• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solution of Algebraic Lyapunov Equation on Positive-Definite Hermitian Matrices by Using Extended Hamiltonian Algorithm

    2018-03-13 02:02:30MuhammadShoaibArifMairajBibiandAdnanJhangir
    Computers Materials&Continua 2018年2期
    關鍵詞:音畫一體矢量

    Muhammad Shoaib Arif,Mairaj Bibiand Adnan Jhangir

    1 Introduction

    It is well known that many engineering and mathematical problems,say,signal processing,robot control and computer image processing[Cafaro(2008);Cohn and Parrish(1991);Barbaresco(2009);Brown and Harris(1994)],can be reduced as obtaining the numerical solution of the following algebraic Lyapunov equation

    wherePis a positive-definite Hermitian matrix,Hdenotes the conjugate transpose of a Hermitian matrix.

    The solution of the algebraic Lyapunov equation is gaining more and more attention in the field of computational mathematics[Datta(2004);Golub,Nash and Vanloan(1979)].Several algorithms are used to get the approximate solution of the above-mentioned equation.For instance,Ran et al.[Ran and Reurings(2004)]put forward the fixed point algorithm,the Cholesky decomposition algorithm was presented by Li et al.[Li and White(2002)],and a preconditioned Krylov method to get the solution of the Lyapunov equation was given by Jbilou[Jbilou(2010)].Vandereycken et al.[Vandereycken and Vandewalle(2010)]provided a Riemannian optimization approach to compute the low-rank solution of the Lyapunov matrix equation.Deng et al.[Deng,Bai and Gao(2006)]designed iterative orthogonal direction methods according to the fundamental idea of the classical conjugate direction method for the standard system of linear equations to obtain the Hermitian solutions of the linear matrix equationsAXB=Cand(AX,XB)=(C,D).Recently,Su et al.[Su and Chen(2010)]proposed a modified conjugate gradient algorithm(MCGA)to solve Lyapunov matrix equations and some other linear matrix equations,which seemed to be the generalized results.The traditional method like modified conjugate gradient algorithm(MCGA)are first order learning algorithms,hence the convergence speed of MCGA is very slow.

    Another interesting approach to solve algebraic Lyapunov equation is by considering the set of matrices as a manifold and applying the techniques from differential geometry and information geometry.Recently Arif et al.[Arif,Zhang and Sun(2016)]solved the algebraic Lyapunov equation on matrix manifold by information geometric algorithm.Duan et al.[Duan,Sun and Zhang(2014);Duan,Sun,Peng and Zhao(2013)]solved continuous algebraic Lyapunov equation and discrete Lyapunov equation on the space of positivedefinite symmetric matrices by using natural gradient algorithm.Also,Luo et al.[Luo and Sun(2014)]gives the solution of discrete algebraic Lyapunov equation on the space of positive-definite symmetric matrices by using Extended Hamiltonian algorithm.In both the papers,the authors have considered the set of positive-definite symmetric matrices as a matrix manifold and used the geodesic distance betweenAHX+XAand-Pto find the solution matrixX.

    Up to date,however,there has been few investigation on the solution problem of the Lyapunov matrix equation in the view of Riemannian manifolds.Chein[Chein(2014)]gives the numerical solution of ill posed positive linear system he combines the methods from manifold theory and sliding mode control theory and develop an affine nonlinear dynamical system.This system is proven asymptotically stable by using argument from Lyapunov stability theory.

    In this article,a new frame work is proposed to calculate the numerical solution of continuous algebraic Lyapunov matrix equation on the space of positive-definite Hermitian matrices by using natural gradient algorithm and Extended Hamiltonian algorithm.Moreover,we present the comparison of the solution obtained by the two algorithms.

    Note that this solution is a positive definite Hermitian matrices is a global asymptotically stable linear system and the set of all the positive definite Hermitian matrices can be taken as a manifold.Thus,it is more convenient to investigate the solution problem with the help of these attractive features on the manifold.To address such a need,we focus on a numerical method to solve the Lyapunov matrix equation on the manifold.

    The gradient is usually adapted to minimize the cost function by adjusting the parameters of the manifold.However,the convergence speed can be seen to be slow if a small change in the parameters changes largely the cost function.In order to overcome this problem of poor convergence,the work has been done in two different directions.Firstly,Amari et al.[Amari(1998);Amari and Douglas(2000);Amari(1999)]introduced the Natural Gradi-ent Algorithm(NGA)which employed the Fisher information matrix on the Riemannian structure of manifold based on differential geometry.Another approach is based on the inclusion of momentum term in the ordinary gradient method to enhance the convergence speed.This is a second-order learning algorithm that was developed by Fiori et al.[Fiori(2011,2012)],which is called the Extended Hamiltonian Algorithm(EHA).

    Although,both the natural gradient algorithm and extended Hamiltonian algorithm defines the steepest descent direction,but we must compute explicitly the Fisher information matrix in the natural gradient algorithm and the steepest descent direction in the extended Hamiltonian algorithm at each iterative step.So the computational cost of both the algorithms are comparatively high.Moreover,the trajectory of the parameters obtained by the implementation of extended Hamiltonian algorithm is closer to the geodesic as compared to one obtained by natural gradient algorithm.

    Rest of the paper is organized as follows.Section 2 is a preliminary survey on the manifolds of positive-definite Hermitian matrices.Third section presents the solution of algebraic Lyapunov matrix equation by Extended Hamiltonian algorithm and Natural gradient algorithm and also illustrates the convergence speed of EHA compared with NGA using numerical examples.Section 4 concludes the results presented in section 3.

    2 The Riemannian structure on the manifold of positive-definite Hermitian matrices

    In this paper,we denote the set ofn×nPositive-definite Hermitian matrices byH(n).This set can be considered as a Riemannian manifold by defining the Riemannian metric on it.Moakher et al.[Moakher(2005)]in his paper,gives the concept of geodesic connecting two matrices onH(n).Observing that the geodesic distance represents the infimum of lengths of the curves connecting any two matrices.Here,we take geodesic distance as the cost function to minimize the distance between two matrices inH(n).The following background material and important results are taken from Zhang[Zhang(2004)],Moakher et al.[Moakher and Batcherlor(2006)].

    Alln×npositive-definite Hermitian matrices forms ann2-dimensional manifold,which is denoted byH(n).Also denote the space of alln×nHermitian matrices byH′(n).The exponential map fromH′(n)toH(n),given by:

    is one-to-one and onto.Its inverse i.e.,the logarithmic map fromH(n)toH′(n),defined by

    forXin a neighbourhood of the identityIofH(n).

    LetEkldenotes matrix whose all entries are zero except thek-thline andl-thcolumn which is 1,then the basis of the manifoldH(n)can be given as

    wherei2=-1,pis obtained by some rule from the pair(k,l).Hence,any positive-definite Hermitian matrixQ∈H(n)can be shown as

    Definition 2.1(Duan et al.[Duan,Sun,Peng and Zhao(2013)]).Letgbe the Riemannian metric on the positive-definite Hermitian matrix manifoldH(n),forQ∈H(n)the inner product onTQH(n)can be defined as

    whereM,N∈TQH(n).

    Obviously,the metric defined above satisfies the fundamental properties of Riemannian metric and keeps invariant under base transformation on the tangent space.

    Definition 2.2(Duan et al.[Duan,Sun and Zhang(2014);Luo and Sun(2014)]).Letγ:[0,1]→Mbe a piecewise smooth curve on manifoldM,we define the length ofγas

    then the distance between any two pointx,y∈Mcan be defined as

    Proposition 2.1(Duan et al.[Duan,Sun,Peng and Zhao(2013);Luo and Sun(2014)]).For the defined Riemannian metric(3)on the positive-definite Hermitian matrix manifoldH(n).We get the geodesic originating fromQalongXdirection as follows

    Hence,the geodesic distance betweenQ1,Q2is shown as

    According to Hopf-Rinow theorem,the positive-definite Hermitian matrix manifold is complete,which means we can always find a geodesic that connects any two pointsQ1,Q2∈H(n).

    In our case,the geodesic curveγ(t)is given by

    withγ(0)=x;γ(1)=yand ˙γ(0)=x1/2ln(x-1/2yx-1/2)x1/2∈H(n)then the midpoint ofxandyis defined byx?y=x1/2(x-1/2yx-1/2)x1/2and the geodesic distanced(x,y)can be computed explicitly by

    whereλiare eigenvalues ofx-1/2yx-1/2.orx-1y,.

    3 Solution of Algebraic Lyapunov Matrix Equation

    Suppose the state of the systemX(t)is˙x(t)=Ax(t).Consider the Lyapunov function

    on the complex field,we have

    In order to make the system stable,the state Eq.(9)must be negative definite,which yields

    wherePis a positive-definite Hermitian matrix.

    The uniqueness of the solution of Algebraic Lyapunov Eq.(1)is a well-known fact,stated below(see Davis et al.[Davis,Gravagne,Robert and Marks(2010)]):

    Theorem 3.1.Given a positive-definite Hermitian matrixP>0,there exists a unique positive-definite HermitianX>0satisfying(1)if and only if the linear system˙x=Axis globally asymptotically stable i.e.the real part of eigenvalues ofAis less than 0.

    3.1 Extended Hamiltonian Algorithm

    Considering the algebraic Lyapunov Eq.(1)on the positive-definite Hermitian matrix manifold,its solution can be described as finding a positive-definite Hermitian matrixXonH(n)such that the matrix-AHX-XAis as close asP(see Fig.1).

    Figure 1:Geodesic distance on positive-definite hermitian matrix manifold

    To describe the distance between-AHX-XAandP,we choose the geodesic distance between them as the measure,that is to say the target function is

    then the optimal solution of the Eq.(1)is

    Lemma 3.1(Zhang[Zhang(2004)]).Letf(X)be the scalar function of the matrixX,ifdf(X)=tr(WdX)holds,then the gradient off(X)with respect toXis

    Theorem 3.2.LetJ(X)be the function in(10),then the gradient ofJ(X)with respect to the positive-definite Hermitian matrixXis

    Proof of the above Theorem see the Appendix.

    Theorem 3.3.On the positive definite Hermitian matrix system,if thei-th iteration matrix and direction matrix areXi,Virespectively,then(i+1)-th iteration matrix and direction matrixXi+1,Vi+1satisfy

    Algorithm 3.1.For the manifoldH(n)the algorithm is given as follows.HereJ(X)is the cost function(10).

    1.Input initial matrixX0,initial directionV0,step sizeηand error toleranceε>0;

    2.Calculate the gradient?XiJ(Xi)by(13);

    3.IfJ(Xi)<ε,then halt;

    4.UpdateX,Vaccording to(14)and go back to step 2.

    巧用Flash動畫視頻促進文化理解。除了之前提到的這些媒體手段,大量的FLASH課件也充實著我們的音樂課堂,F(xiàn)LASH課件運用色彩鮮艷的矢量動畫,很好地展現(xiàn)了音樂需要表達的意境和情景,達到了音畫一體的感覺。

    3.1.1 Numerical experiment

    Consider the submanifoldPH(2)ofH(2)defined by:

    Now we consider the algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.

    is any matrix with real part of its eigenvalues negative by Theorem 3.1,and

    In this experiment,we choose initial guessX0and initial directionV0as

    Taking the step sizeη=0.1andμ=6,then after41iterations,we obtain the optimal solution under the error toleranceε=10-3as follows,

    In fact,the exact solution of(1)on the positive-definite Hermitian matrix manifold in this example is

    Figure 2:The optimal trajectory of EHA where η =0.1,μ =6 and ε=10-3

    Futhermore,we compare the efficiency of the algorithm with different step sizes.In Fig.3,the descent curves corresponding toη=0.1,0.15,0.2show us the relation betweenJ(X)and iterations.

    From the Fig.3,we can find that ifηis too small,the iterations are many and the algorithm converges slowly.However,the step size can not be too large and may result in divergence of this algorithm.Therefore,we need to adjust the step size to obtain the best convergence speed.

    Figure 3:The efficiency of the Algorithm with different step size

    3.2 Natural Gradient Algorithm

    SinceH(n)is a Riemannian manifold,not a Euclidean space,therefore,it is non optimal to make use of the classical Frobenius inner product:

    as a flat metric on manifoldH(n)for this geometric problem?.Moreover,since the geodesicA+t(B-A)is a negative metric for some values oft,so it is not appropriate to apply the ordinary gradient methods on the manifoldH(n)with metric(16).Observing that the geodesic is the shortest path between two points on a manifold,therefore we take geodesic distance as the cost function,denoted by:

    then the optimal solution of Algebric Lyapunov equation is obtained by

    As stated above,the ordinary gradient can not give the steepest descent direction of the cost functionJ(Xt)on manifoldH(n),whereas the natural gradient algorithm(NGA)does.Below we state an important Lemma,which gives the iterative step in the natural gradient algorithm.

    Lemma 3.2(Amari[Amari(1998)]).LetX=(ζ1,ζ2,...ζm)∈Rmbe a parameter space on the Riemannian manifoldH(n),and consider a functionL(ζ).Then the natural gradient algorithm is given by:

    whereG-1=(gij)is the inverse of the Riemannian metricG=(gij)and

    Now,we will give the natural gradient descent algorithm for the considered Eq.(1),taking the geodesic distanceJ(Xt)as the cost function and the negative of the gradient of the cost functionJ(Xt)aboutXtto give the descent direction in the iterative equation.

    Theorem 3.4.The iteration on manifoldH(n)is given by

    where the component of gradient?J(Xt)satisfies

    wherei=1,2,...,m.

    For Proof of above Theorem See the Appendix.

    By these discussion,we present the natural gradient algorithm to find the solution of the algebraic Lyapunov Eq.(1)on the manifoldH(n)of positive-definite Hermitian matrices.

    Algorithm 3.2.For the coordinateX=(ζ1,ζ2,...,ζm)of the considered manifold H(n),the natural gradient algorithm is given by;

    1.SetX°=(ζ1°,ζ2°,...,ζm°)as the initial input matrix X and choose required tolerance?°>0.

    2.ComputeJ(Xt)=d2(P,-AHXt-XtA)

    3.If‖?J(Xt)‖F(xiàn)<?°,then halt.

    4.Update the vectorXbyXt+1=Xt-ηG-1?J(Xt),whereXt=(ζ1t,ζ2t,...,ζmt),ηis learning rate and go back to step 2.

    3.2.1 Numerical Simulations

    Consider the submanifoldPH(2)ofH(2)defined by:

    Now we consider the algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices:

    is any matrix with real part of its eigenvalues negative by Theorem 3.1,and

    In this experiment,we choose initial guessX0as

    Taking the step sizeη=0.035,then after44iterations,we obtain the optimal solution under the error toleranceε=10-2as follows,

    In fact,the exact solution of(1)in this example is:

    In Fig.4,ζ1,ζ2,ζ3,ζ4represent coordinates of the manifoldPH(2),SandAdenote the initial matrix and the goal matrix respectively.The coordinatesζ1,ζ3,ζ4are taken along coordinate axes andζ2is represented by colour bar.The curve fromStoAshows us the optimal trajectory by NGA.Fig.4 also shows the geodesic connectingSandAobtained by(6).

    Figure 4:The optimal trajectory of NGA where η=0.035 and ε=10-2

    Futhermore,we compare the efficiency of the algorithm with different step sizes.In Fig.5,the descent curves corresponding toη=0.015,0.025,0.035show us the relation betweenJ(X)and iterations.

    From the Fig.5,we can find that ifηis too smaller,the iterations are many and the algorithm convergent slowly.However,the step size can not be too large,which may result in divergence in this algorithm.Therefore,we need to adjust the step size in order to obtain the best convergence speed.

    3.3 Comparison of NGA and EHA

    We apply the natural gradient algorithm 3.2 and extended Hamiltonian algorithm 3.1 to solve the algebraic Lyapunov Eq.(1).From the following example,we can see the efficiency of the two proposed algorithms.

    Figure 5:The efficiency of the Natural gradient Algorithm with different step size

    Consider the submanifoldPH(2)ofH(2)defined by:

    Now we consider the algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.

    is any matrix with real part of its eigenvalues negative by Theorem 3.1,and

    In this experiment,we choose initial guessX0and initial directionV0as

    According to algorithm 3.1,we get the solution of algebraic Lyapunov equation withη=0.07,μ=4and error tolerance?=10-3as

    According to algorithm 3.2,we get the solution of the algebraic Lyapunov equation withη=0.07and error tolerance?=10-3as Besides,the optimal trajectory ofX(t)from the initial input to the target matrix is shown in Fig.6.

    In Fig.6,ζ1,ζ2,ζ3,ζ4represent parameters of the vectorX(t),SandAdenote the initial matrix and the goal matrix respectively.The parametersζ1,ζ2,ζ3are taken along coordinate axes andζ4is represented by colour bar.The curves fromStoAshows us the optimal trajectory ofX(t)by NGA and EHA.Fig.6 also shows the geodesic connectingSandAobtained by(6).In addition,although the trajectory of the inputX(t)given by EHA is not optimal,but the convergence is faster than NGA.

    The EHA and NGA are respectively applied to get the solution of the algebraic Lyapunov equation.In particular,the behaviour of the cost function is shown in Fig.7.In early stages of learning,the EHA decreases much faster than NGA with the same learning rate.The result shows that the EHA has faster convergence speed and need 95 iterations to obtain optimal solution of Algebraic Lyapunov equation as compared to NGA which converges after 155 iterations.

    Figure 6:The optimal trajectory of X(t)by NGA and EHA where η =0.07,μ =4 and ?=10-3

    Figure 7:Comparison of convergence speed of EHA an NGA

    4 Conclusion

    We studied the solution of continuous algebraic Lyapunov equation by considering the positive-definite Hermitian matrices as a Riemannian manifold and used geodesic distance to find the solution.Here we used two algorithms,the extended Hamiltonian algorithm and the natural gradient algorithm to get the approximate solution of algebraic Lyapunov matrix equation.Finally,several numerical experiments give you an idea about the effectiveness of the proposed algorithms.We also show the comparison between these two algorithms EHA and NGA.Henceforth we conclude that the extended Hamiltonian algorithm has better convergence speed than the natural gradient algorithm,whereas the trajectory of the solution matrix is optimal in case of NGA as compared to EHA.

    5 Appendix

    Proof of Theorem 3.2

    According to Lemma 4.3.1,the geodesic ofJ(X)with respect toXis

    Proof of Theorem 3.4

    Proof.According to above Lemma,we can get the iterative process

    Acknowledgement:The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Amari,S.(1998):Natural gradient works efficiently in learning.Neural Computation,vol.10,no.2,pp.251-276.

    Amari,S.(1999):Natural gradient for over-and under-complete bases in ica.Neural Computation,vol.11,no.8,pp.1875-1883.

    Amari,S.;Douglas,S.C.(2000):Why natural gradient,acoustics.Speech and Signal Processing,vol.2,pp.1213-1216.

    Arif,M.S.;Zhang,E.C.;Sun,H.(2016):An information geometric algorithm for algebraic lyapunov equation on positive definite matrix manifolds.Transaction of Beijing institute of Technology,vol.36,no.2,pp.205-208.

    Barbaresco,F.(2009):Interactions between symmetric cone and information geometries.Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery,ETVC,vol.5416,pp.124-163.

    Brown,M.;Harris,C.(1994):Neurofuzzy Adaptive Modelling and Control.Prentice Hall New York.

    Cafaro,C.(2008):Information-geometric indicators of chaos in gaussian models on statistical manifolds of negative ricci curvature.International Journal of Theoretical Physics,vol.47,no.11,pp.2924-2933.

    Chein,S.L.(2014): A sliding mode control algorithm for solving an ill-posed positive linear system.Computers,Materials&Continua, vol. 39, no. 2, pp. 153-178.

    Cohn,S.E.;Parrish,D.F.(1991):The behavior of forecast covariances for a kalman filter in two dimensions.Neural Computation,vol.119,no.8,pp.1757-1785.

    Datta,B.N.(2004):Numerical Methods for Linear Control Systems.Elsvier Academic-Press.

    Davis,J.M.;Gravagne,I.A.;Robert,J.;Marks,I.(2010):Algebraic and dynamic lyapunov equations on time scales.42nd South Eastern Symposium on System Theory at University of Texas,USA,pp.329-334.

    Deng,Y.B.;Bai,Z.Z.;Gao,Y.H.(2006):Iterative orthogonal direction methods for hermitian minimum norm solutions of two consistent matrix equations.Numer.Linear.Alg.Appl.,vol.13,no.10,pp.801-823.

    Duan,X.;Sun,H.;Peng,L.;Zhao,X.(2013):A natural gradient descent algorithm for the solution of discrete algebraic lyapunov equations based on the geodesic distance.Applied Mathematics and Computation,vol.219,no.19,pp.9899-9905.

    Duan,X.;Sun,H.;Zhang,Z.(2014):A natural gradient algorithm for the solution of lyapunov equations based on the geodesic distance.Journal of Computational Mathematics,vol.32,no.1,pp.93-106.

    Fiori,S.(2011):Extended hamiltonian learning on riemannian manifolds,theoretical aspects.IEEE Transactions on Neural Networks,vol.22,no.5,pp.687-700.

    Fiori,S.(2012):Extended hamiltonian learning on riemannian manifolds,numerical aspects.IEEE Transactions on Neural Networks and Learning Systems,vol.23,no.1,pp.7-21.

    Golub,G.H.;Nash,S.;Vanloan,C.(1979):A hessenberg-schur method for the problemax+xb=c.IEEE Transactions on Automatic Control,vol.24,no.6,pp.909-913.

    Jbilou,K.(2010): Adi preconditioned krylov methods for large lyapunov matrix equations.Linear Algebra & Its Applications, vol. 432, no. 10, pp. 2473-2485.

    Li,J.R.;White,J.(2002):Low-rank solution of lyapunov equations.SIAM J.Matrix Appl.,vol.24,no.1,pp.260-280.

    Luo,Z.;Sun,H.(2014):Extended hamiltonian algorithm for the solution of discrete algebraic lyapunov equations.Applied Mathematics and Computation,vol.234,pp.245-252.

    Moakher,M.(2005):A differential geometric approach to the geometric mean of symmetric positive-definite matrices.SIAM Journal on Matrix Analysis and Applications,vol.26,no.3,pp.735-747.

    Moakher,M.;Batcherlor,P.G.(2006):Symmetric Positive-Definite Matrices:From Geometry to Applications and Visualizatin,Visualization and Processing of Tensor Fields.Springer.

    Ran,A.C.M.;Reurings,M.C.B.(2004):A fixed point theorem in partially ordered sets and some applications to matrix equations.Proc.Am.Math.Soc.,vol.132,pp.1435-1443.

    Su,Y.F.;Chen,G.L.(2010):Iterative methods for solving linear matrix equation and linear matrix system.Numer.Linear.Alg.Appl.,vol.87,no.4,pp.763-774.

    Vandereycken,B.;Vandewalle,S.(2010):A riemannian optimization approach for computing low-rank solutions of lyapunov equations.SIAM J.Matrix Appl.,vol.31,no.5,pp.2553-2579.

    Zhang,X.D.(2004):Matrix Analysis and Application.Springer,Beijing.

    猜你喜歡
    音畫一體矢量
    矢量三角形法的應用
    豐收節(jié)音畫
    心聲歌刊(2020年6期)2021-01-14 00:23:34
    豐收節(jié)音畫
    青年歌聲(2020年11期)2020-11-24 06:56:34
    豐收節(jié)音畫
    法制教育融入初中政治課的“四維一體”法初探
    新教育(2018年8期)2018-08-29 00:53:10
    農旅一體 激情米蘿
    當代貴州(2017年49期)2017-12-19 05:29:41
    傳祺GS4200T手自一體豪華版
    世界汽車(2016年8期)2016-09-28 12:06:04
    基于矢量最優(yōu)估計的穩(wěn)健測向方法
    三角形法則在動態(tài)平衡問題中的應用
    抗戰(zhàn)音畫
    国产成人福利小说| 国国产精品蜜臀av免费| 国产亚洲精品av在线| av线在线观看网站| 最近2019中文字幕mv第一页| 国产黄a三级三级三级人| 精品国产三级普通话版| 国内揄拍国产精品人妻在线| av免费观看日本| 国产三级在线视频| 人人妻人人澡欧美一区二区| 日韩精品青青久久久久久| 男女啪啪激烈高潮av片| 欧美三级亚洲精品| 熟女电影av网| 最近中文字幕2019免费版| 欧美高清成人免费视频www| 中文资源天堂在线| 色5月婷婷丁香| 久久亚洲国产成人精品v| 成人欧美大片| 高清在线视频一区二区三区| 色尼玛亚洲综合影院| 亚洲av在线观看美女高潮| 精品久久久久久成人av| 精品人妻一区二区三区麻豆| 精品人妻一区二区三区麻豆| av黄色大香蕉| 免费少妇av软件| 十八禁国产超污无遮挡网站| 国产在线一区二区三区精| 久久精品国产亚洲av天美| 久久精品国产亚洲av天美| 免费看av在线观看网站| 欧美3d第一页| 成人二区视频| 亚洲精品乱码久久久v下载方式| 99热这里只有精品一区| 如何舔出高潮| 99久久人妻综合| av在线老鸭窝| 在线观看人妻少妇| 又爽又黄a免费视频| 成人综合一区亚洲| 日韩电影二区| 日韩电影二区| 国产亚洲精品av在线| 国产一区二区三区综合在线观看 | 熟妇人妻久久中文字幕3abv| av黄色大香蕉| 国产一区有黄有色的免费视频 | 特级一级黄色大片| 女人久久www免费人成看片| 日韩国内少妇激情av| av天堂中文字幕网| 天堂中文最新版在线下载 | 又爽又黄无遮挡网站| 干丝袜人妻中文字幕| 国产91av在线免费观看| 亚洲精品中文字幕在线视频 | 99久久精品国产国产毛片| 亚洲va在线va天堂va国产| 久久鲁丝午夜福利片| 伦理电影大哥的女人| 国产一级毛片七仙女欲春2| 1000部很黄的大片| 国产精品福利在线免费观看| 国产一区二区在线观看日韩| 国产成人免费观看mmmm| 丰满人妻一区二区三区视频av| 亚洲18禁久久av| 成人特级av手机在线观看| 深爱激情五月婷婷| 成人午夜高清在线视频| 亚洲国产最新在线播放| 国产精品嫩草影院av在线观看| 久久久久精品性色| 99热全是精品| 干丝袜人妻中文字幕| 国产乱人偷精品视频| 大又大粗又爽又黄少妇毛片口| 欧美97在线视频| 黄色欧美视频在线观看| av黄色大香蕉| 欧美一级a爱片免费观看看| 成人一区二区视频在线观看| 国产午夜精品论理片| 色综合色国产| 国内精品美女久久久久久| 免费看a级黄色片| av免费观看日本| 又粗又硬又长又爽又黄的视频| or卡值多少钱| 国产黄色小视频在线观看| 日韩av在线大香蕉| 久久国内精品自在自线图片| 简卡轻食公司| 成人二区视频| 亚洲三级黄色毛片| 亚洲在线观看片| 免费黄频网站在线观看国产| 国产日韩欧美在线精品| 国产伦精品一区二区三区四那| 少妇的逼水好多| 亚洲成色77777| 男的添女的下面高潮视频| 婷婷六月久久综合丁香| 日韩三级伦理在线观看| 观看美女的网站| 久久久久九九精品影院| 青春草国产在线视频| 亚洲天堂国产精品一区在线| 91狼人影院| 亚洲欧美一区二区三区黑人 | 日韩,欧美,国产一区二区三区| 欧美日韩综合久久久久久| 中文字幕av成人在线电影| 国产不卡一卡二| 免费不卡的大黄色大毛片视频在线观看 | ponron亚洲| h日本视频在线播放| 国产成人午夜福利电影在线观看| 亚洲精品乱码久久久v下载方式| 人妻少妇偷人精品九色| 久久精品久久精品一区二区三区| 亚州av有码| 国产 一区精品| 国产免费一级a男人的天堂| 十八禁网站网址无遮挡 | 少妇猛男粗大的猛烈进出视频 | 国产 一区精品| 我的老师免费观看完整版| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 日韩伦理黄色片| 男女边吃奶边做爰视频| 久久韩国三级中文字幕| 97精品久久久久久久久久精品| 久久精品国产亚洲av天美| 在线播放无遮挡| 在线天堂最新版资源| 精品人妻视频免费看| 国产精品一区二区三区四区久久| 天美传媒精品一区二区| 日韩亚洲欧美综合| 久久久久久久大尺度免费视频| 日韩电影二区| 精品国产露脸久久av麻豆 | 少妇裸体淫交视频免费看高清| 在现免费观看毛片| 中文字幕免费在线视频6| 亚洲精品一二三| 亚洲欧美一区二区三区黑人 | 亚洲国产高清在线一区二区三| 91午夜精品亚洲一区二区三区| 综合色丁香网| 国产综合精华液| 一本一本综合久久| 成人亚洲精品av一区二区| 精品久久久噜噜| 国产毛片a区久久久久| 日韩精品青青久久久久久| 久久久久久久久久黄片| 91精品伊人久久大香线蕉| 水蜜桃什么品种好| 成人综合一区亚洲| 亚洲,欧美,日韩| 永久免费av网站大全| 亚洲美女视频黄频| 舔av片在线| 99久久精品国产国产毛片| 内地一区二区视频在线| 国产成人一区二区在线| 午夜日本视频在线| 国产成人免费观看mmmm| 一区二区三区四区激情视频| 少妇熟女欧美另类| 天堂网av新在线| 国产精品.久久久| 午夜福利在线在线| 国产男人的电影天堂91| 色播亚洲综合网| 一级黄片播放器| 免费少妇av软件| av福利片在线观看| 国产黄色免费在线视频| 国产男人的电影天堂91| 一区二区三区免费毛片| 91精品国产九色| 亚洲精品一二三| 成人毛片a级毛片在线播放| 亚洲伊人久久精品综合| 国产精品女同一区二区软件| 简卡轻食公司| 国产高清三级在线| 欧美最新免费一区二区三区| ponron亚洲| 亚洲18禁久久av| 亚洲av免费高清在线观看| 天堂网av新在线| 免费大片黄手机在线观看| 1000部很黄的大片| 最近最新中文字幕免费大全7| 嫩草影院入口| 亚洲av电影不卡..在线观看| 欧美日本视频| 我的老师免费观看完整版| 亚洲av男天堂| 亚洲精品久久午夜乱码| 51国产日韩欧美| 成人一区二区视频在线观看| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 日韩av在线大香蕉| 欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 国产女主播在线喷水免费视频网站 | 一级毛片电影观看| 国产亚洲精品久久久com| 日日啪夜夜爽| 亚洲色图av天堂| 日韩精品有码人妻一区| 久久97久久精品| 免费看av在线观看网站| 人妻一区二区av| 国产精品无大码| 欧美性猛交╳xxx乱大交人| 国产黄色视频一区二区在线观看| 亚洲丝袜综合中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲综合色惰| 综合色丁香网| 亚洲精品中文字幕在线视频 | 日本一本二区三区精品| av福利片在线观看| 国产精品av视频在线免费观看| 两个人视频免费观看高清| 国产精品蜜桃在线观看| 国产亚洲精品av在线| 亚洲精品亚洲一区二区| av一本久久久久| 国产麻豆成人av免费视频| 成人午夜精彩视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 久久精品久久久久久噜噜老黄| 国产黄片视频在线免费观看| 久久草成人影院| 免费看光身美女| 91aial.com中文字幕在线观看| 嫩草影院精品99| 色视频www国产| 国产成人午夜福利电影在线观看| 精品人妻偷拍中文字幕| 亚洲内射少妇av| 水蜜桃什么品种好| 久久这里有精品视频免费| 亚洲精品自拍成人| 综合色av麻豆| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 激情五月婷婷亚洲| 日本黄色片子视频| 高清视频免费观看一区二区 | 最近的中文字幕免费完整| 国产欧美日韩精品一区二区| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 免费在线观看成人毛片| 亚洲性久久影院| 少妇人妻一区二区三区视频| 亚洲精品久久午夜乱码| 国产精品久久久久久久久免| 大香蕉久久网| 日韩精品有码人妻一区| 在线天堂最新版资源| 亚洲av福利一区| 久久精品国产亚洲网站| 久久亚洲国产成人精品v| 91av网一区二区| 丝袜美腿在线中文| 日韩欧美国产在线观看| 在线天堂最新版资源| 久久久国产一区二区| 精品人妻熟女av久视频| 91精品一卡2卡3卡4卡| 蜜臀久久99精品久久宅男| 色综合站精品国产| 久久人人爽人人片av| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 直男gayav资源| 国产老妇女一区| 我的女老师完整版在线观看| 男插女下体视频免费在线播放| 成人综合一区亚洲| 久久精品人妻少妇| 国产精品精品国产色婷婷| 亚洲精品中文字幕在线视频 | 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人 | av在线蜜桃| 有码 亚洲区| 日本黄色片子视频| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 一区二区三区乱码不卡18| 国产在视频线在精品| 国产有黄有色有爽视频| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 久久久精品免费免费高清| 婷婷色麻豆天堂久久| 视频中文字幕在线观看| 蜜桃久久精品国产亚洲av| 国产精品一区二区在线观看99 | 精品一区在线观看国产| 国产单亲对白刺激| www.av在线官网国产| 国产精品一及| 在线免费十八禁| 国产伦理片在线播放av一区| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡免费网站照片| 午夜免费观看性视频| 久久99精品国语久久久| av在线播放精品| videos熟女内射| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| av天堂中文字幕网| 国产欧美另类精品又又久久亚洲欧美| 狂野欧美白嫩少妇大欣赏| 十八禁网站网址无遮挡 | 97超视频在线观看视频| 午夜精品在线福利| 91狼人影院| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 看黄色毛片网站| 欧美bdsm另类| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 久久久午夜欧美精品| 一个人观看的视频www高清免费观看| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 亚洲精品久久午夜乱码| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站| 久久精品综合一区二区三区| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 日韩大片免费观看网站| 三级国产精品片| 白带黄色成豆腐渣| 亚洲熟妇中文字幕五十中出| 久久精品久久久久久久性| 久久久久久久久久久免费av| 天堂√8在线中文| 国产亚洲一区二区精品| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 国产中年淑女户外野战色| 亚洲在久久综合| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 成年版毛片免费区| 高清日韩中文字幕在线| 99热全是精品| 最近中文字幕2019免费版| 我要看日韩黄色一级片| 99久久人妻综合| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 日本色播在线视频| 国产淫片久久久久久久久| 欧美不卡视频在线免费观看| 国产精品三级大全| 成人亚洲精品av一区二区| 国产黄色免费在线视频| 97热精品久久久久久| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 一区二区三区免费毛片| 中文字幕av在线有码专区| 婷婷六月久久综合丁香| 国产美女午夜福利| 亚洲色图av天堂| 丰满乱子伦码专区| 日本三级黄在线观看| 天天躁夜夜躁狠狠久久av| 久久韩国三级中文字幕| 天堂av国产一区二区熟女人妻| 精品人妻视频免费看| 2021少妇久久久久久久久久久| 国产精品一区二区三区四区免费观看| 中文精品一卡2卡3卡4更新| 亚洲精品456在线播放app| 1000部很黄的大片| 丝袜美腿在线中文| 久久这里有精品视频免费| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区国产| 三级经典国产精品| 国产亚洲最大av| 老师上课跳d突然被开到最大视频| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 国产精品无大码| 简卡轻食公司| av福利片在线观看| 深爱激情五月婷婷| 国产探花在线观看一区二区| 免费观看a级毛片全部| 日韩 亚洲 欧美在线| av福利片在线观看| 激情 狠狠 欧美| 99热这里只有是精品50| av免费观看日本| 国产成人aa在线观看| 国产高清不卡午夜福利| 嫩草影院精品99| 日本一本二区三区精品| 亚洲欧美精品专区久久| 99久国产av精品国产电影| 少妇熟女aⅴ在线视频| 国产一区二区亚洲精品在线观看| 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 大香蕉久久网| 综合色av麻豆| 精品亚洲乱码少妇综合久久| 国产av在哪里看| 2021少妇久久久久久久久久久| 99re6热这里在线精品视频| 久久精品综合一区二区三区| 亚洲国产精品国产精品| 国产真实伦视频高清在线观看| 午夜爱爱视频在线播放| 久久久久久久久久人人人人人人| 中文精品一卡2卡3卡4更新| 一级黄片播放器| 国产淫语在线视频| 一个人看的www免费观看视频| 色网站视频免费| 午夜福利在线观看免费完整高清在| 黄色一级大片看看| 日日摸夜夜添夜夜添av毛片| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说 | 久久久午夜欧美精品| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 嫩草影院新地址| 国产又色又爽无遮挡免| 97超视频在线观看视频| 午夜福利成人在线免费观看| 成人美女网站在线观看视频| 深夜a级毛片| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 91av网一区二区| 免费在线观看成人毛片| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 国产av国产精品国产| 国产伦一二天堂av在线观看| 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 成年女人看的毛片在线观看| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 观看美女的网站| 在线播放无遮挡| 国产视频首页在线观看| 青春草视频在线免费观看| 97超视频在线观看视频| 午夜久久久久精精品| 久久精品久久久久久噜噜老黄| 啦啦啦啦在线视频资源| 国产亚洲5aaaaa淫片| 亚洲精品第二区| 永久网站在线| 久久久色成人| 肉色欧美久久久久久久蜜桃 | 99久国产av精品国产电影| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 亚洲在久久综合| 国产黄片视频在线免费观看| 中文资源天堂在线| 一级二级三级毛片免费看| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 激情 狠狠 欧美| kizo精华| 日韩强制内射视频| 可以在线观看毛片的网站| 99久久中文字幕三级久久日本| 天堂影院成人在线观看| 九九久久精品国产亚洲av麻豆| 午夜精品国产一区二区电影 | 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 超碰av人人做人人爽久久| 看黄色毛片网站| 床上黄色一级片| 免费人成在线观看视频色| 日韩av免费高清视频| 成人美女网站在线观看视频| 亚洲av免费在线观看| 免费少妇av软件| 又粗又硬又长又爽又黄的视频| 夜夜爽夜夜爽视频| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 爱豆传媒免费全集在线观看| 十八禁国产超污无遮挡网站| 99久久中文字幕三级久久日本| 精品久久久噜噜| 九色成人免费人妻av| 少妇的逼水好多| 久久久精品欧美日韩精品| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 日日摸夜夜添夜夜添av毛片| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 免费无遮挡裸体视频| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 精品久久久久久久末码| 99视频精品全部免费 在线| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 久久久久网色| 亚洲精品亚洲一区二区| 青春草国产在线视频| 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 91久久精品国产一区二区成人| 国产精品一区二区在线观看99 | 老女人水多毛片| 亚洲国产欧美在线一区| 国产欧美日韩精品一区二区| 久久久久久久午夜电影| 色5月婷婷丁香| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 高清欧美精品videossex| 精品一区二区三区人妻视频| 亚洲人与动物交配视频| 只有这里有精品99| 干丝袜人妻中文字幕| 精品国产三级普通话版| 国产亚洲av片在线观看秒播厂 | 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 久久精品夜夜夜夜夜久久蜜豆| 丝袜喷水一区| 色哟哟·www| 内射极品少妇av片p| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 亚洲精品第二区| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 久久人人爽人人爽人人片va| 国产亚洲精品av在线| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 乱系列少妇在线播放| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 亚洲精品成人av观看孕妇| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 久久人人爽人人爽人人片va| 中文资源天堂在线| 久久韩国三级中文字幕| 成年女人看的毛片在线观看| 99热全是精品| 亚洲美女视频黄频|