• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Joint Bearing Mechanism of Coal Pillar and Backfilling Body in Roadway Backfilling Mining Technology

    2018-03-13 02:02:20ZhengzhengCaoPingXuZhenhuaLiMinxiaZhangYuZhaoandWenlongShen
    Computers Materials&Continua 2018年2期

    Zhengzheng Cao, Ping Xu,, Zhenhua Li, Minxia Zhang, Yu Zhao and Wenlong Shen

    1 Introduction

    In order to solve the increasingly serious problem of mining under building, railway and water body at present [Zhou, Guo, Cha et al. (2008); Miao (2012); Cao, Du, Xu et al.(2017)], and reasonably dispose the wastes stacked on the mine like coal gangue and coal ash [Zhang, Zhang, Zhao et al. (2007); Zhang, Miao and Guo (2015); Xin and Ji (2016)],the roadway backfilling mining technology, a kind of safe and high-efficiency coal mining technology, is developed specially and has already obtained good popularizing and application [Qian (2010); Ding, Zhou, Xu et al. (2013); Teng, Wang, Gao et al. (2016)]. In roadway backfilling mining technology, the roadheader is employed for coal cutting in roadway driving work, which conveys the solid backfilling materials, (such as ground gangue, coal ash, loess and aeolian sand) to the mined roadway underground after the materials have been processed on the ground [Miao, Zhang and Guo (2010); Xue, Cao, Cai et al. (2017)], for the purpose of mining three-under coal (coal trapped under buildings,waters-bodies and railways) or the corner residual coal resource, controlling roof in the gob, preventing surface subsidence, and disposing solid wastes [Teng, Wang, Gao et al.(2016); Guo, Li and Liu (2017)]. Therefore, the roadway backfilling mining technology can be adopted for mining three-under coal and corner residual coal in certain conditions in small and medium-size coal mines [Ju, Li, Zhang et al. (2014); Cao, Du, Li et al. (2017)].Advances in the roadway backfilling mining technology over the last ten years have seen various research methods and results [Hu, Zhang, Gao et al. (2006); Qian, Miao and Xu(2008); Miao, Huang and Ju (2012); Jia, Qiao and Jiang (2016); Xue, Ranjith, Gao et al.(2017)]. In order to solve the technical problems of mining strip extraction coal-pillar and waste disposal, Zhang et al. [Zhang, Miao, Mao et al. (2007)] proposed the waste substitution extraction by the roadway backfilling mining technology, which determines the layout with two waste filling roadway (the width and height are 4.0 m and 5.0 m) placed in middle of strip extraction coal-pillar (the width is 4.0 m), by reference to the numerical analysis of the stability of substitution extraction coal-pillar and vertical stress distribution of basic roof in strip and substitution extraction. Li et al. [Li, Mao, Bu et al. (2008)]established the mechanical model of waste-filling in roadway and obtained the elastic displacement solution of coal pillar; based on elastic-viscoelastic correspondence principle,viscoelastic displacement solution of coal pillar was found out by importing Maxwell model, therefore, the rule of the compression and the lateral deformation of coal pillar change with time and backfilling material characteristics was achieved. On the basis of strip mining characteristics, Yu et al. [Yu and Wang (2011)] described the exchanging technology of gangue backfill and analyzed the characteristics of quadratic strata movement, according to subject of strata movement and quadratic stability of coal-pillar under three circumstances exchanged by gangue backfill; Besides, the analytic formula of the bearing body of “bearing rock strata and gangue filling support body” was deduced by means of the elastoplastic theory and based on the actual force and ultimate strength of the gangue filling support body. Deng et al. [Deng, Zhang, Zhou et al. (2014)] proposed the longwall-roadway cemented backfilling mining technology to solve the engineering technical problems in extra-thick coal seam, such as low recovery rate and the difficulty in controlling the mining surface subsidence and overlying strata movement and deformation;meanwhile, the layout of filling mining system, main equipment and technics was explained systematically, based on the principle of longwall-roadway cemented backfilling mining technology in extra thick coal seam. Zhou et al. [Zhou, Li, Zhang et al. (2016)]proposed a roadway backfill method during longwall mining, so as to improving coal recovery and preventing the geohazards in room and pillar mining method in Chinese western coal mines; besides, the reasonable ratio of backfill materials for the driving roadway during longwall mining was determined by testing mechanical properties of backfill materials, and the roadway layout and the backfill mining technique were introduced; meanwhile, the distance between roadways and a driving and filling sequence for multiple-roadway driving was designed, based on the effects of the abutment stress from a single roadway driving task. In order to guard against coal pillar instability, mine earthquake, surface subsidence, vegetation deterioration, and other environmental problems in traditional room mining technology, Zhang et al. [Zhang, Sun, Zhou et al.(2016)] proposed the roadway backfill coal mining method and presented the technical principle and key equipment; further, coal pillar stress, plastic zone change, and surface deformation of the roadway backfill coal mining schemes were studied with the FLAC3D numerical simulation software, and a reasonable mining scheme of “mining 7 m and leaving 3 m” was determined. For the sake of dealing with the low coal recovery and environmental problems caused by the traditional coal mining technology in Chinese western ecological fragile coal mining area, Sun et al. [Sun, Zhang, Yin et al. (2017)]proposed the longwall roadway backfill coal mining method and established the mechanical model of coal mining in stope, on the basis of the strata movement characteristics in the roadway backfill coal mining; then, the equation of roof deflection curve with corresponding mechanical analysis and the calculation formulas of coal pillar were deduced.

    It can be seen that the current researches mainly focus on the stability of coal pillar and technical practice in roadway backfilling mining technology. Nevertheless, the joint bearing mechanism of coal pillar and backfilling body is the key to success of roadway backfilling mining technology, which should be research systematically to provide an important basis for theoretical research and process design in roadway backfilling mining technology. In this paper, the elastic and viscoelastic solution expression of coal pillar deformation is obtained by establishing the mechanical model of bearing system of coal pillar and backfilling body, on the basis of basic characteristics of overlying strata deformation in roadway backfilling mining technology. Then, the time formula required for coal pillar and backfilling body to play the joint bearing function is obtained and the joint bearing mechanism of coal pillar and backfilling body in roadway backfilling mining technology is achieved, by analyzing the compressive mechanical property of backfilling body.

    2 Mechanical model of bearing system of roadway backfilling mining

    The roadway backfilling mining technology is an effective approach to mining the corner residual coal resource and the quality coal resource under buildings, railways, rivers, which is an important part of coal green mining system. The key equipment of roadway backfilling mining technology includes the bulldozer, continuous miner, belt stage-loader mechanism, and high-speed conveyer (fully hydraulically driven). The high-speed conveyer is entirely mounted on a crawler unit. The basic process in the roadway backfilling mining is as follows: firstly, move out related mining equipment after finishing one cycle of roadway mining with continuous miner; secondly, convey backfilling material to the mined roadway with high speed conveyer under coordination of belt stage-loader mechanism; finally, compact the backfilling materials (such as ground gangue, coal ash,loess and aeolian sand) gradually in mined roadway with bulldozer.

    The control process of overlying strata movement in roadway backfilling mining technology can be divided into three stages, namely coal pillar bearing stage, backfilling body dynamic compaction stage and coal pillar and backfilling body combined load bearing stage. In the coal pillar bearing stage, the overburden load is mainly supported by coal pillars on both sides of the roadway; In backfilling body dynamic compaction stage,the backfilling body gradually restores bearing capacity under the compaction action of surrounding rock of roadway, which begins to play a role of bearing upper strata; In combined load bearing stage, the coal pillar and backfilling body play the joint bearing effect on the overlying strata, and achieve long time stability.

    Figure 1: Mechanical model of bearing system of roadway backfilling mining

    In the roadway backfilling mining technology, collar pillar is a long cylindrical body, and the support conditions do not vary in length direction; besides, the volume force and surface force parallel to the cross section do not vary in length direction. Meanwhile, the displacement vector in coal pillar is parallel to the cross section, and the axial displacement does not occur. Similarly, this is the same to the backfilling body in the roadway backfilling mining. Therefore, the coupling mechanism of coal pillar and backfilling body in roadway backfilling mining can be attributed to a plane strain problem. In order to analyze the mechanical feature of coal pillar and backfilling body in roadway backfilling mining, the assumptions below are given: the coal pillar and backfilling body are both the continuous,homogeneous and isotropic elastic body; the weak surface does not exist in coal pillar and backfilling body; the full thickness mining method is adopted in roadway backfilling mining, thus the cohesive forces (such as the friction, pressure) exists in the interface between coal pillar, backfilling body and roof, floor; the backfilling body occupies the entire roadway.

    The physical model of roadway backfilling mining is shown in Fig. 1(a), which is the overburden movement supported by coal pillar and backfilling body. Thewidth ofcoal pillar is , and the width and height of backfilling roadway is and ,respectively. In consideration of the symmetry of boundary conditions and external loads,the mechanical model is established, by taking a quarter of right-upper coal pillar and a quarter of left-upper coal pillar, which is shown in Fig. 1(b).

    According to the symmetry of physical model of roadway backfilling mining, the right boundary of backfilling body and left boundary of coal pillar are both the horizontal simple support constraint; the lower boundary of coal pillar and backfilling body is the vertical simple constraint; the upper boundary condition of coal pillar and backfilling body is the chain constraint in the horizontal direction. Besides, the displacement is continuous in the interface () between coal pillar and backfilling body. Therefore, the displacement boundary condition of mechanical model in roadway backfilling mining is obtained,

    In roadway backfilling mining, the load weight of overlying strata is regarded as uniform distributed load;is the average weight of overburden, andis the mining depth of coal seam. The overburden load is supported jointly by coal pillar and backfilling body, namely

    Along the roadway in unit length, the sinking displacement of coal pillar and backfilling body can be expressed as follows:

    In coal pillar and backfilling body combined load bearing stage, the sinking displacement of coal pillar is equal to that of backfilling body, namely, thus

    Combining formula (4) and formula (5), the calculative expression of uniform loadis obtained,

    The compressive characteristic of backfilling body is the key point in roadway backfilling mining technology. The related research result [Miao, Zhang, and Guo (2010)] indicates that the exponential function rule exists in stress-strain relationship of backfilling body,

    When coal pillar and backfilling body play the joint bearing function in roadway backfilling mining, the stressin backfilling body is equal to the uniform load supported by backfilling body. Combining formula (6) and formula (7), the strain of backfilling body in steady state is obtained,

    3 Elastic analysis of coal pillar deformation

    The elastic deformation solution of coal pillar is analyzed by the basic principle of Ritz method, according to the displacement boundary condition of mechanics model, the expressions of displacement field, including some undetermined coefficients, are assumed to satisfy displacement boundary condition; then, the specific values of undetermined coefficients are determined by the displacement variation equation; thus, the elastic solution of displacement field is obtained.

    Based on the displacement boundary condition of mechanical model, the displacement field expression is assumed as follows:

    The deformation potential energyof coal pillar and deformation potential energyof backfilling body is expressed as follows:

    Substituting formula (10) into formula (11),

    The total deformation potential energy of mechanical system is obtained,

    Substituting formula (12) into formula (13),

    According to the stress boundary condition of coal pillar, the relationship is true,

    Substituting the formula (19) into the Ritz equation, namely the formula (16),

    By solving the ternary nonhomogeneous equation system, the undetermined coefficients are expressed as follows:

    Therefore, the analytical expressions of displacement field of coal pillar is obtained,

    4 Viscoelastic analysis of coal pillar deformation

    Table 1: Basic equations of elasticity and viscoelasticity

    Assume that a real functionis defined on an independent variable, and thetends to convergence in a certain range of complex plane, so the functiondetermined by the integral is denoted as Laplace transform of the real functiontransform of

    Based on the elastic-viscoelastic correspondence principle, Laplace transform can be done on the elastic solution of displacement field expression of coal pillar, namely the formula(10),

    According to the relationship between the elastic modulus, Poisson’s ratioand shear modulus, bulk modulus, namely

    Figure 2: Burgers creep mechanical model

    The rheological characteristic of coal pillar illustrated with the burgers creep mechanical model, which is shown in Fig. 2. The three dimensional constitutive equation is as follows,

    According to the viscoelastic theory, the variables are obtained,

    Based on the elastic-viscoelastic correspondence principle, the viscoelastic solution of displacement field expression of coal pillar can be transformed by doing the inverse Laplace transformation, which is shown in formula (27),

    Therefore, when the roadway height is, the maximum value of vertical creep deformation of coal pillar is. Combining with the compaction amountof backfilling body in the steady state in formula (9), the expression of

    By substituting the specific variable values into formula (28), the time required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology can be obtained.

    5 Engineer example analysis

    5.1 Elastic solution of displacement field of coal pillar

    Figure 3: The mechanical experiments

    Figure 4: The equipment of mechanical experiment

    According to the calculative expression of uniform loadandin formula (6), the specific values ofandare

    The displacement expression of coal pillar is

    Thus, the deformation potential energy of coal pillar and backfilling body are

    Substituting formula (30) into formula (31),

    Thus, the specific values ofandcan be obtained,which is shown in Tab. 2.

    Substituting the related values into formula (20),

    Table 2: Q and m values

    ?

    The undetermined coefficients can be solved,

    Then, the elastic solution of displacement field of coal pillar is obtained,

    The height of coal pillar is 6 m, substitutey=6 into formula (38), so the maximum vertical deformation of coal pillar is approximately 0.045 m, which is reasonable in practice engineer.

    5.2 Viscoelastic solution of displacement field of coal pillar

    Based on the elastic-viscoelastic correspondence principle, the specific values of creep variable,,andare substituting into formula (26),

    Based on the elastic-viscoelastic correspondence principle, the elastic modulusand Poisson’s ratioin viscoelastic theory is shown as follows,

    Substituting formula (41) into formula (34),

    Combining formula (15) with formula (21), the analytical expression of undetermined coefficients),)and)can be obtained; therefore, the formula (23) can be expressed as follows:

    Based on the elastic-viscoelastic correspondence principle, the viscoelastic solution of displacement field of coal pillar can be transformed, which is shown in formula (44),

    In formula (44), the specific expression ofis

    When the backfilling body is coal gangue (particle size is 20-25 mm), the specific values of regression coefficientsandis 0.1442 MPa and 10.31, respectively.Substituting the specific values into formula (28),

    Combining formula (45) and formula (46), the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained,

    By solving the formula (47), the time is. Therefore, the time required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is 140 days.

    6 Conclusions

    (1) The control process of overlying strata movement in roadway backfilling mining technology can be divided into three stages, namely coal pillar bearing stage, backfilling body dynamic compaction stage and coal pillar and backfilling body combined load bearing stage. The coal pillar and backfilling body play the joint bearing effect on the overlying strata and achieve long time stability in combined load bearing stage.

    (2) The mechanical model of bearing system of coal pillar and backfilling body is established, on basis of the deformation characteristics of overlying strata in roadway backfilling mining technology. Besides, the elastic solution expression of coal pillar deformation is deduced with the Ritz method in energy variation principle, and the viscoelastic solution expression of coal pillar deformation is obtained, based on elasticviscoelastic correspondence principle, combining with the burgers rheological constitutive model and Laplace transform theory.

    (3) By analyzing the compressive mechanical property of backfilling body, the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained. The engineer example analysis indicates that the time required to play the joint bearing function is 140 days.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (51504081, 51774110, 51508166, U1404527), the Science and Technology Breakthrough Project by Henan Province (162102210221, 162102310427), the Foundation for Higher Education Key Research Project by Henan Province (15A440013), the Ph.D.Programs Foundation of Henan Polytechnic University (B2018-65, B2018-4, B2016-67).

    Akbarov, S. D.; Negin, M.(2017): Generalized rayleigh wave dispersion in a covered half-space made of viscoelastic materials.Computers Materials & Continua, vol. 53, no.4, pp. 307-341.

    An, B. F.; Qi, W. Y.; Lan, L. X.; Mei, X. C.; Zhou, Z. et al.(2017): Critical failure time of roof and standing pillars in China western mining area.Journal of China Coal Society,vol. 42, no. 2, pp. 397-403.

    Cao, Z. Z.; Du, F.; Li, Z. H.; Wang, Q. T.; Xu, P. et al.(2017): Research on instability mechanism and type of ore pillar based on the fold catastrophe theory.Computer Modeling in Engineering & Sciences, vol. 113, no. 3, pp. 287-306.

    Cao, Z. Z.; Du, F.; Xu, P.; Lin, H. X.; Xue, Y. et al.(2017): Control mechanism of surface subsidence and overburden movement in backfilling mining based on laminated plate theory.CMC: Computers Materials & Continua, vol. 53, no. 3, pp. 187-202.

    Deng, X. J.; Zhang, J. X.; Zhou, N.; An, T. L.; Guo, S.(2014): The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam.Journal of Mining & Safety Engineering, vol. 31, no. 6, pp. 857-862.

    Deng, X. J.; Zhang, J. X.; Klein, B.; Zhou, N.; Dewit, B.(2017): Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill.International Journal of Mineral Processing, vol.168, pp. 116-125.

    Ding, Y. L.; Zhou, Y. J.; Xu, P.; Peng, G.; Cao, Z. Z.(2013): Mechanism analysis of restraining surface cracks and protecting Tetraena mongolice maxin with backfilling mining.Journal of Mining & Safety Engineering, vol. 30, no. 6, pp. 868-873.

    Guo, W. B.; Li, Y. T.; Liu, D. C.(2017): Application of strip pillar mining technology under dense constructions within industrial square.Journal of Henan Polytechnic University (Natural Science), vol. 36, no. 6, pp. 8-14.

    Hu, B. N.; Zhang, W. H.; Gao, Q. C.; Liu, P. L.(2006): Test research on permanent pillar mining with coal refuse backfilling.Coal Science and Technology, vol. 34, no. 11, pp. 46-48.

    Li, M.; Zhang, J. X.; Zhou, N.; Zhang, Q.(2017): Deformation and failure analysis of river levee induced by coal mining and its influence factor.Computer Modeling in Engineering & Sciences, vol. 113, no. 2, pp. 183-194.

    Li, Q.; Mao, X. B.; Bu, W. K.; Ma, Z. G.(2008): Mechanism of using waste-filling in roadway to control the deformation of covered rock strata.Journal of China University of Mining & Technology, vol. 37, no. 6, pp. 745-750.

    Jia, H. S.; Qiao, A. Z.; Jiang, W. Y.(2016): Deformation-failure characteristics and supporting method of mining tunnel roof in Buertai mine.Journal of Henan Polytechnic University (Natural Science), vol. 35, no. 3, pp. 338-344.

    Ju, F.; Li, M.; Zhang, J. X.; Miao, X. X.; Liu, Z.(2014): Construction and stability of an extra-large section chamber in solid backfill mining.International Journal of Mining Science and Technology, vol. 24, no. 6, pp. 763-768.

    Miao, X. X.(2012): Progress of fully mechanized mining with solid backfilling technology.Journal of China Coal Society, vol. 37, no. 8, pp. 1247-1255.

    Miao, X. X.; Huang, Y. L.; Ju, F.(2012): Strata movement theory of dense backfill mining.Journal of China University of Mining & Technology, vol. 41, no. 6, pp. 863-867.

    Miao, X. X.; Zhang, J. X.; Guo, G. L.(2010): Study on waste-filling method and technology in fully-mechanized coal mining.Journal of China Coal Society, vol. 35, no. 1,pp. 1-6.

    Qian, M. G.(2010): On sustainable coal mining in China.Journal of China Coal Society,vol. 35, no. 4, pp. 529-534.

    Qian, M. G.; Miao, X. X.; Xu, J. L.(2008): On scientized mining.Journal of Mining &Safety Engineering, vol. 25, no. 1, pp. 1-10.

    Sun, Q.; Zhang, J. X.; Yin, W.; Zhou, N.; Liu, Y.(2017): The study of stability of surrounding rock and characters of overburden strata movement with longwall roadway backfill coal mining.Journal of China Coal Society, vol. 42, no. 2, pp. 404-412.

    Teng, T.; Wang, J. G.; Gao, F.; Ju, Y.; Jiang, C.(2016): A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization.Journal of Natural Gas Science and Engineering, vol. 32, pp. 319-333.

    Teng, T.; Wang, J. G.; Gao, F.; Ju, Y.; Xia, T.(2016): Impact of water film evaporation on gas transport property in fractured wet coal seams.Transport in Porous Media, vol. 113,no. 2, pp. 357-382.

    Xin, Y. J.; Ji, H. Y.(2016): Study on uniaxial compression experiments for different ratio and large-scale similar simulated specimens.Journal of Henan Polytechnic University(Natural Science), vol. 35, no. 1, pp. 30-36.

    Xue, Y.; Cao, Z. Z.; Cai, C. Z.; Dang, F. N.; Hou, P. et al.(2017): A fully coupled thermohydro-mechanical model associated with inertia and slip effects.Thermal Science, vol. 21,no. S1, pp. 259-266.

    Xue, Y.; Ranjith, P. G.; Gao, F.; Zhang, D. C.; Cheng, H. M. et al.(2017): Mechanical behaviour and permeability evolution of gas-containing coal from unloading confining pressure tests.Journal of Natural Gas Science and Engineering, vol. 40, pp. 336-346.

    Yu, W. J.; Wang, W. J.(2011): Strata movement induced by coal-pillar under three circumstances exchanged by gangue backfill and quadratic stability law.Chinese Journal of Rock Mechanics and Engineering, vol. 30, no. 1, pp. 105-112.

    Zhang, J. X.; Miao, X. X.; Guo, G. L.(2015):Consolidated solid backfill mining method and its applications. Science Press.

    Zhang, J. X.; Miao, X. X.; Mao, X. B.; Chen, Z. W.(2007): Research on waste substitution extraction of strip extraction coal-pillar mining.Chinese Journal of Rock Mechanics and Engineering, vol. 26, no. S1, pp. 2687-2693.

    Zhang, J. X.; Sun, Q.; Zhou, N.; Jiang, H. Q.(2016): Research and application of roadway backfill coal mining technology in western coal mining area.Arabian Journal of Geosciences, vol. 9, pp. 558.

    Zhang, W. H.; Zhang, J. X.; Zhao, J. S.; Wei, S. Q.; Ju, F.(2007): Research on waste filling technology and its matching equipment in coal mining.Journal of Mining & Safety Engineering, vol. 24, no. 1, pp. 79-83.

    Zhou, N.; Li, M.; Zhang, J. X.; Gao, R.(2016): Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine, China.Natural Hazards and Earth System Sciences, vol. 16, pp. 2473-2484.

    Zhou, Z. Y.; Guo, G. L.; Cha, J. F.; Ma, Z. G.(2008): Study on subsidence controlled of tunnel mining with coal refuse backfilling under buildings.Safety in Coal Mines, vol. 8,pp. 19-22.

    日韩中字成人| 久久这里只有精品中国| 一个人看的www免费观看视频| 午夜视频国产福利| av在线老鸭窝| 亚洲不卡免费看| 国产精品蜜桃在线观看 | 亚洲精品乱码久久久v下载方式| 啦啦啦啦在线视频资源| 免费在线观看成人毛片| 亚洲四区av| 国产亚洲精品久久久com| 99久久无色码亚洲精品果冻| 亚洲七黄色美女视频| 乱人视频在线观看| 青春草亚洲视频在线观看| av在线天堂中文字幕| 精品久久久久久久久av| 亚洲av免费在线观看| 亚洲欧美成人综合另类久久久 | 91久久精品电影网| 12—13女人毛片做爰片一| 亚洲国产高清在线一区二区三| 搞女人的毛片| kizo精华| 欧美最黄视频在线播放免费| 久久久久久久亚洲中文字幕| 国产综合懂色| 精品人妻一区二区三区麻豆| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 亚洲精品久久国产高清桃花| 亚洲精品国产av成人精品| 亚洲国产精品成人久久小说 | 白带黄色成豆腐渣| 午夜视频国产福利| 精品人妻熟女av久视频| 九九热线精品视视频播放| 99精品在免费线老司机午夜| 免费电影在线观看免费观看| 国产毛片a区久久久久| 欧美成人精品欧美一级黄| 男女边吃奶边做爰视频| 此物有八面人人有两片| 成人一区二区视频在线观看| 久久午夜福利片| 亚洲欧美成人综合另类久久久 | 久久精品国产99精品国产亚洲性色| 国产国拍精品亚洲av在线观看| 欧美日韩一区二区视频在线观看视频在线 | 99久久人妻综合| 老司机福利观看| 99久国产av精品| 久久久国产成人精品二区| 美女高潮的动态| 色视频www国产| 久久久久性生活片| 色视频www国产| 干丝袜人妻中文字幕| av女优亚洲男人天堂| 久久久久网色| 午夜爱爱视频在线播放| 国产精品美女特级片免费视频播放器| 简卡轻食公司| 国产黄色视频一区二区在线观看 | 久99久视频精品免费| av女优亚洲男人天堂| 久99久视频精品免费| 青春草国产在线视频 | 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线观看免费| 天天一区二区日本电影三级| 日本熟妇午夜| 岛国毛片在线播放| www.av在线官网国产| 国产精品一区二区三区四区免费观看| 人人妻人人澡人人爽人人夜夜 | 亚洲精品色激情综合| 高清日韩中文字幕在线| 国产精品免费一区二区三区在线| 久久人人爽人人爽人人片va| 哪里可以看免费的av片| 精品久久久久久久久av| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 综合色av麻豆| 一级二级三级毛片免费看| 日本免费a在线| 校园人妻丝袜中文字幕| 国产成人a∨麻豆精品| 性色avwww在线观看| 在线免费十八禁| 三级毛片av免费| 成人鲁丝片一二三区免费| 欧美成人免费av一区二区三区| 校园春色视频在线观看| 国产久久久一区二区三区| 国产亚洲av片在线观看秒播厂 | 亚洲成人久久性| 国产精品综合久久久久久久免费| 日韩精品青青久久久久久| 精品久久久久久久久亚洲| 99热只有精品国产| 爱豆传媒免费全集在线观看| 国产成人福利小说| 成人漫画全彩无遮挡| 在线观看美女被高潮喷水网站| 免费看美女性在线毛片视频| 国产高清有码在线观看视频| 亚洲欧美日韩卡通动漫| 国产成人a∨麻豆精品| av卡一久久| a级毛片免费高清观看在线播放| 日本免费一区二区三区高清不卡| kizo精华| 日本在线视频免费播放| 午夜福利视频1000在线观看| 深夜精品福利| 久久久午夜欧美精品| 欧美激情国产日韩精品一区| 午夜福利成人在线免费观看| 国产亚洲av嫩草精品影院| 国产一级毛片七仙女欲春2| 黄色欧美视频在线观看| 欧美色欧美亚洲另类二区| 亚洲高清免费不卡视频| 最近手机中文字幕大全| 熟女人妻精品中文字幕| 性欧美人与动物交配| 亚洲美女搞黄在线观看| 亚洲天堂国产精品一区在线| 国产日韩欧美在线精品| 欧美最黄视频在线播放免费| 国产免费男女视频| 国产极品精品免费视频能看的| av在线蜜桃| 久久人人精品亚洲av| 亚洲欧美成人综合另类久久久 | 国产私拍福利视频在线观看| 中国国产av一级| 亚洲va在线va天堂va国产| 熟女人妻精品中文字幕| 啦啦啦啦在线视频资源| 天堂影院成人在线观看| 日韩一区二区视频免费看| 91狼人影院| 在线天堂最新版资源| 亚洲av中文av极速乱| 男人舔女人下体高潮全视频| 国产高清视频在线观看网站| 激情 狠狠 欧美| 97热精品久久久久久| 麻豆乱淫一区二区| 国产 一区 欧美 日韩| 99精品在免费线老司机午夜| 日韩,欧美,国产一区二区三区 | 婷婷亚洲欧美| 12—13女人毛片做爰片一| 国产不卡一卡二| 精品午夜福利在线看| 国产黄片视频在线免费观看| 国产亚洲精品久久久com| 麻豆乱淫一区二区| 男女那种视频在线观看| 搞女人的毛片| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 99在线人妻在线中文字幕| 狠狠狠狠99中文字幕| 亚洲最大成人手机在线| 国产69精品久久久久777片| 真实男女啪啪啪动态图| 久久久久久久久中文| 看十八女毛片水多多多| 午夜福利高清视频| 久久这里只有精品中国| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 国产美女午夜福利| 欧美另类亚洲清纯唯美| 波多野结衣巨乳人妻| 网址你懂的国产日韩在线| 午夜福利在线在线| 亚洲av免费在线观看| 欧美激情在线99| 麻豆成人午夜福利视频| 亚洲国产精品久久男人天堂| kizo精华| 波野结衣二区三区在线| 国内少妇人妻偷人精品xxx网站| 午夜a级毛片| 成人特级av手机在线观看| 能在线免费看毛片的网站| 美女 人体艺术 gogo| 午夜久久久久精精品| 婷婷亚洲欧美| 国产三级中文精品| 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品国产电影| 校园春色视频在线观看| 看黄色毛片网站| 小说图片视频综合网站| 国产av在哪里看| АⅤ资源中文在线天堂| 亚洲五月天丁香| 免费在线观看成人毛片| 日本一本二区三区精品| 国产精品国产高清国产av| ponron亚洲| 高清日韩中文字幕在线| 毛片一级片免费看久久久久| 美女 人体艺术 gogo| 丝袜喷水一区| 免费无遮挡裸体视频| 亚洲激情五月婷婷啪啪| 亚洲18禁久久av| 能在线免费看毛片的网站| 成熟少妇高潮喷水视频| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 久久国产乱子免费精品| 色综合站精品国产| 99久久精品国产国产毛片| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频国产福利| 九九在线视频观看精品| av国产免费在线观看| 成人漫画全彩无遮挡| 欧美色视频一区免费| 国产片特级美女逼逼视频| 国产v大片淫在线免费观看| 啦啦啦啦在线视频资源| 少妇猛男粗大的猛烈进出视频 | 久久九九热精品免费| 青春草国产在线视频 | 悠悠久久av| www.色视频.com| av卡一久久| 午夜福利成人在线免费观看| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 国产一区二区在线av高清观看| 日韩高清综合在线| 国产av一区在线观看免费| 亚洲在久久综合| 哪个播放器可以免费观看大片| 国产黄a三级三级三级人| 能在线免费看毛片的网站| 老司机福利观看| 亚洲无线观看免费| 国产爱豆传媒在线观看| 97超视频在线观看视频| 嫩草影院入口| 国产69精品久久久久777片| 国产精品野战在线观看| 久久久久久九九精品二区国产| 国产高清视频在线观看网站| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 伦精品一区二区三区| 久久99精品国语久久久| 国国产精品蜜臀av免费| 午夜爱爱视频在线播放| 久久人妻av系列| 欧美日韩一区二区视频在线观看视频在线 | 国产麻豆成人av免费视频| 国产日韩欧美在线精品| 黄色配什么色好看| 国产av在哪里看| 中国国产av一级| 一进一出抽搐动态| 国产欧美日韩精品一区二区| 身体一侧抽搐| 日韩三级伦理在线观看| 综合色av麻豆| 99热全是精品| 欧美一级a爱片免费观看看| 中文亚洲av片在线观看爽| 少妇丰满av| 成人漫画全彩无遮挡| 国产视频内射| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕一区二区三区有码在线看| 99热网站在线观看| 国产精品久久视频播放| 99久久人妻综合| 在线a可以看的网站| 久久99热这里只有精品18| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 国产精品一区二区在线观看99 | 午夜老司机福利剧场| 蜜桃亚洲精品一区二区三区| 成人永久免费在线观看视频| 欧美又色又爽又黄视频| 我要看日韩黄色一级片| 在线观看午夜福利视频| 亚洲欧美日韩高清专用| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久久久按摩| 欧美变态另类bdsm刘玥| 在线免费观看不下载黄p国产| 久久久久久大精品| 国产av不卡久久| 69av精品久久久久久| 欧美高清性xxxxhd video| 人妻制服诱惑在线中文字幕| av国产免费在线观看| 在线观看美女被高潮喷水网站| 久久人人爽人人片av| 中文资源天堂在线| 亚洲国产精品sss在线观看| 久久久久久大精品| 成年免费大片在线观看| 伦精品一区二区三区| 日韩av不卡免费在线播放| 亚洲精品国产成人久久av| 少妇熟女欧美另类| 91狼人影院| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 成年av动漫网址| 国产黄片美女视频| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 91午夜精品亚洲一区二区三区| 国产一区二区激情短视频| 最近2019中文字幕mv第一页| 联通29元200g的流量卡| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 国产69精品久久久久777片| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| av黄色大香蕉| 在线观看av片永久免费下载| 免费看美女性在线毛片视频| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 久久久a久久爽久久v久久| 精品一区二区三区人妻视频| 丰满乱子伦码专区| 国产精品伦人一区二区| 免费人成在线观看视频色| 又粗又爽又猛毛片免费看| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 亚洲av免费在线观看| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 少妇丰满av| 男人的好看免费观看在线视频| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 一夜夜www| 国内久久婷婷六月综合欲色啪| 国产亚洲精品久久久久久毛片| 日韩制服骚丝袜av| 一本一本综合久久| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| av视频在线观看入口| 最近最新中文字幕大全电影3| 1000部很黄的大片| 欧美一区二区亚洲| 亚洲不卡免费看| 日本黄大片高清| а√天堂www在线а√下载| 国产大屁股一区二区在线视频| 国产高潮美女av| 一夜夜www| 国产av一区在线观看免费| 国产乱人视频| 欧美激情在线99| 国产成人a区在线观看| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 直男gayav资源| 亚洲精品日韩在线中文字幕 | 99热精品在线国产| 久久国产乱子免费精品| 最近手机中文字幕大全| 免费av观看视频| 男女做爰动态图高潮gif福利片| 人妻少妇偷人精品九色| 特级一级黄色大片| 日韩三级伦理在线观看| 国产69精品久久久久777片| 国产精品1区2区在线观看.| 97在线视频观看| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 天堂中文最新版在线下载 | 99久久精品热视频| 人妻少妇偷人精品九色| 九草在线视频观看| 亚洲18禁久久av| 又爽又黄无遮挡网站| av.在线天堂| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 久久人人精品亚洲av| 日本一二三区视频观看| 色5月婷婷丁香| 99热只有精品国产| 麻豆精品久久久久久蜜桃| av天堂中文字幕网| 亚洲无线在线观看| 国产久久久一区二区三区| 亚洲精品乱码久久久久久按摩| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| av女优亚洲男人天堂| 色综合色国产| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 国产高清三级在线| 亚洲第一区二区三区不卡| 噜噜噜噜噜久久久久久91| 国产又黄又爽又无遮挡在线| 又粗又爽又猛毛片免费看| 好男人视频免费观看在线| 欧美日本视频| 亚洲18禁久久av| 女的被弄到高潮叫床怎么办| 国产爱豆传媒在线观看| av在线播放精品| 精品久久久久久久久久免费视频| 91av网一区二区| 国产成人aa在线观看| 欧美日韩综合久久久久久| 黄色视频,在线免费观看| 久久人妻av系列| 欧美日韩精品成人综合77777| 在线免费十八禁| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 国产探花在线观看一区二区| 99久久精品热视频| 女人被狂操c到高潮| 男的添女的下面高潮视频| 99riav亚洲国产免费| 一个人看视频在线观看www免费| 亚洲av成人av| 国产乱人偷精品视频| avwww免费| 91精品国产九色| 午夜福利高清视频| 插阴视频在线观看视频| 成年版毛片免费区| 综合色丁香网| 精品日产1卡2卡| 老女人水多毛片| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 日本熟妇午夜| 色综合站精品国产| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月| 国产精品一二三区在线看| 欧美一区二区精品小视频在线| 久久午夜福利片| 亚洲国产日韩欧美精品在线观看| АⅤ资源中文在线天堂| 精品国内亚洲2022精品成人| a级毛片a级免费在线| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 最近中文字幕高清免费大全6| 在线播放无遮挡| 哪里可以看免费的av片| 老师上课跳d突然被开到最大视频| 国产一区二区三区av在线 | 变态另类成人亚洲欧美熟女| 观看美女的网站| 欧洲精品卡2卡3卡4卡5卡区| av.在线天堂| 搡老妇女老女人老熟妇| 国产成人午夜福利电影在线观看| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 精品久久久久久久久av| 别揉我奶头 嗯啊视频| 人人妻人人澡人人爽人人夜夜 | 午夜激情欧美在线| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 国产免费男女视频| 国产一区二区亚洲精品在线观看| 又黄又爽又刺激的免费视频.| 国产精品久久久久久精品电影| 成人二区视频| 自拍偷自拍亚洲精品老妇| 久99久视频精品免费| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 欧美人与善性xxx| 综合色av麻豆| a级一级毛片免费在线观看| 久久久久久久久大av| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 国产日本99.免费观看| 边亲边吃奶的免费视频| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜 | 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| 日本成人三级电影网站| 免费看美女性在线毛片视频| 午夜视频国产福利| 国产精品三级大全| 国产探花在线观看一区二区| 亚州av有码| 日本一本二区三区精品| 国产精品av视频在线免费观看| 极品教师在线视频| 亚洲精品日韩av片在线观看| 日本撒尿小便嘘嘘汇集6| 国产高潮美女av| 国产淫片久久久久久久久| 永久网站在线| 久久久久九九精品影院| 全区人妻精品视频| 好男人视频免费观看在线| 国产精品一区二区在线观看99 | 国产日韩欧美在线精品| 亚洲av.av天堂| 又爽又黄a免费视频| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 日韩欧美精品v在线| 亚洲成人久久爱视频| 久久久久久九九精品二区国产| 能在线免费观看的黄片| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| ponron亚洲| 午夜激情欧美在线| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 一进一出抽搐动态| 亚洲精品乱码久久久久久按摩| 国产真实乱freesex| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 日本爱情动作片www.在线观看| 欧美+日韩+精品| 一区二区三区四区激情视频 | 最近视频中文字幕2019在线8| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 内射极品少妇av片p| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 综合色丁香网| 国产成人freesex在线| av视频在线观看入口| 国产精品.久久久| 好男人视频免费观看在线| 在线观看66精品国产| 最后的刺客免费高清国语| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 久久久久久九九精品二区国产| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 蜜桃亚洲精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻熟人妻熟丝袜美| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 黄色欧美视频在线观看| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区 | 卡戴珊不雅视频在线播放| 在线观看66精品国产| 日本一二三区视频观看| 国产成人精品久久久久久| 成人av在线播放网站| av天堂在线播放| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 淫秽高清视频在线观看| 久久鲁丝午夜福利片|