03-19 02:06:29YaoHuangXu
    Acta Mechanica Sinica 2018年1期

    Y.C.Yao·W.X.Huang·C.X.Xu

    1 Introduction

    In the last few decades,research on wall-bounded turbulent flow has highlighted the existence of superstructures or very large-scale motions at high Reynolds number[1–3].The strength of these large-scale motions increases with the Reynolds number,and their emergence significantly influences smaller-scale structures over a range of wall-normal locations[4–6].Such amplitude modulation in turbulent shear flows,in which large-scale motion influences the small-scale intensity,was observed experimentally by Brown and Thomas[7]and Bandyopadhyay and Hussain[8].They found that a high degree of coupling exists between the high-and low-pass-filtered signals.This interaction between the turbulent structures at different scales was further investigated by Hutchins and Marusic[5]by examining both superposition and modulation effects.In their study,the effects of amplitude modulation were analyzed quantitatively using the correlation coefficient,in which the velocity fluctuations are decomposed into large-and smallscale components using a spectral filter,and the envelope of the small-scale fluctuation is obtained by applying a Hilbert transform[9].The two-point correlation map was constructed by Bernardini and Pirozzoli[10],who also presented a refined description of the top-down influence of large-scale outer events on the inner part of wall turbulence.With regards to other flow variables,Talluru et al.[11]and Agostini et al.[12]pointed out that all three velocity components and the Reynolds shear stress are modulated by the large-scale streamwise fluctuations in a similar manner.Meanwhile,by counting the number of local maxima or minima in the small-scale signal,the impact of the largescale outer motions on the frequency of the signal in the inner region was analyzed by Ganapathisubramani et al.[13].Concerning both the amplitude modulation and frequency modulation,Baars et al.[14]developed a robust tool based on wavelet analysis to quantify these two mechanisms.Based on the discovery of this interaction between inner and outer regions,the following predictive model for the inner-region turbulence fluctuations was developed[15,16]

    Although the above-cited literature studies provide insight into “top-down”large-scale modulation,their connection to near-wall extreme events remains obscure.In the present study,we investigated the effects of the Reynolds number on amplitude modulation using direct numerical simulation of turbulent channel flow at friction Reynolds numberR eτ=540,1000,2000.The modulation strength was quantified using the outer–inner peak in the two-point modulation correlation map.Modulation effects were clearly discernible in the tail portion of the probability density function(PDF)and were quantitatively measured using the flatness factor.In addition,inverse flow,as a special case of a near-wall extreme event,was also proved to be closely related to the amplitude modulation.By taking the conditional average of these extreme rare events,the large-scale vortical structures related to the turbulence modulation were extracted.

    2 Numerical setup and scale-separation methodology

    The analysis was based on direct numerical simulation of turbulent channel flow.Simulations were carried out at three different Reynolds numbers,i.e.,R eτ=uτh/ν=540,1000,2000,wherehis the channel half-width anduτis the friction velocity.The Fourier–Galerkin method was applied in the periodic stream wise(x)and span wise(z)directions.Discretization in the wall-normal(y)direction was achieved using the Chebyshev polynomial for theR eτ=1000 case,while the seven-point compact finite difference was applied for the other two simulations.The third-order time-splitting method was used for temporal discretization.Detailed parameters of the simulations are summarized in Table 1.The computational domain spannedL x=8πhandL z=3πhfor the two lower Reynolds number cases,and 2πh×πhfor theR eτ=2000 case to save computational cost.Turbulence statistics from the present simulations were compared with published DNS channel data[30,31],showing good agreement(Fig.1).

    To analyze the modulation effects,the flow signals were decomposed into large-and small-scale components by applying spectral filtering in the streamwise direction.In the present study,the streamwise wavelength separating large and small scales was chosen to be the channel half widthh.Though clear scale separation is not presented at the current Reynolds numbers up toR eτ=2000,qualitative analysis is valid regarding the influence of modulation with increasing Reynolds number.The modulation effect on wall turbulence was defined as the influence of the largescale fluctuation in the log region on the amplitude of the small-scale signals in the near-wall region.To analyze this phenomenon,the amplitude modulation coefficient proposed by Mathis et al.[9]was used here,specifically the correlation of the large-scale streamwise velocity componentuLand the low-pass-filtered envelope of the small-scale signals.The amplitude modulation correlation coefficient was calculated asR(uL,EL(uS)),where the subscripts “L”and “S”indicate large-and small-scale signals obtained by Fourier spectral filtering, and the signal envelope reflecting the amplitude strength was obtained by Hilbert transformation.

    Table 1 Computational parameters

    Fig.1 Root-mean-square velocity fluctuations at R eτ=540,compared with published DNS channel data(Lozano-Durán and Jiménez[30];Lee and Moser[31])

    3 Results and discussion

    3.1 Modulation covariance map

    Benefiting from the complete data of the whole flow field that is available in direct numerical simulations,the two point cross-plane correlation was analyzed in the present study to investigate the outer–inner modulation relationship.The two-point amplitude modulation coefficient was defined as the correlation between the large-scale streamwise velocity at one wall-normal locationy1and the low-pass-filtered envelope of the small-scale signals at another wall-normal positiony2[10,32].Investigation of the correlation between any two wall-normal positions provides better perception of the range of influence and strength of the large-scale signal.The amplitude modulation coefficient for the velocity componentsvandwwas specified as follows

    3.2 Probability density function under modulation

    The analysis presented above based on the covariance map indicates that the modulation strength is most significant in the vicinity of the wall.In addition,the wall-normal velocityvis not expected to have a superposition contribution from the outer large-scale motions,according to its energy spectra[33].Therefore,the major influence of the outer large-scale motion on the wall-normal velocityvin the near-wall region is through amplitude modulation.Note that,if near-wall signals were not modulated by the outer large-scale structure,their PDF profiles would be independent of Reynolds number.However,as the Reynolds number increases,both the modulation coefficientβand the intensity ofuOLin Eq.(1)increase[9],therefore theβuOLterm has greater influence at higher Reynolds number.The PDF of the wall-normal velocityvaty+=1 is shown in Fig.3.For positive largescale velocityuOL>0,the universal signal is modulated by a larger fluctuation amplitude,leading to an extended tail in the PDF profile.In contrast,for negative large-scale velocityuOL<0,the PDF distribution naturally shrinks towards the center due to the attenuation of the magnitude.These phenomena are clearly seen in the PDF profile ofvin Fig.3.It is obvious that,as the Reynolds number increases,larger values occur in both the tail and center portion of the PDF distribution,while the shoulder part decreases accordingly,since the area integration under the PDF profile is unity.

    Fig.2 Map of two-point cross-plane amplitude modulation coefficients a A M v and b A M w for Reynolds number R eτ=540,1000,2000 from left to right;dashed line indicates the center of the log region

    For the PDF tail region,the expanded profile implies that rare events with extraordinarily high fluctuations occur.This is hardly discernible in the “universal”signal,which is stripped off the influence from the outer region.Therefore,special attention should be paid to the extreme rare events which arise in the PDF tail region.The outer positive velocity promotes the near-wall fluctuations to unprecedented high levels,thus the occurrence of these extraordinary rare events makes them a reasonable choice for studying the modulation phenomenon.

    Fig.3 PDF for wall-normal velocity v normalized by root-mean-square value vrms at y+=1.a Plotted on logarithmic scale focusing on the PDF tail region.b Plotted on uniform scale focusing on PDF central region

    Fig.4 Flatness of v along the wall-normal direction.a Inner scale.b Outer scale.dashed line is the flatness of the universal wall-normal velocity v?,where v? is obtained from the DNS data at R eτ=180 according to the predictive model

    The flatness factor is a quantitative measure of the PDF tail weight.Consequently,the high probability of extraordinary extreme events induced by modulation from the positive outer large-scale streamwise velocity naturally leads to high flatness.Figurepresents the flatness factor of the wall normal velocity at the three Reynolds numbers.In addition,the flatness of the universal signalv?is also plotted on the same diagram.The universal signal is calculated according to the predictive model using the DNS data at the even lower Reynolds number ofR eτ=180,at which the large-scale influence marginally exists.In all the cases,the flatness of the wall-normal velocityF vreaches a very high value in the viscous sublayer and gradually decreases a way from the wall,and the flatness in the wall vicinity is mostly promoted as the Reynolds number increases,corresponding to the enhanced PDF tail seen in the inset of Fig.3a.

    Considering the cross-plane relationship at two distinct wall-normal locations,the joint PDF of the large-scale outer-region streamwise velocity(uOL)and the near-wall vertical and spanwise velocity(vIandwI)is shown in Fig.5.If the signals in the vicinity of the wall are modulated in their amplitude,then there will be higher variance underneath the outer high-speed structure,with expanded joint PDF profile foruOL>0,and vice versa.The joint PDF at all three Reynolds numbers is shown in this figure,with only low-probability contours presented to focus on extreme events.The probability outside the enclosed contour line is logarithmically distributed,with probability ranging from 10?1to 10?5in ratio of 10.As revealed by the distribution of these rare events,the near-wall variance under the conditionuOL>0 is much larger than that foruOL<0,indicating that inner signals are indeed influenced by modulation from the large-scale structure.

    Fig.5 Scrutiny of joint PDF to show modulation effects.The horizontal coordinate uOL represents the large-scale streamwise velocity fluctuation The vertical coordinate,a vI,and b wI,corresponds to the vertical and spanwise velocity at y+=5,respectively.Contour lines are plotted on logarithmic scale,focusing on extreme rare events,with probability outside the contour equally spaced logarithmically from 10?1 to 10?5 with ratio of 10.Contour line colors for the three Reynolds case are black for R eτ=540,red for 1000,and blue for 2000

    Fig.6 Wall-normal distribution of backflow probability.a Inner scale.b Outer scale

    3.3 Backflow and near-wall extreme events

    Counter intuitively,reverse flows with negative streamwise velocities are observed in both turbulent boundary layer and channel flows[27,34].To investigate the Reynolds number effects on the backflow events,the wall-normal distribution of the backflow probability at the three Reynolds numbers is shown in Fig.6.The backflow probability was calculated at each vertical position,defined as the ratio of the negative velocity area and the total wall-parallel plane area.It is seen that backflow events only occur within the viscous sublayer,with highest probability adjacent to the wall,gradually decreasing to 0 wheny+>10.It is noteworthy that the inverse flow probability at wall position is less than 0.05%atR eτ=540 and increases beyond 0.07%atR eτ=2000,consistent with the findings of Lenaers et al.[26].Figure 7 provides more evidence for the relationship between the backflow and the modulation from large-scale motions based on the joint probability distribution of the streamwise velocity at different wall-normal positions.In this figure,the horizontal ordinate represents the large-scale streamwise velocity fluctuation at the center of the log regiony+=92,while the vertical coordinate corresponds to the streamwise velocity extracted at the first off-wall grid positiony+=0.04.Only extreme events are considered in the graph,with the probability outside the contour lines logarithmically equally spaced from 10?1to 10?6with ratio of 10.As the large-scale motion becomes progressively stronger with increasing Reynolds number,the modulation effect from large-scale structures also intensifies,leading to high probability of rare extreme events.It is evident that,at near-wall locations beneath the outer high-speed motion,the fluctua-tion expansion caused by modulation is more striking than the tilting contour along the first and third quadrants caused by superposition.The above discussion isin accordance with the conclusions of Lenaers et al.[26],who found based on instantaneous flow snapshots that most rare events occurred below large-scale motions with positive sign.

    Fig.7 Joint PDF of u′at center log region y+=92 and u at the first off-wall grid position y+=0.04 at Reτ=540,focusing on nearwall backflow events underneath high-speed structure in the log region.Only extreme events are considered in the graph,with the probability outside the contour lines logarithmically equally spaced from 10?1 to 10?6 with ratio of 10.Backflow events are located under the horizontal dashed line

    As discussed above,the influence of the modulation from positive velocity in the log region can induce extremely high fluctuation events in the near-wall region.Therefore,it is reasonable to take advantage of this mechanism to further explore the turbulence structures that are related to the inner–outer interaction by taking the conditional average of the extreme rare events.Here,we took the conditional average of the DNS data obtained atR eτ=540,while the averaged flow field was obtained on the condition of extreme velocity events at the first off-wall grid positiony+=0.04.Figurepresents the isosurface of the positive streamwise velocity fluctuationu′/Um=0.03 in this conditionally averaged flow field obtained using the criteriav>10vrms,v<?10vrms,w>7wrms,andw<?7wrms,respectively.Each of these four cases accounts for only about 0.04%of the occurrence probability on the horizontal plane,with statistical sample number of 15,000.As presented in this figure,the near-wall extreme events lie at the bottom of the high-speed large-scale structure that extends from the wall to the outer logarithmic region,and the structure inclines upward at an angle of around 13?? 16?in the downstream direction.The largescale structure obtained in the present study is in accordance with the conditionally averaged field obtained using zerofriction-point criteria[28],which represents a line slanting at 14?to the streamwise direction demarcating high-and low-speed regions.Meanwhile,the present structure also conforms to the observations by Marusic and Heuer[35],who obtained a maximum modulation coefficient along the 14?incline angle using correlation analysis.The high-speed structures extracted using these different conditional criteria are almost identical,showing no obvious distinction between the structures obtained using the imposed extreme condition with either positive or negative value,or either wall-normal orspanwise velocity components.This demonstrates that the near-wall extreme events in different velocity components are generated by a similar mechanism,with the emergence of near-wall rare events accompanied by the high-speed largescale structure above.

    To scrutinize the modulation mechanism that the highs peed outer structure appears on top of the near-wall extreme events,we resorted to the streamlines for an explanation.Figure 9 depicts the averaged streamlines under the extreme event condition ofv>10vrmsatR eτ=540.It is clear that the emergence of the high-speed structure in the log region is induced by the sweeping motion of a pair of largescale roll cells,which carry higher-speed fluid downward and form large-scale high-speed motions.The roll cells have scales comparable to the geometric size of the channel,originating from the wall and inclining downstream,and finally extending to the central plane of the channel.In the streamwise and spanwise directions,the roll cell extends beyond 3hand 0.8h,respectively.Streamlines between the roll cells are distorted downward,impinging towards the wall and causing local wall splash.Such wall splashing generates vortices on a range of scales,and is accordingly reflected in higher fluctuation intensity at near-wall locations.This explanation validates that the modulation mechanism is indeed closely associated with large-scale circulating flow,and therefore the modulation strength intensifies with increase of the Reynolds number.

    Fig.8 Isosurface of positive streamwise velocity fluctuations u′/Um = 0.03 associated with conditionally averaged near-wall extreme events.The criteria for the conditional averaging for the four figures from top to bottom are a v> 10vrms,b v< ?10vrms,c w>7wrms,and d w<?7wrms,respectively,at the first near-wall grid position y+=0.04

    Fig.9 Streamline associated with conditionally averaged extreme events v> 10vrms at R eτ=540.a Top view.b Side view.Isosurface represents u′/Um=0.03

    4 Conclusions

    Amplitude modulation is analyzed using DNS of turbulent channel flows at three different friction Reynolds numbersR eτ=540,1000,2000.Modulation strength can be quantified by the peak value in the two-point modulation correlation map,which increases with the Reynolds number.Meanwhile,modulation effects are clearly reflected in the PDF pro file as an enlargement of the center and tail portion.The extension of the PDF tail indicates that extraordinary high fluctuation events are provoked by the modulation,and such events can be measured by the flatness factor.Moreover,by taking the conditional average of these near-wallrare events,large-scale roll cells associated with modulation are revealed.Structurally,the pair of counter-rotating roll cells can induce strong sweep motions and form a high-speed region in between.Also,as shown by the streamlines,fluid at near-wall locations impinges towards the wall,leading to wall splash that promotes near-wall fluctuations.

    AcknowledgementsThe work was supported by the National Natural Science Foundation of China(Grants 11490551,11472154,and 11322221).

    1.Adrian,R.J.,Meinhart,C.D.,Tomkins,C.D.:Vortex organization in the outer region of the turbulent boundary layer.J.Fluid Mech.422,1–54(2000)

    2.Jiménez,J.,Del álamo,J.C.,Flores,O.:The large-scale dynamics of near-wall turbulence.J.Fluid Mech.505,179–199(2004)

    3.Hutchins,N.,Marusic,I.:Evidence of very long meandering features in the logarithmic region of turbulent boundary layers.J.Fluid Mech.579,1–28(2007)

    4.Abe,H.,Kawamura,H.,Choi,H.:Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re-tau=640.J.Fluid Eng.126,835–843(2004)

    5.Hutchins,N.,Marusic,I.:Large-scale influences in near-wall turbulence.Philos.Trans.R.Soc.A 365,647–664(2007)

    6.Agostini,L.,Leschziner,M.A.:On the influence of outer largescale structures on near-wall turbulence in channel flow.Phys.Fluids 26,075107(2014)

    7.Brown,G.L.,Thomas,A.S.:Large structure in a turbulent boundary layer.Phys.Fluids 20,S243–S252(1977)

    8.Bandyopadhyay,P.R.,Hussain,A.K.M.F.:The coupling between scales in shear flows.Phys.Fluids 27,2221–2228(1984)

    9.Mathis,R.,Hutchins,N.,Marusic,I.:Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers.J.Fluid Mech.628,311–337(2009)

    10.Bernardini,M.,Pirozzoli,S.:Inner/outer layer interactions in turbulent boundary layers:A refined measure for the large-scale amplitude modulation mechanism.Phys.Fluids23,061701(2011)

    11.Talluru,K.M.,Baidya,R.,Hutchins,N.,et al.:Amplitude modulation of all three velocity components in turbulent boundary layers.J.Fluid Mech.746,690–703(2014)

    12.Agostini,L.,Leschziner,M.,Gaitonde,D.:Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures.Phys.Fluids 28,015110(2016)

    13.Ganapathisubramani,B.,Hutchins,N.,Monty,J.P.,et al.:Amplitude and frequency modulation in wall turbulence.J.Fluid Mech.712,61–91(2012)

    14.Baars,W.J.,Talluru,K.M.,Hutchins,N.,et al..:Wavelet analysis of wall turbulence to study large-scale modulation of small scales.Exp.Fluids 56,1–15(2015)

    15.Marusic,I.,Mathis,R.,Hutchins,N.:Predictive model for wallbounded turbulent flow.Science 329,193–196(2010)

    16.Mathis,R.,Hutchins,N.,Marusic,I.:A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows.J.Fluid Mech.681,537–566(2011)

    17.Mathis,R.,Marusic,I.,Chernyshenko,S.I.,et al.:Estimating wallshear-stress fluctuations given an outer region input.J.Fluid Mech.715,163–180(2013)

    18.Chernyshenko,S.I.,Marusic,I.,Mathis,R.:Quasi-steady description of modulation effects in wall turbulence.arXiv:1203.3714.(2012)

    19.Zhang,C.,Chernyshenko,S.I.:Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence.Phys.Rev.Fluids 1,014401(2016)

    20.Marusic,I.,Baars,W.J.,Hutchins,N.:An extended view of the inner-outer interaction model for wall-bounded turbulence using spectral linear stochastic estimation.Proc.Eng.126,24–28(2015)

    21.Inoue,M.,Mathis,R.,Marusic,I.,et al.:Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations.Phys.Fluids 24,075102(2012)

    22.Schlatter,P.,Orlu,R.:Quantifying the interaction between large and small scales in wall-bounded turbulent flows:A note of caution.Phys.Fluids 22,051704(2010)

    23.Mathis,R.,Marusic,I.,Hutchins,N.,et al..:The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers.Phys.Fluids 23,121702(2011)

    24.Duvvuri,S.,Mckeon,B.J.:Triadic scale interactions in a turbulent boundary layer.J.Fluid Mech.767,R4(2015)

    25.Xu,C.,Zhang,Z.,Dentoonder,J.M.J.,et al.:Origin of high kurtosis levels in the viscous sublayer.Direct numerical simulation and experiment.Phys.Fluids 8,1938–1944(1996)

    26.Lenaers,P.,Li,Q.,Brethouwer,G.,et al.:Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence.Phys.Fluids 24,035110(2012)

    27.Hu,Z.W.,Morfey,C.L.,Sandham,N.D.:Wall pressure and shear stress spectra from direct simulations of channel flow.AIAA J.44,1541–1549(2006)

    28.Cardesa,J.I.,Monty,J.P.,Soria,J.,et al..:Skin-friction critical points in wall-bounded flows.J.Phys.Conf.Ser.506,012009(2014)

    29.Brucker,C.:Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging.Phys.Fluids 27,031705(2015)

    30.Lozano-Durán,A.,Jiménez,J.:Effect of the computational domain on direct simulations of turbulent channels up to Re-tau=4200.Phys.Fluids 26,011702(2014)

    31.Lee,M.,Moser,R.D.:Direct numerical simulation of turbulent channel flow up to Re-tau approximate to 5200.J.Fluid Mech.774,395–415(2015)

    32.Eitel-Amor,G.,?rlü,R.,Schlatter,P.:Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ=8300.Int.J.Heat Fluid Flow 47,57–69(2014)

    33.Smits,A.J.,McKeon,B.J.,Marusic,I.:High-Reynolds number wall turbulence.Ann.Rev.Fluid Mech.43,353–375(2011)

    34.Spalart,P.R.,Coleman,G.N.:Numerical study of a separation bubble with heat transfer.Eur.J.Mech.B-Fluid 16,169–189(1997)

    35.Marusic,I.,Heuer,W.D.C.:Reynolds number invariance of the structure inclination angle in wall turbulence.Phys.Rev.Lett.99,114504(2007)

    中文精品一卡2卡3卡4更新| 精品久久久久久久人妻蜜臀av| 久久久久久久精品精品| 深夜a级毛片| 亚洲性久久影院| 蜜桃久久精品国产亚洲av| 王馨瑶露胸无遮挡在线观看| 久久人人爽人人爽人人片va| 久久精品国产自在天天线| 99久久精品一区二区三区| 国内精品宾馆在线| 日韩三级伦理在线观看| 天天躁夜夜躁狠狠久久av| 波多野结衣巨乳人妻| 国产精品久久久久久久久免| 韩国av在线不卡| 777米奇影视久久| 亚洲精品自拍成人| 国产伦在线观看视频一区| 国产一区有黄有色的免费视频| 下体分泌物呈黄色| 亚洲最大成人av| 国产精品偷伦视频观看了| 色网站视频免费| 国产伦理片在线播放av一区| 国产视频内射| av卡一久久| 各种免费的搞黄视频| 天天躁夜夜躁狠狠久久av| 老司机影院毛片| 欧美人与善性xxx| 亚洲欧美中文字幕日韩二区| 一级二级三级毛片免费看| 精品一区二区免费观看| 国内少妇人妻偷人精品xxx网站| 在线精品无人区一区二区三 | 色哟哟·www| 亚洲精品成人久久久久久| 亚洲欧美一区二区三区黑人 | 亚洲国产精品国产精品| 男人爽女人下面视频在线观看| 一二三四中文在线观看免费高清| 久久国产乱子免费精品| 国产av码专区亚洲av| 亚洲精华国产精华液的使用体验| 久久久a久久爽久久v久久| 性色av一级| 大香蕉97超碰在线| 久久精品久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av国产av综合av卡| 亚洲精华国产精华液的使用体验| 内地一区二区视频在线| 人妻少妇偷人精品九色| 亚洲,一卡二卡三卡| 国产国拍精品亚洲av在线观看| 26uuu在线亚洲综合色| 欧美精品人与动牲交sv欧美| 看十八女毛片水多多多| 人妻 亚洲 视频| 亚洲久久久久久中文字幕| 狂野欧美激情性bbbbbb| 亚洲婷婷狠狠爱综合网| 激情五月婷婷亚洲| 亚洲一级一片aⅴ在线观看| 91aial.com中文字幕在线观看| 国内精品美女久久久久久| 十八禁网站网址无遮挡 | 亚洲国产精品专区欧美| 波野结衣二区三区在线| 成年女人在线观看亚洲视频 | 人体艺术视频欧美日本| 天堂网av新在线| 99热这里只有精品一区| 亚洲欧美一区二区三区国产| 18禁在线无遮挡免费观看视频| 日韩强制内射视频| 色吧在线观看| 亚洲天堂av无毛| 日韩av在线免费看完整版不卡| 六月丁香七月| 一级毛片 在线播放| 欧美日韩精品成人综合77777| 亚洲真实伦在线观看| 欧美人与善性xxx| 久久久久久久亚洲中文字幕| 亚洲图色成人| 免费看av在线观看网站| 最近手机中文字幕大全| 午夜免费鲁丝| 国产视频首页在线观看| 久久久国产一区二区| 搡女人真爽免费视频火全软件| 国产精品无大码| 亚洲欧美精品专区久久| 大陆偷拍与自拍| 三级经典国产精品| 女人久久www免费人成看片| 日韩av不卡免费在线播放| 国产白丝娇喘喷水9色精品| 国产乱人偷精品视频| 天堂俺去俺来也www色官网| 好男人在线观看高清免费视频| 亚洲综合精品二区| 午夜福利视频精品| 欧美成人a在线观看| 国产精品爽爽va在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲人与动物交配视频| 亚洲四区av| 亚洲婷婷狠狠爱综合网| 久久97久久精品| 国产精品女同一区二区软件| 97在线视频观看| 又粗又硬又长又爽又黄的视频| 久久久久久伊人网av| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 亚洲精品自拍成人| 国产免费一级a男人的天堂| 人妻夜夜爽99麻豆av| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 国产探花极品一区二区| 熟女av电影| 日韩在线高清观看一区二区三区| 人妻 亚洲 视频| 人妻 亚洲 视频| 久久久欧美国产精品| 亚洲精品一二三| 精品亚洲乱码少妇综合久久| 老女人水多毛片| 久久精品国产a三级三级三级| 特大巨黑吊av在线直播| 嘟嘟电影网在线观看| 国产v大片淫在线免费观看| 日韩 亚洲 欧美在线| 精品少妇久久久久久888优播| 久久综合国产亚洲精品| 青青草视频在线视频观看| 欧美另类一区| 国产精品三级大全| 日本与韩国留学比较| 夫妻性生交免费视频一级片| 国产久久久一区二区三区| 熟妇人妻不卡中文字幕| 国产91av在线免费观看| 国产黄色视频一区二区在线观看| 乱系列少妇在线播放| 亚洲精品国产av成人精品| 久久午夜福利片| 欧美日韩国产mv在线观看视频 | 久久久成人免费电影| 日韩制服骚丝袜av| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 精品国产乱码久久久久久小说| av播播在线观看一区| 国产精品成人在线| av免费观看日本| 亚洲国产av新网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲av免费在线观看| 一级a做视频免费观看| 欧美国产精品一级二级三级 | 三级国产精品片| 免费看日本二区| 国产精品99久久99久久久不卡 | 岛国毛片在线播放| eeuss影院久久| 精品人妻偷拍中文字幕| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕| 亚洲真实伦在线观看| 国产 一区精品| 婷婷色综合大香蕉| 少妇被粗大猛烈的视频| 国产精品av视频在线免费观看| 99热网站在线观看| 99热网站在线观看| 色吧在线观看| 久久久精品94久久精品| 日本av手机在线免费观看| 日本欧美国产在线视频| 国产美女午夜福利| 极品教师在线视频| 久久这里有精品视频免费| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱码久久久久久按摩| 国产黄色免费在线视频| 日本色播在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品av视频在线免费观看| 免费av毛片视频| 久久人人爽人人爽人人片va| 狂野欧美激情性xxxx在线观看| 偷拍熟女少妇极品色| 免费观看无遮挡的男女| 国语对白做爰xxxⅹ性视频网站| 成年人午夜在线观看视频| 欧美xxxx性猛交bbbb| 国产精品国产三级国产专区5o| 亚洲成人一二三区av| 精品99又大又爽又粗少妇毛片| 尤物成人国产欧美一区二区三区| 国产色婷婷99| kizo精华| 亚洲经典国产精华液单| 亚洲国产高清在线一区二区三| 久久久亚洲精品成人影院| 亚洲欧美精品专区久久| 久久久成人免费电影| 久久影院123| 美女xxoo啪啪120秒动态图| 国产精品爽爽va在线观看网站| 欧美一区二区亚洲| 日本欧美国产在线视频| 乱系列少妇在线播放| 极品教师在线视频| 日韩一区二区视频免费看| 国产精品不卡视频一区二区| 天天一区二区日本电影三级| 老司机影院毛片| 日韩欧美 国产精品| 深夜a级毛片| 久久久久久久久大av| 大片电影免费在线观看免费| 深爱激情五月婷婷| 成人无遮挡网站| 欧美xxxx黑人xx丫x性爽| 综合色av麻豆| 成人特级av手机在线观看| av又黄又爽大尺度在线免费看| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 亚洲最大成人手机在线| 韩国av在线不卡| 蜜桃久久精品国产亚洲av| 精品一区二区三卡| 久久鲁丝午夜福利片| 国产黄片美女视频| 亚洲精品视频女| 久久久成人免费电影| 性色av一级| 国产老妇伦熟女老妇高清| 亚洲成人一二三区av| 国产色爽女视频免费观看| 在线精品无人区一区二区三 | 日韩国内少妇激情av| 成人毛片60女人毛片免费| 亚洲真实伦在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久韩国三级中文字幕| 一级黄片播放器| 成人毛片a级毛片在线播放| 久久女婷五月综合色啪小说 | 大码成人一级视频| 一级二级三级毛片免费看| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 国产在线一区二区三区精| 久久久欧美国产精品| 大陆偷拍与自拍| eeuss影院久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产美女午夜福利| 久久精品国产a三级三级三级| 美女视频免费永久观看网站| 日本黄色片子视频| 日本一本二区三区精品| 日韩国内少妇激情av| 亚洲精品aⅴ在线观看| 99热国产这里只有精品6| 一级a做视频免费观看| 毛片一级片免费看久久久久| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久| 国产伦理片在线播放av一区| freevideosex欧美| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 国产v大片淫在线免费观看| 99久久精品一区二区三区| 国产av码专区亚洲av| 婷婷色综合大香蕉| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 亚洲天堂国产精品一区在线| 亚洲最大成人中文| 国产爱豆传媒在线观看| 日韩不卡一区二区三区视频在线| 亚洲最大成人av| 成年人午夜在线观看视频| av黄色大香蕉| 欧美激情久久久久久爽电影| 只有这里有精品99| 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 干丝袜人妻中文字幕| 少妇的逼水好多| 国产爱豆传媒在线观看| 亚州av有码| 少妇猛男粗大的猛烈进出视频 | 国产男女超爽视频在线观看| 欧美日韩在线观看h| 激情 狠狠 欧美| 国产人妻一区二区三区在| 丝袜喷水一区| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 午夜激情久久久久久久| 丝袜美腿在线中文| 国产精品蜜桃在线观看| 国产精品国产av在线观看| 日韩人妻高清精品专区| 一级毛片 在线播放| 亚洲精品久久午夜乱码| 在线免费观看不下载黄p国产| 涩涩av久久男人的天堂| 岛国毛片在线播放| 国产精品福利在线免费观看| 久久精品综合一区二区三区| 高清欧美精品videossex| 直男gayav资源| 黄色一级大片看看| av播播在线观看一区| av一本久久久久| 国产淫片久久久久久久久| 真实男女啪啪啪动态图| 夫妻性生交免费视频一级片| 日韩中字成人| 色视频在线一区二区三区| 久久人人爽人人片av| 99久久精品一区二区三区| 在线看a的网站| 97超视频在线观看视频| 一个人观看的视频www高清免费观看| 国产精品久久久久久精品古装| 亚洲精华国产精华液的使用体验| 国产精品国产三级专区第一集| a级毛片免费高清观看在线播放| 中文乱码字字幕精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 国产一区二区在线观看日韩| 五月天丁香电影| 国产淫语在线视频| 精品久久久久久久久亚洲| 亚洲国产精品成人久久小说| 日韩电影二区| 国产免费一级a男人的天堂| 大码成人一级视频| 五月天丁香电影| 成人一区二区视频在线观看| 中文天堂在线官网| 国产成人精品婷婷| 黄色视频在线播放观看不卡| 久热这里只有精品99| 国产午夜福利久久久久久| 国产精品人妻久久久影院| 下体分泌物呈黄色| 国产精品人妻久久久久久| 街头女战士在线观看网站| 丰满乱子伦码专区| 乱系列少妇在线播放| 国产午夜精品一二区理论片| 亚洲av日韩在线播放| 少妇人妻久久综合中文| 婷婷色综合www| 一级毛片aaaaaa免费看小| 午夜福利高清视频| 久久久精品94久久精品| 免费观看在线日韩| 国产 一区精品| 国产黄片视频在线免费观看| 欧美成人精品欧美一级黄| 内射极品少妇av片p| 亚洲天堂av无毛| 女人十人毛片免费观看3o分钟| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 99久国产av精品国产电影| 日本三级黄在线观看| 久久久久久久久久人人人人人人| 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 国产色婷婷99| 亚洲av欧美aⅴ国产| 久久久久久久午夜电影| 一级黄片播放器| 国产毛片在线视频| 深夜a级毛片| 丝袜美腿在线中文| av线在线观看网站| 成年女人看的毛片在线观看| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃 | 三级国产精品片| 成年版毛片免费区| 亚洲综合色惰| 午夜爱爱视频在线播放| 91狼人影院| 成人国产麻豆网| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 精品人妻视频免费看| 久久久色成人| 18+在线观看网站| 精华霜和精华液先用哪个| 在线观看免费高清a一片| av在线老鸭窝| 午夜福利在线在线| 国产免费视频播放在线视频| 国产一区有黄有色的免费视频| av.在线天堂| 久久ye,这里只有精品| 久久久久久久国产电影| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 禁无遮挡网站| 国产探花在线观看一区二区| 免费高清在线观看视频在线观看| av在线播放精品| 观看免费一级毛片| 久久热精品热| 精品少妇久久久久久888优播| 别揉我奶头 嗯啊视频| 国内精品美女久久久久久| 亚洲最大成人av| 免费黄网站久久成人精品| 免费观看在线日韩| 久久久精品欧美日韩精品| 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线 | 免费人成在线观看视频色| 美女主播在线视频| 免费观看的影片在线观看| 人人妻人人看人人澡| 伦理电影大哥的女人| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 久久久久久国产a免费观看| 免费看av在线观看网站| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 热re99久久精品国产66热6| 夫妻性生交免费视频一级片| 日韩av免费高清视频| 免费看日本二区| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 99久久人妻综合| 国产永久视频网站| 国产av国产精品国产| 免费少妇av软件| 深夜a级毛片| 99久国产av精品国产电影| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 久久久久性生活片| 国产高清不卡午夜福利| 国产视频首页在线观看| av线在线观看网站| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 午夜免费观看性视频| 又大又黄又爽视频免费| 国产成人aa在线观看| 最近中文字幕2019免费版| 久久久精品欧美日韩精品| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 亚洲av免费高清在线观看| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 丝袜喷水一区| 精品人妻视频免费看| 久久国内精品自在自线图片| 国产成人freesex在线| 有码 亚洲区| 日本三级黄在线观看| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| 亚洲熟女精品中文字幕| 国产 精品1| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 夜夜爽夜夜爽视频| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 91在线精品国自产拍蜜月| 欧美潮喷喷水| 国产精品秋霞免费鲁丝片| 日韩一区二区三区影片| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 亚洲色图综合在线观看| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 国产人妻一区二区三区在| 国产av码专区亚洲av| 欧美zozozo另类| 伦精品一区二区三区| 精品久久久久久久久av| 国产乱人偷精品视频| 深夜a级毛片| 亚洲人与动物交配视频| 熟女电影av网| 欧美zozozo另类| 国产精品不卡视频一区二区| 亚洲自偷自拍三级| 内地一区二区视频在线| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 久久久久久久久久久免费av| 欧美性猛交╳xxx乱大交人| 国产免费又黄又爽又色| 久久久成人免费电影| 嘟嘟电影网在线观看| 国产精品偷伦视频观看了| av女优亚洲男人天堂| 欧美区成人在线视频| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 新久久久久国产一级毛片| 成人国产麻豆网| 特大巨黑吊av在线直播| 日产精品乱码卡一卡2卡三| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 久久女婷五月综合色啪小说 | 嫩草影院入口| 内射极品少妇av片p| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看一区二区三区激情| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线播| 日本午夜av视频| 亚洲精品456在线播放app| 国产精品成人在线| 国产视频内射| 日产精品乱码卡一卡2卡三| 狂野欧美激情性bbbbbb| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 免费av不卡在线播放| 黄色怎么调成土黄色| 高清视频免费观看一区二区| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| av线在线观看网站| 又大又黄又爽视频免费| 如何舔出高潮| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 视频区图区小说| 国产亚洲av片在线观看秒播厂| 一边亲一边摸免费视频| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 日韩视频在线欧美| 777米奇影视久久| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 真实男女啪啪啪动态图| 最近最新中文字幕免费大全7| 尤物成人国产欧美一区二区三区| 草草在线视频免费看| 亚洲美女搞黄在线观看| 视频区图区小说| 欧美成人午夜免费资源| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| 国产乱人偷精品视频| 久久久久久伊人网av| videos熟女内射| 丰满人妻一区二区三区视频av| 极品少妇高潮喷水抽搐| 国产精品一及| 国产大屁股一区二区在线视频| 成人国产av品久久久| 成人鲁丝片一二三区免费| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 深夜a级毛片| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 丝瓜视频免费看黄片| 精品一区二区免费观看| av黄色大香蕉| 各种免费的搞黄视频| 亚洲三级黄色毛片| 欧美另类一区| 人妻一区二区av| 久久6这里有精品| 少妇高潮的动态图| 18禁在线无遮挡免费观看视频|