夏 青,張效生,劉秋月,王翔宇,賀小云,郭曉飛,胡文萍,張金龍,儲(chǔ)明星*,狄 冉*
(1. 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部動(dòng)物遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室,北京 100193;2. 天津市畜牧獸醫(yī)研究所,天津 300381)
大部分綿羊品種具有季節(jié)性發(fā)情的特征,在長(zhǎng)日照季節(jié)表現(xiàn)為乏情,短日照季節(jié)表現(xiàn)為發(fā)情。綿羊季節(jié)性發(fā)情導(dǎo)致羔羊肉不能實(shí)現(xiàn)四季均衡供應(yīng),嚴(yán)重制約了肉羊業(yè)的生產(chǎn)效率,因此,研究季節(jié)性發(fā)情調(diào)控機(jī)制以提高綿羊繁殖效率十分重要。目前關(guān)于該機(jī)制研究較為清楚的是動(dòng)物通過(guò)甲狀腺激素調(diào)節(jié)性腺生理活動(dòng)進(jìn)而實(shí)現(xiàn)對(duì)季節(jié)性發(fā)情的調(diào)控[1-2],這種機(jī)制由垂體結(jié)節(jié)部(Pars tuberalis, PT)促甲狀腺細(xì)胞表達(dá)的兩個(gè)長(zhǎng)光照因子EYA 3與TSH β 啟動(dòng)[3-7]。
EYA基因編碼一類(lèi)眼缺失家族蛋白,目前已知該家族成員包含EYA 1、EYA 2、EYA 3和EYA 4,EYA因子具有磷酸酶活性,對(duì)于視網(wǎng)膜的發(fā)育具有重要調(diào)控作用[8-10]。其中EYA3作為晝夜節(jié)律基因?qū)d羊季節(jié)性發(fā)情具有間接調(diào)控作用,其參與綿羊季節(jié)性發(fā)情長(zhǎng)光照分子通路:綿羊?qū)⒔邮盏降耐饨绮煌L(zhǎng)度光照信號(hào)經(jīng)下丘腦視交叉上核(Hypothalamic suprachiasmatic nuclei, SCN)傳遞至松果體,松果體可分泌承載光周期信號(hào)的褪黑素(Melatonin, MEL),MEL可與PT區(qū)域褪黑素受體(Melatonin receptor 1, MT 1)結(jié)合,長(zhǎng)日照下,垂體分泌的EYA 3在天黑后12 h達(dá)到表達(dá)高峰,EYA 3表達(dá)峰在早上出現(xiàn),MEL水平低,EYA 3峰值較高[11-13]。此機(jī)制啟動(dòng)了動(dòng)物機(jī)體內(nèi)部一系列識(shí)別長(zhǎng)日照信號(hào)因子的分泌機(jī)制,進(jìn)而間接調(diào)控綿羊性腺軸的關(guān)閉。EYA3在不同物種組織中的表達(dá)情況已有相關(guān)研究報(bào)道,EYA3可在綿羊垂體中表達(dá),且在LP下表達(dá)量高于SP[14];EYA3在大鼠下丘腦中表達(dá),且LP下表達(dá)量也高于SP[15];EYA3在人類(lèi)的骨髓、胚胎、肝、脊髓、肌肉、大腦和腸中均有表達(dá)[10]。已知EYA3可通過(guò)垂體間接調(diào)控性腺活動(dòng),但在不同光照條件和不同繁殖時(shí)期,EYA3是否在綿羊垂體外的組織存在表達(dá)差異,并發(fā)揮調(diào)控作用,及由SP變?yōu)長(zhǎng)P后,綿羊EYA3表達(dá)變化趨勢(shì)目前未見(jiàn)相關(guān)報(bào)道。
促甲狀腺激素(Thyroid stimulating hormone, TSH)由糖蛋白α亞基(Glycoprotein hormone, alpha polypeptide, CGA)和β亞基(TSH-beta, TSH β)構(gòu)成[16-17]。TSHβ可對(duì)光周期進(jìn)行應(yīng)答[3,18-19],長(zhǎng)光照時(shí)EYA3表達(dá)升高,使PT分泌TSH β 增多,TSH β 與下丘腦基部的促甲狀腺激素受體(Thyroid-stimulating hormone receptor, TSHR)結(jié)合介導(dǎo)了DIO 2的升高, DIO 2促使無(wú)活性的T4轉(zhuǎn)化為有活性的T3,T3能夠影響GnRH神經(jīng)元的形態(tài)和空間位置,導(dǎo)致GnRH 濃度釋放產(chǎn)生差異,最終影響垂體激素的分泌,繼而調(diào)控性腺的生理活動(dòng)[20-23]。研究發(fā)現(xiàn),TSHβ在多種動(dòng)物(大鼠、小鼠、豬、山羊、綿羊)的垂體中高表達(dá)[24-27];與EYA3類(lèi)似,在不同光照條件和不同繁殖時(shí)期,各組織中TSHβ是否存在表達(dá)差異及由SP變?yōu)長(zhǎng)P后綿羊TSHβ表達(dá)變化趨勢(shì)均鮮有報(bào)道。因此,本研究明確了上述兩個(gè)基因在常年發(fā)情和季節(jié)性發(fā)情綿羊品種中的表達(dá)模式,并對(duì)各組織中兩基因在不同光照條件下和不同繁殖時(shí)期間的表達(dá)差異進(jìn)行研究,分析了由SP轉(zhuǎn)變?yōu)長(zhǎng)P后42 d內(nèi),EYA3與TSHβ在綿羊垂體中的表達(dá)變化趨勢(shì),研究結(jié)果有助于進(jìn)一步揭示兩個(gè)基因在綿羊發(fā)情性狀中的作用。
1.1.1 試驗(yàn)動(dòng)物組織樣品采集 不同時(shí)期目標(biāo)基因組織表達(dá)譜試驗(yàn):試驗(yàn)羊?yàn)樘旖蚴行竽莲F醫(yī)研究所畜禽繁育基地人工控光條件下飼養(yǎng)的健康空懷蘇尼特母羊;山東鄆城小尾寒羊保種場(chǎng)的健康空懷小尾寒羊母羊。選取短光照(人工模擬配種季節(jié))第21 天和長(zhǎng)光照(模擬休情季節(jié))第49天的蘇尼特羊成年母羊各3只,卵泡期和黃體期的小尾寒羊成年母羊各3只。屠宰綿羊后,迅速采集垂體、松果體、大腦、小腦、下丘腦、輸卵管、子宮、卵巢、腎上腺和腎共10種新鮮組織樣品,裝入2 mL凍存管,置于液氮,之后儲(chǔ)存在-80 ℃冰箱中備用。
季節(jié)性發(fā)情綿羊不同光照條件下,垂體中目標(biāo)基因表達(dá)模式試驗(yàn):蘇尼特母羊在短光照(白天8 h:黑夜16 h)下,飼養(yǎng)42 d后,轉(zhuǎn)至長(zhǎng)光照(白天16 h:黑夜8 h)飼養(yǎng)49 d,并根據(jù)文獻(xiàn)報(bào)道[11-12,22,28]與本實(shí)驗(yàn)室預(yù)試驗(yàn)結(jié)果,分別在SP 21、LP 3、LP 21、LP 33、LP 42共5個(gè)時(shí)間點(diǎn)(短光照第21天和長(zhǎng)光照第3、21、33和42 天)屠宰綿羊,每個(gè)時(shí)間點(diǎn)屠宰3只羊,迅速采集垂體組織置于液氮中短暫保存后,置于-80 ℃冰箱中保存?zhèn)溆谩?/p>
1.1.2 試劑與儀器 RNAprep pure動(dòng)物組織總RNA提取試劑盒(天根生化科技北京有限公司)、PrimeScriptTMRT Reagent Kit及SYBR@Premix ExTaqTMⅡ(TaKaRa, Japan)。 PCR儀(T100型,美國(guó)Bio-rad)、超低溫冰箱(美國(guó)Thermo)、電泳成像儀(Chemi Doc XRS+, 美國(guó)Bio-rad)、電泳槽(JY-SPFT,北京JUNYI)、離心機(jī)(5417型,德國(guó)Eppendorf)、熒光定量?jī)x(羅氏480)。
1.2.1 引物設(shè)計(jì) 根據(jù)NCBI數(shù)據(jù)庫(kù)中綿羊EYA3基因序列(GenBank登錄號(hào):NM_001161733)與TSHβ基因序列(GenBank登錄號(hào):XM_004002368),用Primer 3軟件各設(shè)計(jì)1對(duì)熒光定量引物,內(nèi)參基因選用β-actin,引物信息見(jiàn)表1。
表1 熒光定量PCR擴(kuò)增引物序列
Table 1 Primer sequences of real-time PCR
引物名稱(chēng)Primername引物序列(5'-3')Primersequence片段大小/bpLength退火溫度/℃TmTSHβF:ACTGCCTAACCATCAACACCR:AGACAGGGCATATTTGGGAAGA5059EYA3F:GGATCCTATGCCCAGAAGTATGR:CCACATCTTCCACATGCACC10661β-actinF:CCAACCGTGAGAAGATGACCR:CCCGAGGCGTACAGGGACAG9760
1.2.2 反轉(zhuǎn)錄 使用PrimeScriptTMRT Reagent Kit反轉(zhuǎn)錄試劑盒合成cDNA第一鏈,按照說(shuō)明書(shū)進(jìn)行操作。反轉(zhuǎn)錄產(chǎn)物稀釋后,用內(nèi)參基因β-actin進(jìn)行PCR檢測(cè),檢測(cè)合格后,-20 ℃保存。
1.2.3 熒光定量PCR 用熒光定量PCR方法檢測(cè)蘇尼特羊與小尾寒羊不同組織及不同光照時(shí)間點(diǎn)蘇尼特羊垂體中EYA3與TSHβ表達(dá)量,每個(gè)樣品3個(gè)重復(fù),以β-actin為內(nèi)參基因,設(shè)置陰性對(duì)照。反應(yīng)體系總體積為20 μL:SYBR Premix ExTaqⅡ 10 μL,RNase Free ddH2O 6.4 μL,上、下游引物(10 pmol·L-1)各0.8 μL,cDNA 2 μL。反應(yīng)程序:95 ℃預(yù)變性5 s;95 ℃變性5 s,60 ℃ 30 s,40個(gè)循環(huán);反應(yīng)結(jié)束后,進(jìn)行熔解曲線(xiàn)分析。以2-ΔΔCT法[29]計(jì)算目的基因相對(duì)表達(dá)量。
1.2.4 數(shù)據(jù)分析 使用SPSS13.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。組間比較采用單因素方差分析(ANOVA)檢驗(yàn)。P<0.05表示差異顯著,P<0.01表示差異極顯著。
熒光定量分析發(fā)現(xiàn),EYA3在蘇尼特羊各組織廣泛表達(dá),且不同光照條件下,EYA3均在松果體、輸卵管和小腦中高表達(dá),其中松果體表達(dá)量最高,其次是輸卵管,然后是小腦,其它組織表達(dá)量較低,暗示EYA3可能在綿羊松果體、輸卵管和小腦組織中發(fā)揮作用;另外,LP下,EYA3在各組織表達(dá)量均高于SP,且在松果體、大腦和輸卵管中的表達(dá)量顯著高于其它組織(P<0.05,圖1),暗示該基因在松果體、大腦和輸卵管中的表達(dá)差異可能與季節(jié)性發(fā)情相關(guān)。
1~10.垂體、松果體、大腦、小腦、下丘腦、輸卵管、子宮、卵巢、腎上腺和腎。下同。*.P<0.051-10.Pituitary,pineal gland,brain,cerebellum,hypothalamus,fallopian tube,uterus,ovary,adrenal gland and kindey.The same as below. *.P<0.05圖1 EYA 3在LP和SP下蘇尼特羊不同組織中的表達(dá)水平Fig.1 The expression levels of EYA 3 in different tissues of Sunite sheep under LP and SP conditions
熒光定量分析發(fā)現(xiàn),EYA3也在小尾寒羊各組織廣泛表達(dá),且不同繁殖時(shí)期EYA3均在垂體、松果體和小腦中高表達(dá),且垂體和松果體中,黃體期高于卵泡期,但并無(wú)顯著差異,其它組織表達(dá)量較低(圖2)。這一結(jié)果表明:除了垂體,小尾寒羊中EYA3可能也在松果體和小腦中發(fā)揮作用。
圖2 EYA 3在小尾寒羊黃體期和卵泡期不同組織中的表達(dá)水平Fig.2 The expression levels of EYA 3 in different tissues of Small Tail Han sheep at luteal phase and follicular phase
熒光定量分析發(fā)現(xiàn),TSHβ在蘇尼特羊垂體中高表達(dá),其它組織幾乎不表達(dá),且LP下垂體中表達(dá)量極顯著高于SP表達(dá)量(P<0.01)(圖3)。
**.P<0.01。下同**.P<0.01.The same as below圖3 TSH β 在LP和SP下蘇尼特羊不同組織的表達(dá)水平Fig.3 The expression levels of TSH β in different tissues of Sunite sheep under LP and SP conditions
熒光定量分析發(fā)現(xiàn),TSHβ在小尾寒羊垂體中高表達(dá),其它組織幾乎不表達(dá),且黃體期垂體中表達(dá)量極顯著高于卵泡期(P<0.01)(圖4)。
圖4 TSH β 在小尾寒羊黃體期和卵泡期不同組織中的表達(dá)水平Fig.4 The expression level of TSH β in different tissues of Small Tail Han sheep at luteal phase and follicular phase
熒光定量分析發(fā)現(xiàn),不同時(shí)間點(diǎn)蘇尼特羊垂體中EYA3與TSHβ均在SP轉(zhuǎn)至LP后表達(dá)量升高,其中EYA3在LP 3達(dá)到表達(dá)高峰,之后逐漸降低;TSHβ在LP 21達(dá)到表達(dá)高峰,之后逐漸降低。EYA3表達(dá)量提前于TSHβ開(kāi)始降低,表明EYA3發(fā)揮調(diào)控作用的時(shí)期早于TSHβ,主要在LP 3之前;而TSHβ主要在LP 21之前發(fā)揮調(diào)控作用。
SP 21、LP 3、LP 21、LP 33、LP 42分別代表短光照第21天和長(zhǎng)光照第3、21、33和42天SP 21, LP 3, LP 21, LP 33, LP 42 represent short photoperiod day 21, long photoperiod day 3, 21, 33 and 42圖5 SP轉(zhuǎn)變?yōu)長(zhǎng)P后不同時(shí)間點(diǎn)蘇尼特羊垂體中EYA 3與TSH β 的表達(dá)模式Fig.5 The expression pattern of EYA 3 and TSH β during the transition from SP to LP in pituitary of Sunite sheep
S.H.WOOD等[30]以綿羊?yàn)檠芯繉?duì)象發(fā)現(xiàn),EYA3與TSHβ均可在PT區(qū)域的促甲狀腺細(xì)胞中表達(dá),兩基因通過(guò)TSH β-DIO 2-TH通路激活或抑制下丘腦-垂體-性腺軸,達(dá)到調(diào)控綿羊季節(jié)性發(fā)情[31-32]。本研究熒光定量結(jié)果表明,EYA3與TSHβ在小尾寒羊和蘇尼特羊各組織中的表達(dá)情況基本一致,即在兩品種綿羊中EYA3均在多個(gè)組織中廣泛表達(dá),TSHβ主要在垂體中高表達(dá),表明TSHβ主要在綿羊垂體中發(fā)揮作用。不同光照條件下,EYA3基因在蘇尼特羊松果體、輸卵管、小腦中高表達(dá),在小尾寒羊中,不同繁殖時(shí)期EYA3在垂體、松果體和小腦中高表達(dá),且黃體期表達(dá)量高于卵泡期;其中,黃體期EYA3在松果體、大腦和輸卵管中表達(dá)量顯著高于卵泡期。結(jié)合已知的季節(jié)性發(fā)情調(diào)控網(wǎng)絡(luò)涉及的上游部位(松果體、垂體和下丘腦),上述結(jié)果暗示,EYA3可能也在松果體部位發(fā)揮作用并對(duì)綿羊季節(jié)性發(fā)情進(jìn)行調(diào)控;另外,在絕大多數(shù)組織中EYA3和垂體中TSHβ表現(xiàn)為黃體期表達(dá)量高于卵泡期,暗示它們可能參與綿羊繁殖時(shí)期轉(zhuǎn)換。
在蘇尼特羊中,LP下TSHβ在垂體中表達(dá)量極顯著高于SP;小尾寒羊中,黃體期TSHβ在垂體中表達(dá)量極顯著高于卵泡期。季節(jié)性發(fā)情綿羊休情期PT區(qū)TSHβ高表達(dá),導(dǎo)致下丘腦基底部GnRH神經(jīng)元末梢被室管膜細(xì)胞包圍,與PT細(xì)胞接觸減少,末梢釋放GnRH的量也相應(yīng)降低[30,33]。據(jù)此,推測(cè)在小尾寒羊黃體期時(shí),EYA3表達(dá)量升高可促進(jìn)垂體中TSHβ高表達(dá),進(jìn)而通過(guò)TSH β-DIO 2-TH實(shí)現(xiàn)小尾寒羊下丘腦基底部GnRH神經(jīng)元的作用,最終導(dǎo)致GnRH釋放量降低;而卵泡期下丘腦基底部GnRH神經(jīng)元末梢不被室管膜細(xì)胞包圍,與PT細(xì)胞接觸增多,導(dǎo)致GnRH釋放量增加,促進(jìn)FSH和LH的釋放,從而影響卵泡發(fā)育和排卵,這一推測(cè)需進(jìn)一步研究證實(shí)。
本試驗(yàn)通過(guò)對(duì)SP和LP不同時(shí)間點(diǎn)綿羊垂體中EYA3及TSHβ表達(dá)水平的檢測(cè),發(fā)現(xiàn)兩基因表達(dá)趨勢(shì)基本一致,均在SP轉(zhuǎn)至LP后表達(dá)量升高。文獻(xiàn)報(bào)道EYA3與TSHβ在綿羊晝夜節(jié)律調(diào)控中發(fā)揮重要作用[34-35]。K. H. Masumoto等[12]以雄性CBA/N小鼠為對(duì)象,通過(guò)PT區(qū)的全基因組表達(dá)譜分析發(fā)現(xiàn)了TSHβ等長(zhǎng)光照誘導(dǎo)基因,并對(duì)TSHβ上游基因進(jìn)行鑒定,發(fā)現(xiàn)EYA3對(duì)TSHβ有重要調(diào)控作用;在LP下,EYA3可與Sine Oculis-related Homeobox 1 (Six 1)、促甲狀腺胚胎因子(Thyrotroph embryonic factor, Tef)及肝白血病因子(Hepatic leukemia factor, Hlf)共同組成復(fù)合體與TSHβ啟動(dòng)子結(jié)合促進(jìn)TSHβ的表達(dá)[11,14,36]。N. Nakao等[3]在對(duì)鵪鶉的光周期信號(hào)轉(zhuǎn)換通路研究中發(fā)現(xiàn),LP 1關(guān)燈14 h后,TSHβ迅速表達(dá),在接下來(lái)4 h后,DIO 2被快速誘導(dǎo)表達(dá),并通過(guò)TSH β-DIO 2-TH通路最終影響垂體性腺軸激素的分泌[5-6]。鳥(niǎo)類(lèi)中,在LP 1關(guān)燈后,上述兩個(gè)基因高表達(dá),但在LP 12以后表達(dá)量不再發(fā)生改變[15,37]。本研究中,蘇尼特羊垂體的檢測(cè)結(jié)果表明,EYA3在LP 3表達(dá)量最高,TSHβ在LP 21表達(dá)量最高,提示EYA3和TSHβ分別主要在LP 3和LP 21之前發(fā)揮關(guān)鍵作用,啟動(dòng)機(jī)體內(nèi)長(zhǎng)日照機(jī)制,使綿羊成功進(jìn)入長(zhǎng)日照繁殖模式。
本研究發(fā)現(xiàn),LP下,EYA3在蘇尼特羊松果體中表達(dá)量顯著高于SP,在小尾寒羊黃體期表達(dá)量均高于卵泡期,在兩品種綿羊中TSHβ均僅在垂體中高表達(dá)。結(jié)果表明,EYA3可能同時(shí)在松果體部位發(fā)揮作用并對(duì)綿羊季節(jié)性發(fā)情進(jìn)行調(diào)控,另外,這兩個(gè)基因可能參與繁殖時(shí)期的轉(zhuǎn)換。在SP轉(zhuǎn)至LP過(guò)程中,EYA3和TSHβ分別主要在LP 3和LP 21之前發(fā)揮關(guān)鍵作用,啟動(dòng)長(zhǎng)日照繁殖模式。
[1] DARDENTE H. Circannual biology: the double life of the seasonal thyrotroph[J].CurrBiol, 2015, 25(20): R988-R991.
[2] WEEMS P W, GOODMAN R L, LEHMAN M N. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters[J].FrontNeuroendocrinol, 2015, 37: 43-51.
[3] NAKAO N, ONO H, YAMAMURA T, et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response[J].Nature, 2008, 452(7185): 317-322.
[4] MAJUMDAR G, YADAV G, RANI S, et al. A photoperiodic molecular response in migratory redheaded bunting exposed to a single long day[J].GenCompEndocrinol, 2014, 204: 104-113.
[5] NAKANE Y, YOSHIMURA T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates[J].FrontNeurosci, 2014, 8: 115.
[6] CASSONE V M, YOSHIMURA T. Circannual cycles and photoperiodism[M]//SCANES C G. Sturkie’s Avian Physiology. 6th ed. London: Academic Press, 2015: 829-845.
[7] SURBHI, KUMAR V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology[J].GenCompEndocrinol, 2015, 220: 13-22.
[8] KOZMIK Z, HOLLAND N D, KRESLOVA J, et al. Pax-Six-EYA-Dach network during amphioxus development: conservationinvitrobut context specificityinvivo[J].DevBiol, 2007, 306(1): 143-159.
[9] SALZER C L, ELIAS Y, KUMAR J P. The retinal determination gene eyes absent is regulated by the EGF receptor pathway throughout development inDrosophila[J].Genetics, 2010, 184(1): 185-197.
[10] CUNHA A F D, BRUGNEROTTO A F, DUARTE A S, et al. Global gene expression reveals a set of new genes involved in the modification of cells during erythroid differentiation[J].CellProlif, 2010, 43(3): 297-309.
[11] DARDENTE H, WYSE C A, BIRNIE M J, et al. A molecular switch for photoperiod responsiveness in mammals[J].CurrBiol, 2010, 20(24): 2193-2198.
[12] MASUMOTO K H, UKAI-TADENUMA M, KASUKAWA T, et al. Acute induction ofEYA3 by late-night light stimulation triggersTSHβ expression in photoperiodism[J].CurrBiol, 2010, 20(24): 2199-2206.
[13] HENNINGSEN J B, GAUER F, SIMONNEAUX V. RFRP neurons-the doorway to understanding seasonal reproduction in mammals[J].FrontEndocrinol(Lausanne), 2016, 7: 36.
[14] DUPRé S M, MIEDZINSKA K, DUVAL C V, et al. Identification ofEYA3 andTAC1 as long-day signals in the sheep pituitary[J].CurrBiol, 2010, 20(9): 829-835.
[15] MISHRA I, BHARDWAJ S K, MALIK S, et al. Concurrent hypothalamic gene expression under acute and chronic long days: implications for initiation and maintenance of photoperiodic response in migratory songbirds[J].MolCellEndocrinol, 2016, 439: 81-94.
[16] LIAO T H, PIERCE J G. The primary structure of bovine thyrotropin. II. The amino acid sequences of the reduced,S-carboxymethyl α and β chains[J].JBiolChem, 1971, 246(4): 850-865.
[17] BOCKMANN J, B?CKERS T M, VENNEMANN B, et al. Short photoperiod-dependent down-regulation of thyrotropin-alpha and-beta in hamster pars tuberalis-specific cells is prevented by pinealectomy[J].Endocrinology, 1996, 137(5): 1804-1813.
[18] 趙婉秋, 陳 黎, 沈軍達(dá), 等. 動(dòng)物季節(jié)性繁殖機(jī)制研究進(jìn)展[J]. 浙江農(nóng)業(yè)科學(xué), 2017, 58(1): 150-154. ZHAO W Q, CHEN L, SHEN J D, et al. Research progress in seasonal reproduction mechanism of animal[J].JournalofZhejiangAgriculturalSciences, 2017, 58(1): 150-154. (in Chinese)
[19] 黃冬維, 儲(chǔ)明星. 動(dòng)物季節(jié)性繁殖分子調(diào)控機(jī)理研究進(jìn)展[J]. 遺傳, 2011, 33(7): 695-706. HUANG D W, CHU M X. Research progress in molecular mechanism of animal seasonal reproduction[J].Hereditas(Beijing), 2011, 33(7): 695-706. (in Chinese)
[20] SHINOMIYA A, SHIMMURA T, NISHIWAKI-OHKAWA T, et al. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone[J].FrontEndocrinol, 2014, 5: 12.
[21] 楊 穎, 陳 黎, 盧立志. 松果體調(diào)控動(dòng)物季節(jié)性繁殖概述[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2017, 25(7): 1086-1101. YANG Y, CHEN L, LU L Z. Review of regulation on the pineal gland of animal seasonal reproduction[J].JournalofAgriculturalBiotechnology, 2017, 25(7): 1086-1101. (in Chinese)
[22] WOOD S, LOUDON A. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary[J].JEndocrinol, 2014, 222(2): R39-R59.
[23] YASUO S, YOSHIMURA T, EBIHARA S, et al. Photoperiodic control ofTSH-βexpression in the mammalian pars tuberalis has different impacts on the induction and suppression of the hypothalamo-hypopysial gonadal axis[J].JNeuroendocrinol, 2010, 22(1): 43-50.
[24] AIZAWA S, HOSHINO S, SAKATA I, et al. Diurnal change of thyroid-stimulating hormone mRNA expression in the rat pars tuberalis[J].JNeuroendocrinol, 2007, 19(11): 839-846.
[25] GOULART-SILVA F, DE SOUZA P B, NUNES M T. T3 rapidly modulates TSHβ mRNA stability and translational rate in the pituitary of hypothyroid rats[J].MolCellEndocrinol, 2011, 332(1-2): 277-282.
[26] 劉 浩, 臧曉怡, 劉春蓉, 等. 促甲狀腺激素β基因剪接變體在BALB C小鼠不同組織中的表達(dá)[J]. 天津醫(yī)藥, 2011, 39(3): 239-242. LIU H, ZANG X Y, LIU C R, et al. A novel thyroid stimulating hormone β-subunit splice variant in bone marrow and other tissues in BALB C mice[J].TianjinMedicalJournal, 2011, 39(3): 239-242. (in Chinese)
[27] 黃冬維, 曹貴玲, 儲(chǔ)明星, 等. 山羊促甲狀腺素β亞基基因(TSHB)cDNA克隆與組織表達(dá)研究[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 39(6): 847-853. HUANG D W, CAO G L, CHU M X, et al. cDNA cloning and tissue expression of thyroid stimulating hormone beta chain gene (TSHB) in goats[J].JournalofAnhuiAgriculturalUniversity, 2012, 39(6): 847-853. (in Chinese)
[28] TSUJINO K, NARUMI R, MASUMOTO K H, et al. Establishment ofTSHβ real-time monitoring system in mammalian photoperiodism[J].GenesCells, 2013, 18(7): 575-588.
[29] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparativeCTmethod[J].NatProtoc, 2008, 3(6): 1101-1108.
[30] WOOD S H, CHRISTIAN H C, MIEDZINSKA K, et al. Binary switching of calendar cells in the pituitary defines the phase of the circannual cycle in mammals[J].CurrBiol, 2015, 25(20): 2651-2662.
[31] YOSHIMURA T. Thyroid hormone and seasonal regulation of reproduction[J].FrontNeuroendocrinol, 2013, 34(3): 157-166.
[32] DARDENTE H, HAZLERIGG D G, EBLING F J P. Thyroid hormone and seasonal rhythmicity[J].FrontEndocrinol, 2014, 5: 19.
[33] KORF H W. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms[J].GenCompEndocrinol, 2017, doi: 10.1016/j.ygcen.2017.05.011.
[34] IKEGAMI K, YOSHIMURA T. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction[J].GenCompEndocrinol, 2016, 227: 64-68.
[35] NISHIWAKI-OHKAWA T, YOSHIMURA T. Molecular basis for regulating seasonal reproduction in vertebrates[J].JEndocrinol, 2016, 229(3): R117-R127.
[36] DARDENTE H, LOMET D, ROBERT V, et al. Seasonal breeding in mammals: from basic science to applications and back[J].Theriogenology, 2016, 86(1): 324-332.
[37] MISHRA I, SINGH D, KUMAR V. Seasonal alterations in the daily rhythms in hypothalamic expression of genes involved in the photoperiodic transduction and neurosteroid-dependent processes in migratory blackheaded buntings[J].JNeuroendocrinol, 2017, 29(5): 12469.