• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    2018-03-13 02:02:26AmerMahdyandYoussef
    Computers Materials&Continua 2018年2期

    Y. A. Amer, A. M. S. Mahdy, and E. S. M. Youssef

    1 Introduction

    A lot of problems can be modeled by fractional integro-differential equations from various sciences and engineering applications. In addition to the fact that many problems cannot be found analytical solutions to them and therefore, once you get a solution is a result of a good result solutions, using numerical methods, will be very helpful. Recently, several numerical methods to solve fractional integro-differential equations (FIDEs) [Zedan,Tantawy, Sayed et al. (2017); Oyedepo, Taiwo, Abubakar et al. (2016); Wang and Zhu(2017)] have been given. Since the example collocation method for solving the nonlinear fractional Langevin equation [Bhrawy and Alghamdi (2012); Yang, Chen and Huang(2014)]. A Chebyshev polynomials method is introduced in Bhrawy et al. [Bhrawy and Alofi(2013)], Doha et al. [Doha, Bhrawy and Ezz-Eldien (2011)], Irandoust-pakchin et al.[Irandoust-pakchin, Kheiri and Abdi-mazraeh (2013)] for solving multiterm fractional orders differential equations and nonlinear Volterra and Fredholm Integro-differential equations of fractional order. The authors in Rathore et al. [Rathore, Kumar, Singh et al.(2012)] applied variational iteration method for solving fractional Integro-differential equations with the nonlocal boundary conditions and more methods in Wang et al. [Wang,Han and Xie (2012)], Lin et al. [Lin, Gu and Young (2010)].

    In this paper Sumudu transform method [Wang, Han and Xie (2012); Lin, Gu and Young(2010); Singh and Kumar (2011); Ganji (2006); Hashim, Chowdhurly and Mawa (2008);He (1999); Liao (2005); Amer, Mahdy and Youssef (2017)] and Hermite spectral collocation method [Andrews (1985); Solouma and Khader (2016); Bagherpoorfard and Ghassabzade (2013)]; Bojdi, Ahmadi-Asl and Aminataei (2013); Brill (2002); Bialecki(1993); Dyksen and Lynch (2000); He (1999)] is applied to solving fractional integro differential equations.

    In this paper, we are concerned with the numerical solution of the following linear fractional integro-differential equation [Bhrawy and Alofi(2013); Doha, Bhrawy and Ezz-Eldien (2011); Irandoust-pakchin, Kheiri and Abdi-mazraeh (2013); Mohammed (2014)]:

    with initial conditions:

    2 Basic definitions of fractional calculus

    In this section, we present the basic definitions and properties of the fractional calculus theory, which are used further in this paper

    Definition 1:A real functionis said to be in the spaceif there exists a real numbersuch thatwhereand it is said to be in the spaceif

    Definition 2:The Caputo fractional derivative operatorof orderis defined in the following form [El-Sayed and Salman (2013); El-Sayed and Salman (2013); Elsadany and Matouk (2015)]:

    Definition 3:The Sumudu transform is defined over the set of functions [Singh and Kumar(2011); Ganji (2006)]

    by the following formula:

    where

    Some special properties of the sumudu transform are as follows [Belgacem and Karaballi(2006)]:

    Definition 4:The Sumudu transform of Caputo fractional derivative is defined as follows[Amer, Mahdy and Youssef (2017); Belgacem and Karaballi (2006)]:

    Theorem:[Singh and Kumar (2011); Amer, Mahdy and Youssef (2017)]

    This theorem is very important to calculate approximate solution of the problems and for more details in Singh et al. [Singh and Kumar (2011)], Amer et al. [Amer, Mahdy and Youssef (2017)]

    Definition 5:The Hermite polynomials are given by Andrews [Andrews (1985)], Solouma et al. [Solouma and Khader (2016)], Bagherpoorfard et al. [Bagherpoorfard and Ghassabzade (2013)], Bojdi et al. [Bojdi, Ahmadi-Asl and Aminataei (2013)], Brill [Brill(2002)], Bialecki [Bialecki (1993)], Dyksen et al. [Dyksen and Lynch (2000)], He [He(1999)]:

    A lot of the properties of these polynomials are:

    The Hermite polynomials evaluated at zero argumentand are have called Hermite number as follows: [Andrews (1985); Solouma and Khader (2016)]

    3 The homotopy perturbation sumudu transform method

    In order to elucidate the solution procedure of this method, we consider a general fractional nonlinear differential equation of the form [Singh and Kumar (2011); Ganji (2006);Hashim, Chowdhurly and Mawa (2008); He (1999); Liao (2005); Amer, Mahdy and Youssef (2017)]:

    Applying the Sumudu transform (denoted throughout this paper by) on both sides of Eq.(11), we have

    Using the property of the Sumudu transform and the initial conditions in Eq. (12), we have

    Operating with the Sumudu inverse on both sides of Eq. (13) we get

    for some Adomian’s polynomials, which can be calculated with the formula [Ghorbani(2009); Jafari and Daftardar-Gejji (2006)]

    Substituting Eq. (15) and (17) in Eq. (14), we get

    Equating the terms with identical powers of, we can obtain a series of equations as the follows:

    Finally, we approximate the analytical solutionby truncated series as

    4 Basic idea of hermite collocation method

    In this section the Hermite collocation method is applied to study the numerical solution of the fractional Integro-differential (1).

    This method is based on approximating the unknown functionas

    At first by Substituting (21) into (1) we obtain

    Hence the residual equation is defined as:

    By evaluating the above equation forwe can obtain a system of (n+1)linear equations with (n+1) unknown coefficients, after calculate the coefficientwe substitute in Eq. (21) then we get the solution of)

    5 Applications

    In this section, to illustrate the method and to show the ability of the method two examples are presented.

    Example (1):Cosider the fractional integro-differential equations as

    (i)First by using Sumudu transform method

    By taking the Sumudu transform on both sides of Eq. (28), thus we get

    Using the property of the Sumudu transform and the initial condition in Eq. (30), we have

    Operating with the Sumudu inverse on both sides of Eq. (31) we get

    By substituting Eq. (33) in Eq. (32) we have

    The few components of the Adomian polynomials are given as follows:

    Then we have

    Figure 1: The behavior of y(x) by HPSTM

    (ii)By sing Hermite spectral collocation method

    First By assuming the approximate of the solution ofwith m=2 as:

    Second by Substituting (36) into (28) we obtain

    Hence the residual equation is defined as:

    Second let

    The minimum value of S is obtained by setting

    By applying (42) in (41) we have:

    From the initial condhtion y(0)=1 and from Eq. (7) we get

    By solving the Eq. (43)-(45) we get the values ofand substituting in Eq.(36) we get the solution as series:

    Figure 2: The behavior of y(x) by Hermite collocation method

    It is no doubt that the efficiency of this approach is greatly enhanced by the calculation further terms of yby using by using Sumudu transform method and Hermite spectral collocation method.As shown in Fig. 1 and Fig. 2.

    Example (2):Consider the systems of fractional integro-differential type as :

    By using the properities of Gamma function of the two Eq. (47), (48) become

    (i)First by using Sumudu transform method

    By taking the Sumudu transform on both sides of Eq. (50), thus we get

    Using the property of the Sumudu transform and the initial condition in Eq. (49), we have

    Operating with the Sumudu inverse on both sides of Eq. (52) we get

    By assuming that

    By substituting Eq. (54) in Eq. (53) we have

    Figure 3: The behavior of u(x) by HPSTM

    Figure 4: The behavior of v(x) by HPSTM

    (ii)By sing Hermite spectral collocation method

    First By assuming the approximate of the solution ofwith m=2 as:

    Second by Substituting (57) into (50) we obtain

    Hence the residual equation is defined as:

    The minimum value of S is obtained by setting

    Figure 5: The behavior of u(x) by Hermite collocation method

    Figure 6: The behavior of v(x) by Hermite collocation method

    It is no doubt that the efficiency of this approach is greatly enhanced by the calculation further terms of uby using by using Sumudu transform method and Hermite spectral collocation method. As In Fig. 3 and Fig. 4 show the The behavior of uby using Sumudu transform method and in Fig. 5 and Fig. 6. show the The behavior of uby using the Hermite collocation method.

    6 Conclusions

    The main aim of this paper is to know that the sumud transform method and Hermite spectral collocation method are of the most important and simplest methods used in solving linear and nonlinear differential equations. This method have been successfully applied to systems of fractional integro-differential equations.in this method we do not need to do the difficult computation for finding the Adomian polynomials. Generally speaking, the proposed method is promising and applicable to a broad class of linear and nonlinear problems in the theory of fractional calculus.

    Agarwal, R. P.; El-Sayed, A. M. A.; Salman, S. M.(2013): Fractional-order Chua’s system: discretization, bifurcation and chaos.Advances in Difference Equations, vol. 2013,pp. 320.

    Amer, Y. A.; Mahdy, A. M. S.; Youssef, E. S. M.(2017): Solving systems of fractional differential equations using sumudu transform method.Asian Research Journal of Mathematics, vol. 7, no. 2, pp. 1-15.

    Andrews, L. C.(1985):Special functions For engineers and applied mathematical.Macmillan publishing company, New York.

    Bagherpoorfard, M.; Ghassabzade, F. A.(2013): Hermite matrix polynomial collocation method for linear complex differential equations and some comparisons.Journal of Applied Mathematics and Physics, vol. 1, pp. 58-64.

    Belgacem,F. B. M.; Karaballi, A. A.(2006): Sumudu transform fundamental properties in vestigations and applications.Journal of Applied Mathematics and Stochastic Analysis,vol. 2006, pp 1-23, doi:10.1155/JAMSA/2006/910832005.

    Bhrawy, A. H.; Alghamdi, M. A.(2012): A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals.Boundary Value Problems, vol. 2012, pp. 62.

    Bhrawy, A. H.; Alofi, A. S.(2013): The operational matrix of fractional integration for shifted Chebyshev polynomials.Applied Mathematics Letters, vol. 26, no. 1, pp. 25-31.

    Bialecki, B.(1993): A fast domain decomposition poisson solver on a rectangle for Hermite bicubic orthogonal spline collocation.Siam Journal Numerical Analysis, vol. 30,pp. 425-434.

    Bojdi, Z. K.; Ahmadi-Asl, S.; Aminataei, A.(2013): Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coeffcients.Journal of Linear and Topological Algebra, vol. 2, no. 2, pp. 91-103.

    Brill, S. H.(2002): Analytic solution of Hermite collocation discretization of the steady state convection-diffusion equation.International Journal of Differential Equations and Applications, vol. 4, no. 2, pp. 141-155.

    Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien,S. S.(2011): Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations.Applied Mathematical Modelling, vol. 35, no. 12, pp. 5662-5672.

    Dyksen, W. R. ; Lynch, R. E.(2000): A new decoupling technique for the Hermite cubic collocation equations arising from boundary value problems.Mathematics and Computers in Simulation, vol. 54, pp. 359-372.

    Elsadany, A. A.; Matouk, A. E.(2015): Dynamical behaviors of fractional-order Lotka-Voltera predator-prey model and its discretization.Applied Mathematics and Computation,vol. 49, pp. 269-283.

    El-Sayed, A. M. A.; Salman, S. M.(2013): On a discretization process of fractional order Riccati’s differential equation.Journal of Fractional Calculus and Applications, vol. 4, no.2, pp. 251-259.

    Funaro, D.(1992):Polynomial approximations of differential equations. Springer-Verlag.Ganji, D.(2006): The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer.Physics Letters A, vol. 355, pp. 337-341.

    Ghorbani, A.(2009): Beyond, Adomian polynomials: He polynomials.Chaos Solitons &Fractals, vol. 39, no. 3, pp. 1486-1492.

    Hashim, I.; Chowdhurly, M.; Mawa, S.(2008): On multistage homotopy perturbation method applied to nonlinear biochemical reaction model.Chaos, Solitons & Fractals, vol.36, pp. 823-827.

    He, J.(1999): Homotopy perturbation technique.Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262.

    He, J.(1999): Homotopy perturbation technique.Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262.

    Irandoust-pakchin, S.; Kheiri, H.; Abdi-mazraeh, S.(2013): Chebyshev cardinal functions: an effective tool for solving nonlinear Volterra and Fredholm integro differential equations of fractional order.Iranian Journal of Science and Technology Transaction A: Science, vol. 37, no. 1, pp. 53-62.

    Jafari, H.; Daftardar-Gejji, V.(2006): Solving a system of nonlinear fractional differential equations using Adomian decomposition.Journal of Computational and Applied, vol. 196, no. 2, pp. 644-651.

    Liao, S.(2005): Comparison between the homotopy analysis method and homotopy perturbation method.AppliedMathematics and Computation, vol. 169, pp. 1186-1194.

    Lin,C. Y.; Gu, M. H.; Young, D. L.(2010): The time-marching method of fundamental solutions for multi-dimensional telegraph equations.Computers, Materials & Continua,vol. 18, no. 1, pp. 43-68.

    Mohammed,D. S.(2014): Numerical solution of fractional integro-differential equations by least squares method and shifted chebyshev polynomial.Mathematical Problems in Engineering,vol. 2014.

    Oyedepo, T.; Taiwo, O. A.; Abubakar, J. U.; Ogunwobi, Z. O.(2016): Numerical studies for solving fractional integro-differential equations by using least squares method and bernstein polynomials.Fluid Mechanics: Open Access, vol. 3, no. 3.

    Rathore, S.; Kumar, D.; Singh, J.; Gupta, S.(2012): Homotopy analysis sumudu transform method for nonlinear equations.International Journal of Industrial Mathematics,vol. 4, no. 4, pp. 301-314.

    Singh, J.; Kumar, D.(2011): Homotopy perturbation sumudu transform method for nonlinear equations.Advances in Applied Mathematics and Mechanics,vol. 4, no. 4, pp. 165-175.

    Solouma, E. M.; Khader, M. M.(2016): Analytical and numerical simulation for solving the system of non-linear fractional dynamical model of marriage.International Mathematical Forum, vol. 11, no. 8, pp. 875-884.

    Wang, L.; Han, X.; Xie, Y.(2012): A new iterative regularization Method for solving the dynamic load identification problem.Computers, Materials & Continua, vol. 31, no. 2,pp.113-126.

    Wang, Y.; Zhu, L.(2017): Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method.Advances in Difference Equations, doi:10.1186/s13662-017-1085-6.

    Yang, Y.; Chen, Y.; Huang, Y.(2014): Spectral-collocation method for fractional Fredholm integro-differential equations.Journal of the Korean Mathematical Society, vol.51, no. 1, pp. 203-224.

    Zedan, H. A.; Tantawy, S. S.; Sayed, Y. M.(2017): New solutions for system of fractional integro-differential equations and Abel’s integral equations by chebyshev spectral method.Mathematical Problems in Engineering, vol. 2017.

    在线观看66精品国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人精品一区久久| 美女被艹到高潮喷水动态| 中国美白少妇内射xxxbb| 国产亚洲精品综合一区在线观看| 国产精品99久久久久久久久| 亚洲av五月六月丁香网| 99视频精品全部免费 在线| 亚洲中文字幕日韩| 久久精品人妻少妇| 午夜福利在线在线| 大型黄色视频在线免费观看| 婷婷精品国产亚洲av在线| 村上凉子中文字幕在线| 亚洲自拍偷在线| 国产一区二区三区av在线 | 成年女人毛片免费观看观看9| 欧美日韩亚洲国产一区二区在线观看| 日本在线视频免费播放| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久噜噜| 欧美潮喷喷水| 内射极品少妇av片p| 免费av不卡在线播放| 成人毛片a级毛片在线播放| 亚洲真实伦在线观看| 国产午夜精品久久久久久一区二区三区 | 男人和女人高潮做爰伦理| 淫秽高清视频在线观看| 国产精品免费一区二区三区在线| 国产一区二区激情短视频| 深爱激情五月婷婷| 亚洲五月天丁香| 午夜老司机福利剧场| 97超级碰碰碰精品色视频在线观看| 国产激情偷乱视频一区二区| 亚洲 国产 在线| 精品久久国产蜜桃| 精品人妻熟女av久视频| 国产成人aa在线观看| 成人综合一区亚洲| 成人精品一区二区免费| 亚洲成av人片在线播放无| 日本熟妇午夜| 黄色女人牲交| 久久久久国内视频| 观看免费一级毛片| 国产女主播在线喷水免费视频网站 | 精品午夜福利在线看| 欧美成人a在线观看| 色av中文字幕| 婷婷精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 国语自产精品视频在线第100页| 亚洲av二区三区四区| 欧美激情国产日韩精品一区| 国产熟女欧美一区二区| 欧美又色又爽又黄视频| 村上凉子中文字幕在线| 久久久成人免费电影| 亚洲精品国产成人久久av| 欧美成人a在线观看| 午夜激情福利司机影院| 九九爱精品视频在线观看| 日日夜夜操网爽| 亚洲国产精品合色在线| av在线蜜桃| 3wmmmm亚洲av在线观看| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 禁无遮挡网站| 成人二区视频| 人妻丰满熟妇av一区二区三区| 欧美人与善性xxx| 永久网站在线| 少妇人妻一区二区三区视频| 亚洲精品色激情综合| 制服丝袜大香蕉在线| 男人和女人高潮做爰伦理| 一级av片app| 99热精品在线国产| 少妇高潮的动态图| 日韩一本色道免费dvd| 日韩欧美一区二区三区在线观看| 国内毛片毛片毛片毛片毛片| a级毛片免费高清观看在线播放| 麻豆国产97在线/欧美| 91久久精品国产一区二区成人| 久久国内精品自在自线图片| 成熟少妇高潮喷水视频| 搞女人的毛片| 香蕉av资源在线| 亚洲欧美清纯卡通| 欧美国产日韩亚洲一区| 日本在线视频免费播放| 亚洲三级黄色毛片| 成人永久免费在线观看视频| 日韩中文字幕欧美一区二区| 美女免费视频网站| 国产伦人伦偷精品视频| 久久精品国产亚洲av天美| 麻豆成人av在线观看| 免费不卡的大黄色大毛片视频在线观看 | www.www免费av| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 欧美在线一区亚洲| 一级黄片播放器| 免费在线观看成人毛片| 欧美丝袜亚洲另类 | 国产一区二区三区av在线 | 国产精品1区2区在线观看.| 日韩一本色道免费dvd| 精品国产三级普通话版| 欧美精品国产亚洲| 一个人观看的视频www高清免费观看| 在线免费十八禁| 欧美高清性xxxxhd video| 老司机午夜福利在线观看视频| 尤物成人国产欧美一区二区三区| 少妇的逼水好多| 久久香蕉精品热| 午夜福利18| 国产高清激情床上av| 88av欧美| 91久久精品国产一区二区成人| 在线看三级毛片| 国产精品一区二区免费欧美| 欧美+日韩+精品| 午夜免费成人在线视频| 久久午夜福利片| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 日韩av在线大香蕉| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 在线免费十八禁| 久久久久免费精品人妻一区二区| 一进一出抽搐gif免费好疼| 欧美又色又爽又黄视频| 18禁黄网站禁片免费观看直播| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 免费看av在线观看网站| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 成人综合一区亚洲| 国产午夜精品久久久久久一区二区三区 | 国产亚洲91精品色在线| 少妇的逼水好多| 午夜免费成人在线视频| 一本久久中文字幕| 真人做人爱边吃奶动态| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 网址你懂的国产日韩在线| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 日本黄色视频三级网站网址| 一个人免费在线观看电影| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 色av中文字幕| 91狼人影院| 欧美日韩瑟瑟在线播放| 成人毛片a级毛片在线播放| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 国产精品美女特级片免费视频播放器| 国产色爽女视频免费观看| .国产精品久久| www日本黄色视频网| 欧美一区二区亚洲| 午夜精品久久久久久毛片777| 乱码一卡2卡4卡精品| 成年版毛片免费区| 97人妻精品一区二区三区麻豆| 狂野欧美激情性xxxx在线观看| 精品一区二区三区视频在线| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av| 少妇丰满av| 国产伦人伦偷精品视频| 夜夜夜夜夜久久久久| 午夜视频国产福利| 亚洲成人久久性| 亚洲18禁久久av| 免费观看的影片在线观看| 亚洲第一电影网av| 国产精品一区二区三区四区免费观看 | 欧美激情久久久久久爽电影| 国产一区二区三区av在线 | 成人av一区二区三区在线看| 97超视频在线观看视频| 国产亚洲精品久久久com| 国产av一区在线观看免费| 国产精品一区二区三区四区免费观看 | 又紧又爽又黄一区二区| 男人舔女人下体高潮全视频| 岛国在线免费视频观看| 男人狂女人下面高潮的视频| 可以在线观看毛片的网站| 不卡一级毛片| 日本精品一区二区三区蜜桃| 亚洲欧美清纯卡通| 国产 一区 欧美 日韩| .国产精品久久| 欧美又色又爽又黄视频| 久久久久久久久久黄片| www.www免费av| 午夜久久久久精精品| 在线观看66精品国产| 国产免费av片在线观看野外av| 一个人观看的视频www高清免费观看| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| 精品一区二区三区人妻视频| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| 性插视频无遮挡在线免费观看| 日韩 亚洲 欧美在线| 真实男女啪啪啪动态图| 亚洲成人免费电影在线观看| 丰满人妻一区二区三区视频av| 午夜老司机福利剧场| 日本一本二区三区精品| 我的老师免费观看完整版| 我的女老师完整版在线观看| 午夜福利在线观看吧| 日本三级黄在线观看| 免费av不卡在线播放| 亚洲美女视频黄频| 精品久久久久久久末码| 国产在视频线在精品| 亚洲av五月六月丁香网| 黄色女人牲交| 男人的好看免费观看在线视频| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 69人妻影院| 老司机午夜福利在线观看视频| 免费看光身美女| 国产 一区精品| 乱人视频在线观看| 如何舔出高潮| 一个人看的www免费观看视频| 婷婷六月久久综合丁香| a在线观看视频网站| 国产成人a区在线观看| 日本-黄色视频高清免费观看| 亚洲av成人av| 热99re8久久精品国产| 亚洲无线观看免费| av国产免费在线观看| 天天躁日日操中文字幕| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 免费观看的影片在线观看| 黄色欧美视频在线观看| 日韩一本色道免费dvd| 99九九线精品视频在线观看视频| 成年女人毛片免费观看观看9| 人妻制服诱惑在线中文字幕| 搡女人真爽免费视频火全软件 | 99热网站在线观看| 最后的刺客免费高清国语| 精品久久久久久久久久免费视频| 国产午夜福利久久久久久| 久久精品影院6| 国内精品久久久久久久电影| 亚洲性久久影院| 久久国产乱子免费精品| 成人午夜高清在线视频| av在线亚洲专区| 老熟妇乱子伦视频在线观看| 亚洲综合色惰| 1024手机看黄色片| 精品久久久久久久久久久久久| av.在线天堂| 色哟哟·www| 国内精品久久久久久久电影| 中国美白少妇内射xxxbb| 五月伊人婷婷丁香| 啪啪无遮挡十八禁网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 美女 人体艺术 gogo| 国产成人一区二区在线| 国内揄拍国产精品人妻在线| 美女cb高潮喷水在线观看| 窝窝影院91人妻| 国产真实伦视频高清在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产精品av视频在线免费观看| 日韩高清综合在线| 天堂av国产一区二区熟女人妻| 午夜影院日韩av| 日本 欧美在线| 人妻丰满熟妇av一区二区三区| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件 | 国产不卡一卡二| 午夜免费激情av| 麻豆一二三区av精品| 亚洲自拍偷在线| 性插视频无遮挡在线免费观看| 男女那种视频在线观看| 国产乱人视频| 最近中文字幕高清免费大全6 | 亚洲电影在线观看av| 精品久久国产蜜桃| 国产单亲对白刺激| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 啦啦啦啦在线视频资源| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 精品久久国产蜜桃| 成人二区视频| 精品不卡国产一区二区三区| 男女边吃奶边做爰视频| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 国产欧美日韩精品亚洲av| 色视频www国产| 变态另类成人亚洲欧美熟女| 国产一区二区亚洲精品在线观看| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 99在线人妻在线中文字幕| 欧美3d第一页| 少妇熟女aⅴ在线视频| 免费电影在线观看免费观看| 亚洲人成伊人成综合网2020| 黄色日韩在线| 日日撸夜夜添| 午夜爱爱视频在线播放| 看免费成人av毛片| 国产高清视频在线观看网站| 成年女人毛片免费观看观看9| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 毛片一级片免费看久久久久 | 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 精品久久久久久久久久免费视频| 深夜a级毛片| 午夜精品久久久久久毛片777| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 悠悠久久av| 亚洲欧美日韩高清专用| 国产乱人视频| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 91午夜精品亚洲一区二区三区 | 午夜日韩欧美国产| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 亚州av有码| 老司机午夜福利在线观看视频| 身体一侧抽搐| 91久久精品国产一区二区成人| 日韩一区二区视频免费看| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 三级毛片av免费| 日本成人三级电影网站| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 成人欧美大片| 热99在线观看视频| 欧美xxxx性猛交bbbb| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 亚洲男人的天堂狠狠| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 国产成人一区二区在线| 欧美精品国产亚洲| 精品99又大又爽又粗少妇毛片 | 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影| 亚洲av日韩精品久久久久久密| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| a级毛片免费高清观看在线播放| 99久久精品热视频| 国产单亲对白刺激| 亚洲 国产 在线| 亚洲精品久久国产高清桃花| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品| 国产又黄又爽又无遮挡在线| 久久精品国产自在天天线| bbb黄色大片| 成年女人看的毛片在线观看| 深爱激情五月婷婷| 久久久色成人| av在线亚洲专区| 久久精品91蜜桃| 97碰自拍视频| 丝袜美腿在线中文| 久久国产精品人妻蜜桃| 99热这里只有精品一区| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 91麻豆av在线| 级片在线观看| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆 | 老熟妇仑乱视频hdxx| 亚洲18禁久久av| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 国产男人的电影天堂91| 在线看三级毛片| 悠悠久久av| 一边摸一边抽搐一进一小说| 国产激情偷乱视频一区二区| 国产精品一及| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 午夜爱爱视频在线播放| av福利片在线观看| 91在线精品国自产拍蜜月| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 美女cb高潮喷水在线观看| 亚洲午夜理论影院| eeuss影院久久| 欧美成人一区二区免费高清观看| 国产在线男女| 日韩欧美三级三区| 99久久成人亚洲精品观看| 久久精品久久久久久噜噜老黄 | 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| bbb黄色大片| 国产女主播在线喷水免费视频网站 | 国产亚洲av嫩草精品影院| 黄色日韩在线| 日本爱情动作片www.在线观看 | 九九在线视频观看精品| 91久久精品国产一区二区成人| 日本熟妇午夜| 最近中文字幕高清免费大全6 | 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 精品人妻视频免费看| 国产人妻一区二区三区在| 国产老妇女一区| 男插女下体视频免费在线播放| 麻豆成人av在线观看| 亚洲精华国产精华精| 伦理电影大哥的女人| 日本a在线网址| 国产伦在线观看视频一区| 国产一区二区亚洲精品在线观看| 亚洲人成网站高清观看| 99热网站在线观看| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区 | 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 日日撸夜夜添| 九九爱精品视频在线观看| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 精品乱码久久久久久99久播| 日本在线视频免费播放| 五月伊人婷婷丁香| 99久国产av精品| 国产男靠女视频免费网站| 国模一区二区三区四区视频| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 老女人水多毛片| 3wmmmm亚洲av在线观看| 欧美xxxx性猛交bbbb| 一区二区三区激情视频| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看 | av国产免费在线观看| 热99re8久久精品国产| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 99视频精品全部免费 在线| 亚洲黑人精品在线| 成人高潮视频无遮挡免费网站| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 亚洲国产欧美人成| 日韩大尺度精品在线看网址| 久久久久久久久久黄片| 欧美另类亚洲清纯唯美| 亚洲欧美日韩无卡精品| 久久99热6这里只有精品| 午夜福利在线在线| 欧美成人免费av一区二区三区| 亚洲精品色激情综合| 欧美潮喷喷水| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久电影| 国产中年淑女户外野战色| 久久精品久久久久久噜噜老黄 | 超碰av人人做人人爽久久| 欧美区成人在线视频| 亚洲人成伊人成综合网2020| 亚洲美女视频黄频| 日日夜夜操网爽| 日本爱情动作片www.在线观看 | 床上黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品久久国产高清桃花| 日韩一本色道免费dvd| 成熟少妇高潮喷水视频| 亚洲熟妇中文字幕五十中出| 欧美日韩国产亚洲二区| 在线观看午夜福利视频| 久久久午夜欧美精品| 又爽又黄a免费视频| 精品久久久久久久久av| 亚洲最大成人中文| 亚洲av免费高清在线观看| 美女大奶头视频| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 欧美三级亚洲精品| 桃色一区二区三区在线观看| 久久久久久久久大av| 色综合婷婷激情| 嫩草影院入口| 色哟哟哟哟哟哟| 久久草成人影院| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 男女视频在线观看网站免费| 动漫黄色视频在线观看| 亚洲欧美激情综合另类| www.色视频.com| 看片在线看免费视频| 色播亚洲综合网| 国产免费一级a男人的天堂| 欧美3d第一页| 深夜精品福利| 久久精品国产亚洲av涩爱 | 最近最新免费中文字幕在线| 在线观看av片永久免费下载| 亚洲avbb在线观看| 久久久久久大精品| 波野结衣二区三区在线| 少妇人妻精品综合一区二区 | .国产精品久久| 午夜激情福利司机影院| www.色视频.com| 亚洲成av人片在线播放无| 精品久久久久久久末码| 神马国产精品三级电影在线观看| 亚洲第一电影网av| 舔av片在线| 国产熟女欧美一区二区| 很黄的视频免费| 久久精品国产亚洲av香蕉五月| 午夜免费男女啪啪视频观看 | 又爽又黄无遮挡网站| 久久亚洲精品不卡| 中文字幕av在线有码专区| videossex国产| 22中文网久久字幕| 成熟少妇高潮喷水视频| 国产av不卡久久| 欧美绝顶高潮抽搐喷水| 能在线免费观看的黄片| 最新中文字幕久久久久| 免费观看精品视频网站| 色精品久久人妻99蜜桃| 亚洲自拍偷在线| 成人综合一区亚洲| 色精品久久人妻99蜜桃| 日本五十路高清| 精品久久久久久久久久免费视频| 最近中文字幕高清免费大全6 | 欧美激情在线99| 国产一级毛片七仙女欲春2| 亚洲人成网站在线播| a级毛片a级免费在线| 熟女电影av网| 免费在线观看成人毛片| 国产男人的电影天堂91| 成年版毛片免费区|