孫世光,韓興軍,王 群,魏 盛,喬明琦
(1. 山東中醫(yī)藥大學(xué)第二附屬醫(yī)院藥學(xué)部,山東 濟(jì)南 250001;2. 山東省中西醫(yī)結(jié)合醫(yī)院藥學(xué)部,山東 濟(jì)南 250001;3. 山東中醫(yī)藥大學(xué)中醫(yī)藥經(jīng)典理論教育部重點(diǎn)實(shí)驗(yàn)室,山東 濟(jì)南 250355)
高架+字迷宮實(shí)驗(yàn)(elevated plus maze,EPM)[1]和高架〇迷宮實(shí)驗(yàn)(elevated zero maze,EZM)[2]是國(guó)際公認(rèn)的用于評(píng)價(jià)狀態(tài)焦慮動(dòng)物模型情緒反應(yīng)的經(jīng)典方法,廣泛應(yīng)用于精神神經(jīng)藥理學(xué)基礎(chǔ)研究。EPM和EZM都是基于實(shí)驗(yàn)動(dòng)物探索習(xí)性與外界危險(xiǎn)環(huán)境之間的矛盾沖突,都屬于非條件式行為性動(dòng)物模型;EPM和EZM作為狀態(tài)焦慮動(dòng)物模型,常受實(shí)驗(yàn)動(dòng)物、實(shí)驗(yàn)環(huán)境、實(shí)驗(yàn)操作等諸多因素影響而導(dǎo)致結(jié)果不盡一致[3-4]。本研究采用描述性分析、聚類分析、因子分析、相關(guān)分析、一致性檢驗(yàn)等多種統(tǒng)計(jì)方法,初步探討EPM和EZM作為昆明小鼠狀態(tài)焦慮動(dòng)物模型的行為模式與結(jié)構(gòu)維度相關(guān)性等問(wèn)題。
1.1實(shí)驗(yàn)動(dòng)物昆明小鼠,♂/♀,由山東大學(xué)實(shí)驗(yàn)動(dòng)物中心提供,許可證號(hào):SYXK(魯)20130001。室溫(20±2)℃,光照12 h(18 ∶00~6 ∶00)和黑暗12 h(6 ∶00~18 ∶00)環(huán)境,自由進(jìn)水飲食飼養(yǎng);預(yù)適應(yīng)環(huán)境1周后,選取體質(zhì)量(20±2)g小鼠進(jìn)入正式實(shí)驗(yàn)(所有實(shí)驗(yàn)均于6 ∶00~18 ∶00進(jìn)行)。
1.2實(shí)驗(yàn)裝置木質(zhì)+迷宮(65 cm×5 cm),包括3部分:兩相對(duì)開(kāi)臂區(qū)(30 cm×5 cm)、兩相對(duì)閉臂區(qū)并附有立墻(30 cm×5 cm×30 cm)、中央?yún)^(qū)(5 cm×5 cm)。十字迷宮離地面50 cm,實(shí)驗(yàn)由25 W紅燈泡離中央?yún)^(qū)40 cm高處照明[5]。木質(zhì)〇迷宮(? 50 cm×5 cm),包括2部分:兩相對(duì)開(kāi)臂區(qū)(? 50 cm×5 cm,1/4 〇)、兩相對(duì)閉臂區(qū)并附有立墻(? 50 cm×5 cm×30 cm,1/4 〇);〇迷宮離地面50 cm,實(shí)驗(yàn)由25 W紅燈泡離圓心40 cm高處照明[6]。
1.3實(shí)驗(yàn)操作操作者將小鼠放入EZM(開(kāi)臂區(qū)中間,頭面對(duì)圓心)或EPM(中央?yún)^(qū),頭面對(duì)開(kāi)臂區(qū)),用攝像系統(tǒng)記錄動(dòng)物5 min的行為變化,包括進(jìn)入時(shí)間及進(jìn)入次數(shù)。其中,小鼠4只爪子由一臂區(qū)進(jìn)入另一臂區(qū)方可開(kāi)始記錄實(shí)驗(yàn)參數(shù)。每只動(dòng)物實(shí)驗(yàn)結(jié)束后清除糞便,用70%乙醇噴灑箱底并用潔凈紗布抹干,以免前一只動(dòng)物的殘留氣味造成對(duì)本次實(shí)驗(yàn)的影響。全部實(shí)驗(yàn)結(jié)束后,由不熟悉實(shí)驗(yàn)設(shè)計(jì)人員進(jìn)行數(shù)據(jù)提取錄入。EPM/EZM納入實(shí)驗(yàn)參數(shù)有:進(jìn)入時(shí)間百分率(開(kāi)臂區(qū)Otime%,十字央?yún)^(qū)Ptime%,閉臂區(qū)Ctime%)及兩臂區(qū)進(jìn)入總次數(shù)(Entries);而后總體實(shí)驗(yàn)數(shù)據(jù)會(huì)再進(jìn)行分割細(xì)化處理,按照5個(gè)重復(fù)測(cè)量片段(1 min)來(lái)進(jìn)行提取。
1.4統(tǒng)計(jì)學(xué)分析采用SPSS 13.0 for Windows軟件進(jìn)行統(tǒng)計(jì)分析,GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)作圖。Kolmogorov-Smirnov檢驗(yàn)由Analyze → Nonparametric Tests → 1 Sample Kolmogorov-Smirnov Test程序完成。t檢驗(yàn)由Analyze → Compare Means → Paired SamplesTTest程序完成;Wilcoxon檢驗(yàn)由Analyze → Nonparametric Tests → 2 Related Samples Tests程序完成;重復(fù)測(cè)量ANVOA由Analyze → General Linear Model → Repeated Measures ANOVA程序完成;Friedman檢驗(yàn)由Analyze → Nonparametric Tests → K Related Samples Tests程序完成。聚類分析參數(shù)由Analyze → Classify → Hierarchical Cluster Analysis程序完成,采用R型變量聚類,選擇Between-groups linkage測(cè)量方法和Pearson Correlation距離類型。因子分析由Analyze → Data Reduction → Factor Analysis程序完成,先進(jìn)行KMO和Bartlett球形檢驗(yàn),以Principal components提取公因子,以累計(jì)貢獻(xiàn)率>80%作為因子納入標(biāo)準(zhǔn),采用Varimax正交旋轉(zhuǎn)。相關(guān)分析由Analyze → Correlate → Bivariate Correlations程序完成,依據(jù)數(shù)據(jù)類型選擇Pearson或Spearman相關(guān)系數(shù)。一致性采用ICC 和κ統(tǒng)計(jì)參數(shù)來(lái)評(píng)價(jià),其中ICC參數(shù)主要適用于連續(xù)變量或等級(jí)變量,由Analyze → Scale → Reliability Analysis程序完成;κ參數(shù)主要適用于分類變量,由Analyze → Descriptive statistics → Crosstabs程序完成,分析前首先根據(jù)1st分位數(shù)、3rd分位數(shù)進(jìn)行低(≤1st分位數(shù))、中(>1st分位數(shù),<3rd分位數(shù))、高(≥3rd分位數(shù))狀態(tài)分類;ICC/κ:>0.75認(rèn)為一致性很好,0.50~0.75認(rèn)為一致性一般,<0.50則認(rèn)為一致性較差。所有數(shù)據(jù)先進(jìn)行正態(tài)分布檢驗(yàn),P<0.05表示差異有統(tǒng)計(jì)學(xué)意義[5-6]。
2.1EPM/EZM行為模式Kolmogorov-Smirnov正態(tài)分布檢驗(yàn)結(jié)果顯示,EPM/EZM總體實(shí)驗(yàn)參數(shù)Otime%(♂,♀,♂+♀:P>0.05)、Entries(♂,♀,♂+♀:P>0.05)均符合正態(tài)分布,而EPM/EZM重復(fù)測(cè)量實(shí)驗(yàn)參數(shù)Otime%(♂,♀:P>0.05)、Entries(♂:P>0.05)則僅部分符合正態(tài)分布??傮w實(shí)驗(yàn)參數(shù)t檢驗(yàn)結(jié)果顯示(Fig 2),與EPM相比,EZM Otime%均降低,差異具有統(tǒng)計(jì)學(xué)意義(♂:t=2.434,P<0.05;♀:t=4.199,P<0.01;♂+♀:t=4.545,P<0.01);而Entries均升高,且除♀外差異均有統(tǒng)計(jì)學(xué)意義(♂:t=-3.405,P<0.01;♀:t=-1.870,P>0.05;♂+♀:t=-3.502,P<0.01)。重復(fù)測(cè)量實(shí)驗(yàn)參數(shù)Fiedman檢驗(yàn)結(jié)果提示(Fig 3),EPM Otime%(♂:χ2=17.687,P<0.01;♀:χ2=25.852,P<0.01;♂+♀:χ2=38.194,P<0.01)、Entries(♂:χ2=18.682,P<0.01;♀:χ2=19.282,P<0.01;♂+♀:χ2=30.877,P<0.01),EZM Otime%(♂:χ2=12.105,P<0.05;♀:χ2=29.349,P<0.01;♂+♀:χ2=36.911,P<0.01)、Entries(♂:χ2=12.272,P<0.05;♀:χ2=15.394,P<0.01;♂+♀:χ2=24.237,P<0.01),重復(fù)測(cè)量片段間差異均有統(tǒng)計(jì)學(xué)意義;Wilcoxon檢驗(yàn)結(jié)果提示,與EPM相比,EZM Otime%在1st min(♂:z=-3.806,P<0.01;♀:z=-3.001,P<0.01;♂+♀:z=-3.699,P<0.01)、2nd min(♂:z=-3.042,P<0.01;♀:z=-3.393,P<0.01;♂+♀:z=-4.486,P<0.01)、3rd min(♀:z=-2.208,P<0.05;♂+♀:z=-2.687,P<0.01)均降低且差異有統(tǒng)計(jì)學(xué)意義,而Entries在1st min(♂:z=-2.510,P<0.05;♂+♀:z=-2.529,P<0.05)、4th min(♂:z=-3.100,P<0.01;♀:z=-2.895,P<0.01;♂+♀:z=-4.253,P<0.01)、5th min(♂+♀:z=-2.546,P<0.05),均升高,且差異有統(tǒng)計(jì)學(xué)意義。
Fig 1 Structure diagram of elevated plus maze (EPM) and elevated zero maze (EZM)
2.2EPM/EZM聚類分析聚類分析結(jié)果提示(Fig 4),EPM/EZM實(shí)驗(yàn)參數(shù)可分兩類:EPM實(shí)驗(yàn)參數(shù)主要屬于第1類,反映EPM類行為;EZM實(shí)驗(yàn)參數(shù)主要屬于第2類,反映EZM類行為;且該聚類分組不受性別影響。
2.3EPM/EZM因子分析KMO和Bartlett球形檢驗(yàn)提示,EPM/EZM參數(shù)變量并不獨(dú)立,相關(guān)性尚可,適合進(jìn)行因子分析(♂/♀/♂+♀:KMO=0.506/0.556/0.553,χ2=51.366/59.880/108.919,P<0.01)。因子分析提示(Tab 1):EPM實(shí)驗(yàn)參數(shù)主要對(duì)因子F1(EPM因子,♂/♀/♂+♀:46.032%/39.982%/43.817%)貢獻(xiàn)大;EZM實(shí)驗(yàn)參數(shù)主要對(duì)因子F2(EZM因子,♂/♀/♂+♀:47.030%/49.604%/47.543%)貢獻(xiàn)大;且該因子分組不受性別影響。
2.4EPM/EZM相關(guān)分析Kolmogorov-Smirnov正態(tài)分布檢驗(yàn)提示,所有EPM/EZM總體實(shí)驗(yàn)參數(shù)均符合正態(tài)分布(P>0.05),故采用Pearson相關(guān)分析。相關(guān)分析提示(Tab 2):EPM和EZM實(shí)驗(yàn)參數(shù)Otime%(♂:Pearson=-3.806,P>0.05;♀:Pearson=0.356,P>0.05;♂+♀:Pearson=0.320,P<0.05)、Entries(♂:Pearson=0.297,P>0.05;♀:Pearson=0.184,P>0.05;♂+♀:Pearson=0.244,P>0.05)均具有一般正相關(guān)。
Tab 1 Principal component and varimax rotation of elevated plus maze (EPM) and elevated zero maze (EZM) parameters
♂n=21, ♀n=24, ♂+♀n=45
Fig 2 Comparison of time preference for each component between EPM and EZM during a 5-minute observation period (♂ n=21, ♀ n=24, ♂+♀ n=45)
Fig 3 Behavioral pattern of EPM and EZM for Otime% & Entries parameters during a 5-minute observation period (♂ n=21, ♀ n=24, ♂+♀ n=45)
*P<0.05,**P<0.01vsEPM
Fig 4 Dendrogram for parameters of EPM and EZM by cluster analysis (♂ n=21, ♀ n=24, ♂+♀ n=45)
2.5EPM/EZM一致性檢驗(yàn)一致性檢驗(yàn)結(jié)果提示(Tab 3、4),EPM和EZM實(shí)驗(yàn)參數(shù)Otime%(♂:ICC=0.411,P<0.01;♀:ICC=0.525,P<0.05;♂+♀:ICC=0.483,P<0.01;♂+♀:κ=0.282,P<0.01)具有一般一致性;EPM和EZM實(shí)驗(yàn)參數(shù)Otime%、Entries低、中、高狀態(tài)κ一致性分類情況具體見(jiàn)Tab 5、6。
Tab 2 Correlation matrix between EPM and EZM
♂n=21, ♀n=24, ♂+♀n=45;*P<0.05
EPM是Handley等[7]根據(jù)Montgomery[8]提出的高架“Y”迷宮模式衍化而來(lái),并發(fā)現(xiàn)抗焦慮藥物能明顯增加EPM開(kāi)臂區(qū)進(jìn)入次數(shù),致焦慮藥物能明顯減少EPM開(kāi)臂區(qū)進(jìn)入次數(shù),而腎上腺素受體不同亞型激動(dòng)劑和拮抗劑則表現(xiàn)出不同藥理效應(yīng)。Lister等[9]研究發(fā)現(xiàn),抗焦慮藥物和致焦慮藥物可明顯改變小鼠EPM開(kāi)臂區(qū)進(jìn)入時(shí)間百分率,抗抑郁藥物則無(wú)此效應(yīng),并發(fā)現(xiàn)EPM開(kāi)臂區(qū)進(jìn)入次數(shù)百分率、開(kāi)臂區(qū)進(jìn)入時(shí)間百分率區(qū)別于孔板實(shí)驗(yàn)(hole-board,HB)探索行為,而EPM兩臂區(qū)進(jìn)入總次數(shù)則類似于HB自發(fā)運(yùn)動(dòng)。而EZM源于EPM,相當(dāng)于EPM變型,是由Shepherd最先提出,并發(fā)現(xiàn)抗焦慮藥物可明顯增加SD大鼠EZM開(kāi)臂區(qū)進(jìn)入時(shí)間百分率和開(kāi)臂區(qū)低頭探索頻次,減少由EZM閉臂區(qū)向開(kāi)臂區(qū)伸軀探索頻次,而致焦慮藥物則產(chǎn)生相反效應(yīng)。Cook等[10]研究發(fā)現(xiàn),不同品系辨別EZM初始位置依靠不同感官信息(視覺(jué)、嗅覺(jué)等)。Milner等[11]研究發(fā)現(xiàn),EZM、曠場(chǎng)實(shí)驗(yàn)(open filed test,OFT)和明暗箱實(shí)驗(yàn)(light dark box,LDB)反映狀態(tài)焦慮情緒和運(yùn)動(dòng)探索活動(dòng)相關(guān)實(shí)驗(yàn)參數(shù)無(wú)法區(qū)分。Kulkarni等[12]研究發(fā)現(xiàn),EZM對(duì)以苯二氮卓類受體-γ-氨基丁酸A受體-氯離子通道復(fù)合物為作用靶點(diǎn)的工具藥物均有效。
Tab 3 Intraclass correlation coefficient (ICC) between EPM and EZM
Tab 4 Kappa agreement coefficient (κ) between EPM and EZM
Q, ♂n=21, ♀n=24, ♂+♀n=45.**P<0.01.
Tab 5 Categorization of animals according to their levels of anxiety on parameter “Otime%” of EPM and EZM
♂n=21, κ=-0.065; ♀n=24, κ=0.279; ♂+♀n=45, κ=0.282
Tab 6 Categorization of animals according to their levels of locomotion on parameter “Entries” of EPM and EZM
♂n=21, κ=0.271; ♀n=24, κ=0.238; ♂+♀n=45, κ=0.189
本研究行為模式分析結(jié)果提示,昆明小鼠在EZM焦慮情緒比EPM明顯降低,而運(yùn)動(dòng)探索活性則比EPM明顯升高;聚類分析與因子分析結(jié)果則提示,EPM/EZM實(shí)驗(yàn)參數(shù)分屬于兩個(gè)不同行為結(jié)構(gòu)維度,即EPM和EZM,且不受性別影響,但其反映焦慮情緒狀態(tài)與運(yùn)動(dòng)探索活動(dòng)參數(shù)并未區(qū)分開(kāi);相關(guān)分析結(jié)果提示,EPM與EZM反映焦慮狀態(tài)與運(yùn)動(dòng)探索活動(dòng)實(shí)驗(yàn)參數(shù)在不同性別間均具有一般相關(guān)性;一致性檢驗(yàn)結(jié)果提示,EPM與EZM實(shí)驗(yàn)參數(shù)僅Otime%一致性尚可接受。盡管EPM與EZM具有相類似原理:基于實(shí)驗(yàn)動(dòng)物探索習(xí)性與危險(xiǎn)環(huán)境間矛盾沖突,但是EZM又不同于EPM[5-6]:①?zèng)]有中央?yún)^(qū),不存在中央“死時(shí)間”;②實(shí)驗(yàn)動(dòng)物探索行為是連續(xù)的,不受兩臂區(qū)末端影響;③兩臂區(qū)之間可以直接轉(zhuǎn)換,不需要經(jīng)過(guò)中央?yún)^(qū)過(guò)渡;④EZM兩臂區(qū)進(jìn)入次數(shù)通常相等或者僅差1,導(dǎo)致兩臂區(qū)進(jìn)入次數(shù)百分率實(shí)驗(yàn)參數(shù)失去評(píng)價(jià)意義;可能正是因?yàn)镋ZM缺乏中央?yún)^(qū),行為模式不需要過(guò)渡,導(dǎo)致昆明小鼠對(duì)開(kāi)臂區(qū)與閉臂區(qū)辨識(shí)度高(Otime%↓);而環(huán)路閉合連續(xù),則運(yùn)動(dòng)探索通路暢通無(wú)阻(Entries↑)。
EPM/EZM狀態(tài)焦慮動(dòng)物模型行為模式常受性別、年齡、重復(fù)測(cè)量、前后不同實(shí)驗(yàn)組合順序以及實(shí)驗(yàn)參數(shù)等諸多因素影響而導(dǎo)致結(jié)果不盡一致。Braun等[13]研究發(fā)現(xiàn),♂空白SD大鼠EZM實(shí)驗(yàn)參數(shù)Otime%明顯高于EPM,而♂/♀SD大鼠EPM/EZM實(shí)驗(yàn)參數(shù)對(duì)抗焦慮和致焦慮因子(藥物及其他束縛應(yīng)激等)應(yīng)答差異無(wú)統(tǒng)計(jì)學(xué)意義。前期研究發(fā)現(xiàn),昆明小鼠EPM/EZM重測(cè)信度受性別與重復(fù)測(cè)量效應(yīng)不同影響:EPM行為模式受性別與重復(fù)測(cè)量效應(yīng)影響較大,而EZM行為模式僅受性別效應(yīng)影響[5-6];♀Wistar大鼠EPM實(shí)驗(yàn)參數(shù)Otime%、Oentries%及Entries具有較好重測(cè)信度[14]。動(dòng)物模型行為具有多維性,是結(jié)構(gòu)和功能共同相互作用的結(jié)果,而基于基因與環(huán)境共同作用及“行為組學(xué)”模式研究[15]將是動(dòng)物模型未來(lái)發(fā)展方向。
[1] Pellow S, Chopin P, File S E, et al. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat[J].JNeurosciMeth, 1985,14(3): 149-67.
[2] Shepherd J K, Grewal S S, Fletcher A, et al. Behavioural and pharmacological characterisation of the elevated "zero-maze" as an animal model of anxiety[J].Psychopharmacology(Berl), 1994,116(1): 56-64.
[3] Kumar V, Bhat Z A, Kumar D. Animal models of anxiety: a comprehensive review[J].JPharmacolToxicolMethods, 2013,68(2): 175-83.
[4] Haller J, Aliczki M, Gyimesine Pelczer K. Classical and novel approaches to the preclinical testing of anxiolytics: a critical evaluation[J].NeurosciBiobehavRev, 2013,37(10, Part 1): 2318-30.
[5] 孫世光, 孫 蓉. 高架十字迷宮實(shí)驗(yàn):昆明小鼠狀態(tài)焦慮動(dòng)物模型的重測(cè)信度研究[J]. 中華行為醫(yī)學(xué)與腦科學(xué)雜志, 2016,25(9): 784-90.
[5] Sun S G, Sun R. Elevatrd plus maze as an animal model of state anxiety in Kunming mice: test-retest reliability[J].ChinJBehavMedBrainSci, 2016,25(9): 784-90.
[6] 孫世光. 高架〇迷宮實(shí)驗(yàn):昆明小鼠狀態(tài)焦慮動(dòng)物模型的重測(cè)信度研究[J]. 中國(guó)藥理學(xué)通報(bào), 2016,32(1): 133-7.
[6] Sun S G. Elevatrd zero maze as an animal model of state anxiety in Kunming mice: test-retest reliability[J].ChinPharmacolBull, 2016,32(1): 133-7.
[7] Handley S L, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour[J].NaunynSchmiedebergsArchPharmacol, 1984,327(1): 1-5.
[8] Montgomery K C. The relation between fear induced by novel stimulation and exploratory behaviour[J].JCompPhysiolPsychol, 1955,48(4): 254-60.
[9] Lister R G. The use of a plus-maze to measure anxiety in the mouse[J].Psychopharmacology(Berl), 1987,92(2): 180-5.
[10] Cook M N, Williams R W, Flaherty L. Anxiety-related behaviors in the elevated zero-maze are affected by genetic factors and retinal degeneration[J].BehavNeurosci, 2001,115(2): 468-76.
[11] Milner L C, Crabbe J C. Three murine anxiety models: results from multiple inbred strain comparisons[J].GenesBrainBehav, 2008,7(4): 496-505.
[12] Kulkarni SK, Singh K, Bishnoi M. Elevated zero maze: A paradigm to evaluate antianxiety effects of drugs[J].MethodsFindExpClinPharmacol, 2007,29(5): 343-8.
[13] Braun A A, Skelton M R, Vorhees C V, et al. Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: effects of anxiolytic and anxiogenic agents[J].PharmacolBiochemBehav, 2011,97(3): 406-15.
[14] 宗紹波, 魏 盛, 蘇云祥, 等. 焦慮大鼠模型高架十字迷宮實(shí)驗(yàn)的復(fù)測(cè)信度檢驗(yàn)及參數(shù)相關(guān)性分析[J]. 中國(guó)醫(yī)藥導(dǎo)報(bào), 2011,8(30): 5-7.
[14] Zong S B, Wei S, Su Y X, et al. Retest reliability test and parameter correlation analysis of elevated plus maze experiment for anxious rat model[J].ChinaMedHerald, 2011,8(30): 5-7.
[15] 孫世光. 基于“行為組學(xué)”模式焦慮動(dòng)物模型評(píng)價(jià)技術(shù)體系構(gòu)建[D]. 濟(jì)南: 山東中醫(yī)藥大學(xué), 2016.
[15] Sun S G. Animal models of anxiety: a behavioral ‘omics’ perspective[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2016.