• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating the Capabilities of Soil Enthalpy,Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation

    2018-03-06 03:36:08ChangyuZHAOHaishanCHENandShanleiSUNKeyLaboratoryofMeteorologicalDisasterMinistryofEducationKLMEInternationalJointResearchLaboratoryofClimateandEnvironmentChangeILCECCollaborativeInnovationCenteronForecastandEvaluationofMet
    Advances in Atmospheric Sciences 2018年4期

    Changyu ZHAO,Haishan CHEN?,and Shanlei SUNKey Laboratory of Meteorological Disaster,Ministry of Education(KLME)/International Joint Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science and Technology(NUIST),Nanjing 20044,China

    2School of Atmospheric Science,Nanjing University of Information Science and Technology(NUIST),Nanjing 210044,China

    1.Introduction

    The importance of land–atmosphere interactions and relevant physical processes has been increasingly recognized in analyses of land surface factors,such as soil moisture,snow,vegetation and soil temperature.Similar to sea water,the land surface also constitutes a significant“memory”component of the Earth’s climate system.However,the slowly varying land memory associated with the atmospheric forcing,and the mechanisms that drive land–atmosphere interactions,remain unclear(Wu and Dickinson,2004;Liu,2010;Yang and Zhang,2016).

    Soil acts as a large heat source or sink,and thus can adjust the amplitude of the surface temperature annual cycle.In general,heat is transferred to deep soil layers and stored in the warm season,and is then released upward in the cold season,thereby increasing the surface soil temperature(Guo and Sun,2002;Zhang and Wu,2014).Usually,land surface thermal conditions can be described by the soil thermal status,which is largely determined by two soil elements:soil moisture and soil temperature.Soil moisture,which generally refers to water contained in the unsaturated soil zone,acts as a storage for precipitation,controls the partitioning of net radiation into sensible and latent heat fluxes,and moreover influences soil heat storage through altering soil thermal properties(e.g.,Specific heat capacity;Dirmeyer et al.,2003;Koster et al.,2004;Seneviratne et al.,2010;Zhang et al.,2011).As the other important component of land surface processes,soil temperature represents the soil energy status and heat transfer conditions(Tang and Reiter,1986;Qian et al.,2011;Yang and Zhang,2016).Moreover,the subsurface temperature has a longer memory and provides more effective signals of seasonal climate predictions(Mahanama et al.,2008;Xue et al.,2012;Wang et al.,2013;Wu and Zhang,2014).In short,soil moisture and soil temperature describe different aspects of land surface thermal conditions.However,land surfaces constitute a complicated system that cannot be objectively described by only one factor(e.g.,soil moisture or soil temperature).Therefore,it is critical to find or establish new variables,which can more comprehensively represent land surface thermal conditions.

    Soil enthalpy is a distinct variable that accounts for variations in soil temperature,soil moisture and soil texture,and can directly reflect land surface thermal conditions in terms of energy.Bohren and Albrecht(1998)indicated that the word“enthalpy”can often be accurately used in place of“heat content per unit mass”.Despite that,only a few Scientific publications comprehensively explore the characteristics of soil enthalpy and its applications in climate studies.Pielke(2003)recommended a focus on heat storage rather than temperature for monitoring climate change across the globe.Zhang et al.(2003)deduced the enthalpy expression for a heterogeneous land surface with latent heat assumed to be a function of temperature.Chen and Kumar(2004)showed that soil enthalpy variations in the shallow soil zone were dominated by soil moisture,whereas such variations in the deep soil zone were controlled by soil temperature.Davey et al.(2006)noted that,compared with air temperature,moist enthalpy was more sensitive to vegetation properties and could more accurately depict surface heating trends.Hu and Feng(2004)found that persistent negative soil enthalpy anomalies in the northwestern U.S.were related to negative regional surface temperature changes,which encouraged a northward position of the lower-troposphere monsoonal ridge and promoted above-average monsoon rainfall in the southwestern U.S.Notably,Hu and Feng(2004)only considered soil temperature variability by setting the heat capacity as a constant when calculating soil enthalpy.Amenu et al.(2005)indicated that soil enthalpy variability was governed by variations in both soil moisture and soil temperature,whereas heat capacity was a function of soil moisture.As a result,it is necessary and required to comprehensively assess the capability of soil enthalpy as a metric in monitoring land surface heating and its impact on climate.

    In the present study,we aim to(1)assess soil moisture and soil temperature contributions to soil enthalpy;and(2)select areas with similar sensitivities to soil moisture and soil temperature,and then discuss whether soil enthalpy provides a better representation of the land thermal variability.The paper is organized as follows:The data and methods are described in section 2;the main results are presented in section 3;and discussion and conclusions are provided in section 4.

    2.Data and methods

    2.1.Data

    For the soil medium,the total enthalpy can be expressed as the summarized enthalpies of soil particles,soil water and soil air(Murray,2002).Considering the difficulties in measuring soil air and its smaller content,we ignore its impacts on soil enthalpy in this study.Therefore,the equation of soil enthalpy per unit volume(H;J m?3)can be represented as follows(Sun,2005):

    where ciand clare the volumetric heat capacities of soil ice(1.942×106J m?3K?1)and soil liquid water(4.188×106J m?3K?1),respectively;Tfis the freezing temperature(273.16 K);Li,lis the latent heat of fusion(3.337×105J kg?1)and ρiis the density of ice(917 kg m?3);cdand λdrepresent the volumetric heat capacity and the volume percent of soil solids,respectively,which can be calculated with the soil organic matter density and the percentage of sand and clay from the 1°×1°monthly global soil texture dataset provided by the IGBP(Bonan et al.,2002;Lawrence and Slater,2008);λiand λldenote the volume percentages(m3m?3)of soil ice and soil liquid water,respectively;and T represents soil temperature(K).

    Due to a lack of comprehensive global observational data,soil moisture(including soilice and soilliquid water)and soil temperature are obtained from offine simulations byCLM4.0(Oleson et al.,2010),which is the land component of CESM.Compared with the previous version(i.e.,CLM3.5),CLM4.0 features a number of parameterization improvements and functional/structural advancements,such as the inclusion of a carbon–nitrogen biogeochemical model,the addition of an urban canopy model,and the introduction of transient land cover/land-use change capabilities(Lawrence et al.,2011;Hua et al.,2013;Zhu et al.,2013).The number of ground layers has been extended from 10 layers in CLM3.5 to 15 in CLM4.0,of which the top 10 and bottom 5 layers are hydrologically active(i.e.,“soil”layers)and inactive,respectively.The global near-surface meteorological forcing dataset for running this model was developed by the Land Surface Hydrology Research Group at Princeton University(Sheffield et al.,2006)for the period 1948–2006,with a temporal resolution of three hours and horizontal resolution of 1°×1°,and includes humidity,long wave radiation,precipitation,shortwave radiation,surface air temperature,surface pressure,and surface winds.CLM4.0 is spun up for 18 years to ensure that the simulated variables reach a long-term equilibrium.Finally,the model outputs of soil ice,soil liquid water and soil temperature are used to calculate the soil enthalpy.

    The 1°×1°monthly gridded precipitation(P)data are from the CN05.1 dataset for the period 1961–2012,which was constructed by an “anomaly approach”during the interpolation and included a considerable number of station observations(~2400)in China(Xu et al.,2009;Wu and Gao,2013).The monthly sensible heat flux,latent heat flux,air temperature and horizontal winds are from ERA-Interim,with a horizontal resolution of 1°×1°available after 1979(Dee et al.,2011).In addition,all datasets are confined to the period 1979–2006.Seasons are specified as:March–April–May(MAM),June–July–August(JJA),September–October–November(SON),and December–January–February(DJF).Notably,soil enthalpy sensitivities to soil moisture(or soil temperature)at the first(0.7 cm;surface soil layer)and the fifth(21.22 cm;middle soil layer)soil level are calculated for describing their changes with soil depth.

    2.2.Methods

    Because soil enthalpy is an integrated indicator of soil moisture and soil temperature,a multi-linear regression(MLR)approach is employed to separate the respective effects of these factors on soil enthalpy.As a result,soil enthalpy(H)can be represented as a linear function of soil moisture(w;sum of soil liquid water and soil ice)and soil temperature(T)as follows:

    where w(x,y,t),T(x,y,t)and ε(x,y,t)represent soil moisture,soil temperature and the residual error at location (x, y) at time t,respectively;a(x,y)and b(x,y)are the partial regression coefficients;and σ(x,y)represents the intercept.Because of the different units between a(x,y)and b(x,y),i.e.,(MJ m?3)(mm3mm3)?1versus(MJ m?3)°C?1,it is difficult to directly compare w and T impacts on H.Therefore,Eq.(2)is non-dimensionalized as follows:

    Fig.1.The MLR coefficients of H on w[a?;(a)spring;(b)summer;(c)autumn;(d)winter]and T[b?;(e)spring;(f)summer;(g)autumn;(h)winter]at the first soil level.Black dots denote the coefficients are statistically significant(p<0.05)after pre-whitening.

    where SH(x,y),Sw(x,y)and ST(x,y)are the standard deviation variances of H(x,y,t),w(x,y,t)and T(x,y,t),respectively,andandare time averages.Finally,Eq.(2)can be rewritten as:

    where H?(x,y,t),w?(x,y,t)and T?(x,y,t)are the standardized formations of H(x,y,t),w(x,y,t)and T(x,y,t),respectively.Through the non-dimensionalization procedure,a?(x,y)=[a(x,y)Sw(x,y)]/[SH(x,y)]and b?(x,y)=[b(x,y)ST(x,y)]/[SH(x,y)]are dimensionless,and thus can be used to compare the H sensitivities to w and T.

    It should be noted that the MLR residuals usually include an autocorrelation that causes the overestimations of statistical significance if not previously removed.Therefore,following to Tung and Zhou(2010),we employ a pre-whitening procedure,which is repeated three times until most of the grids satisfy the Durbin–Watson test to ensure that the residuals are whitened.The significance level of the regression coefficients is detected using the two-tailed Student’s t-test(p=0.05).For detailed information on the pre-whitening method,readers are referred to Tung and Zhou(2010).

    3.Results

    3.1. Soil enthalpy sensitivities to soil moisture and soil temperature

    We evaluate H sensitivities to w and T based on direction(i.e.,positive and negative)and magnitude over the Northeast Hemisphere(NEH).The signs of a?(b?),which are shown in Fig.1,represent whether H sensitivity to w(T)at the first soil level is negative or positive.Apparently,except in low latitudes and southern Europe,winter w shows a negative contribution to H over most of the NEH(Fig.1d).This may be related to the frozen soil in these regions,where more heat is required for thawing,and consequently H decreases.As shown in Figs.1a and c,the spatial distributions of a?are similar in spring and autumn,and w generally makes positive contributions to H at low latitudes and negative contributions at high latitudes.Interestingly,positive a?values are detected for an overwhelming majority of the NEH in summer,which is likely because liquid water is contained in the first soil level(Fig.1b).As expected,T shows positive contributions to H across the NEH for each season(Figs.1e–h),particularly for high latitudes in summer(Fig.1f)and low latitudes in winter(Fig.1h)with a higher a?.

    To quantitatively compare H sensitivities to w and T and determine the dominant factor,the parameter|a?/b?|is estimated and illustrated in Fig.2.Basically,obvious seasonal differences are observed in the spatial distribution of|a?/b?|.In detail,the H over most of the NEH is more sensitive to w in winter(Fig.2d),especially at high latitudes,with|a?/b?|> 10,whereas smaller|a?/b?|(< 0.1)exists in southern Europe,northern Africa,western Asia and southeastern China,suggesting that H is more sensitive to T.The spatial distributions of|a?/b?|are similar in spring(Fig.2a)and autumn(Fig.2c),which generally indicates that w is more important at high latitudes but T is more important at middle latitudes.As for summer(Fig.2b),|a?/b?|≈ 1 suggests w and T play a comparable role in H over the NEH.

    Fig.3.The MLR coefficients of H on w[a?;(a)spring;(b)summer;(c)autumn;(d)winter]and T[b?;(e)spring;(f)summer;(g)autumn;(h)winter]at the fifth soil level.Black dots denote the coefficients are statistically significant(p<0.05)after pre-whitening.

    Compared to the first soil level, seasonal differences in the spatial distribution of a?are obviously smaller in the middle soil layer(Figs.3a–d).In detail,a?is negative in summer at high latitudes(Fig.3b)where soil ice still exists.However,due to the disappearance of soil ice in some midlatitude regions,the w contribution to H becomes positive,particularly in spring(Fig.3a)and autumn(Fig.3c).Relative to the results shown in Fig.1,the area with a significantly(p<0.05)positive T contribution to H apparently increases at high latitudes(Fig.3).In addition,higher a?is identified in climate transition zones,such as the Sahel and India,where a strong coupling exists between w and P(Koster et al.,2004).The analyses above imply that the MLR method can effectively distinguish the importance of w and Teffects on land surface thermal conditions.

    Relative to H sensitivity in the surface soil layer,H becomes more sensitive to T in the fifth soil level with|a?/b?|<0.1(Fig.4),and the negative w contribution decreases at high latitudes,which is related to the more rapid decreases in in-terannual variabilities of w than those of T(Chen and Kumar,2004).

    In particular,for areas with|a?/b?|≈ 1,land thermal variations induced by w and T are generally comparable,implying that land thermal anomalies cannot be completely captured by w or T alone.As a result,the H,as an integrated indicator involving w and T effects,can better represent land thermal variations,and thus tends to be a more effective predict and for short-term climate prediction in these identified areas.In order to further con fi rm the capability of H in seasonal climate prediction,detailed comparisons of the correla-tions of P with antecedent H,w and T are conducted in the following sections,which can provide some reference for the application of H in seasonal rainfall prediction.

    Fig.4.|a?/b?|at the fifth soil level:(a)spring;(b)summer;(c)autumn;(d)winter.

    3.2.Comparisons of the capabilities of H,w and T as predictands in P forecasting

    Although P forecasting remains difficult,several studies have indicated that antecedent land surface anomalies can be used to predict P(Koster et al.,2004,2010;Zhang et al.,2011;Zhang and Zuo,2011;van den Hurk et al.,2012;Collow et al.,2014;Li et al.,2015).Therefore,we would like to compare the capabilities of H,w and T as predictands in P forecasting over two selected regions in China with annual|a?/b?|≈ 1[i.e.,the Huanghe-Huaihe Basin(HHB)and Southeast China(SEC);Fig.5].In order to highlight the capability of H in P prediction,we analyze the relationship between H and P at each soil layer based on the pattern correlation(detailed information below),and find that this relationship is more evident at the fifth soil layer.Therefore,the following analyses are all performed at the fifth layer.

    The pattern correlations between H and P(H–P),T and P(T–P)and w and P(w–P)are compared separately as a function of the predict and month and the lags from one to six months.The color depth(Fig.6)reflects the intensity of the linkage between antecedent land surface conditions and P,i.e.,the darker the color,the closer the relationship.Overall,the pattern correlations of H–P(Figs.6a and b)are similar to those of T–P(Figs.6c and d)over both HHB and SEC,but the former are always stronger than the latter.For the w–P correlation(Figs.6e and f),it is basically weaker,except in cold months.The findings are expected and indicate that H is potentially a better local predict and for forecasting P than w and T.Overall,H has the greatest potential for predicting June P from the perspective of the magnitude and consistency(positive or negative)of the correlations;and more importantly,this consistent relationship between H and P can extend to five and six months ahead over HHB and SEC,respectively,which implies that the H anomaly has a longer memory.

    Fig.5.Annual|a?/b?|at the fifth soil level.

    Fig.6.Pattern correlation over HHB(left)and SEC(right)at lags from 1 to 6 months:(a,b)H–P;(c,d)T–P;(e,f)w–P.The x-axis is the predict and’s month and the y-axis is lead time.For example,lead time=1 at month=6 is for the May–June case.

    Fig.7.Temporal correlations between June P and antecedent May(a)H,(b)T and(c)w.Black dots denote regions with statistically significant(p<0.05)correlation.

    The H–P correlations are statistically significant(p<0.05)in regions where H anomalies can persist over longer time.Therefore,taking May–June as an example,we would like to show detailed information about the spatial distributions of the time-lagged H–P,T–Pandw–Pcorrelations.Basically,the spatial distributions of the H–P(Fig.7a)and the T–P(Fig.7b)correlations are similar,following with significantly(p<0.05)negative and positive values over HHB and SEC,respectively,while more areas(51 grids)of the H–P correlations exceed the significance level(p<0.05)than those(33 grids)of the T–P correlations.By contrast,the spatial distribution of the w–P correlations evidently differs from those of the H–P and T–P correlations,mainly characterized by insignificantly and slightly positive values(Fig.7c).These findings are consistent with previous studies that reported w feedbacks are generally weak over wet areas,since the surface evaporation is insensitive to w(Zhang et al.,2008;Zhang and Dong,2010).To sum up,it appears to be a better choice to use H as a proxy of land surface thermal conditions for predicting P over HHB and SEC.

    For further understanding the capability of H as a predict and in P prediction,May H impacts on June P are chosen to explore the possible underlying mechanisms.Firstly,singular value decomposition(SVD)analysis of H in May(the left-SVD field)and P in June(the right-SVD field)is conducted within HHB and SEC,with the linear trend of each variable removed.The first SVD mode(SVD1;Fig.8)accounts for 63.58%of the total variance,with the correlation coefficient of its expansion coefficients being 0.7(p<0.01).As seen from Fig.8a,a spatially homogeneous pattern of the left SVD1 field exists(variance contribution=49%),which strongly coincides with the first empirical orthogonal function(EOF1;not shown here)mode of H(variance contribution=54%).This indicates that a tight correspondence exists between the main abnormal changes in May H and June P,i.e.,anomalously high H in May corresponds to less PinJune over HHB but more P over SEC,and vice versa.

    The spatially inhomogeneous responses of June P to May H(Fig.8b)imply that the underlying physical mechanisms may be complicated. Some studies have pointed out that summer P can be impacted by the anomalous land surface thermal conditions through their feedbacks to atmospheric circulations(Zhang and Zuo,2011;Zhang et al.,2017).Based on these conclusions,composite analyses are performed to diagnose the influence of antecedent H anomalies on the atmosphericconditions. Four positive-anomaly years(1982,1985,1994 and 1997)and four negative-anomaly years(1979,1991,1993 and 1996)of H are identified based on a threshold of 1.2 standard deviations of the left-SVD1 field time series.As depicted in Fig.9,the positive H anomalies result in more sensible and latent heat fluxes over HHB and SEC(Fig.9a),and consequently lead to significant(p<0.05)warming of the surface air temperature(Fig.9b). Notably,the land surface–induced diabatic heating dissipates with height,and significant(p<0.05)warming generally disappears near to 500 hPa(Fig.9c).

    Fig.8.Heterogeneous correlation patterns of the first SVD mode between(a)May H(left field)and(b)June P(right field)and the(c)corresponding time series(red line:left field;blue line:right field).Black dots denote regions with statistically significant(p<0.05)correlation.

    Fig.9.Composite differences of(a)sensible and latent heat lf uxes(units:W m?2)and(b,c)air temperature(units: °C)in May(b)at 2-m height and(c)in the latitude–height(units:hPa)profile at 115°E.Black dots and white lines denote regions with statistically significant(p<0.05)correlation.

    According to the complete form of the vertical vorticity tendency equation(Wu et al.,1999;Wu,2001),local variation of vorticity in a relatively long-term evolution can be ignored,as well as horizontal and vertical advections due to their smaller magnitudes;and therefore,local meridional wind anomalies are mainly determined by the vertical profiles of the diabatic heating rate.Thus,the equation is expressed as:

    where β = ?f/?y represents the geostrophic parameter variations with latitude;f+ζ is the vertical component of absolute vorticity and usually positive on the large scale;θz= ?θ/?z is the potential temperature variations with height and typically positive on the monthly scale;and ?Q/?z represents the diabatic heating variations with height.Therefore,local northerly(southerly)wind perturbations can be excited by the negative(positive)?Q/?z.As depicted in Fig.10a,significant northerly wind anomalies indeed exist over the heating source region(i.e.,HHB and SEC),which is indicative of a weakened summer monsoon in the early summer.

    A banding distribution is a distinct feature of summer P in HHB and SEC,which is mainly controlled by the advance of the summer monsoon.In June,the rain belt is usually located in the Yangtze River Basin,which is referred to as the Mei-yu.In response to the H-induced anomalous diabatic heating profile,an anomalous northerly wind tends to appear in May(Fig.10a)and persists till June(Fig.10b),weakening the summer monsoon and resulting in a southward replacement of the rain belt.Thus,less and more P occurs over HHB and SEC,respectively.

    4.Discussion and conclusion

    H combines the effects of both T and w on the land surface hydrothermal process,and thus comparisons of the performances of H,w and T in representing the land surface thermal status are helpful for better understanding the advantage of H as an effective land surface factor in the study of land–atmosphere interaction.In this study,we investigate the contributions of w and T to H over the NEH.At high latitudes,the w contribution to H is negative when soil contains more ice,but becomes positive after soil ice melts.The positive contribution of T to H is observed throughout the year,with the most sensitive areas at low latitudes in cold months and high latitudes in warm months.As soil depth increases,the T and w contributions to H increases and decreases,respectively.In general,H is more sensitive to w at high latitudes(shallow soil layers),but to T at low latitudes(deep soil layers).In particular,over more regions with|a?/b?|≈ 1 in summer,land surface thermal conditions can be better captured by H than w or T alone.

    Fig.10.Composite differences of 700-hPa meridional wind(units:m s?1)in(a)May and(b)June.Black dots denote regions with statistically significant(p<0.05)correlation.

    Fig.11.Temporal correlations between June P and antecedent May(a)H,(b)T and(c)w simulated from GLDAS2.0.Black dots denote regions with statistically significant(p<0.05)correlation.

    H provides more effective signals for P prediction over HHB and SEC,where H is sensitive to both w and T.Results indicate that,despite similar pattern correlations,the H–P correlations are larger than those of T–P.In addition,relative to the H–P and T–P correlations,the w–P correlations are always weaker.H has the greatest potential for predicting June P from the perspective of the magnitude and consistency(positive or negative)of the correlations.Comparing the spatial distributions of the H–P,T–P and w–P correlations during May–June over HHB and SEC,more grids with significant(p<0.05)H–P correlations are detected.Predictions at monthly or longer time scales imply that H has a longer memory than T and w.The identification of such characteristics has important implications for applying H as a metric in land–atmosphere interaction studies,which are critical for designing seasonal prediction systems.

    However,there are still some uncertainties in our results.For example,the land surface parameters(i.e.,soil ice,soil liquid water and soil temperature)for calculating H are from offine simulations by CLM4.0.Even though CLM4.0 has been applied extensively and validated against various assimilation datasets globally, findings derived from only one model may contain uncertainties stemming from the different structures of the selected model and different initial values.

    Due to a lack of soil ice observations and reanalysis prod-ucts(e.g.,GLDAS2.0),accurate computations of H are diffi-cult.To reduce the potential uncertainties and then enhance the robustness of our results,the lagged correlations between P and antecedent soil liquid water,soil temperature and estimated soil enthalpy from CLM4.0 and GLDAS2.0 are validated over the unfrozen regions:H–P,T–P and w–P correlations over HHB and SEC for May–June.Similar to Fig.7,the H–P correlation(Fig.11a)is significantly negative over HHB and positive over SEC,with more areas(53 grids)exceeding the significance level(p<0.05)than those(40 grids)of the T–P correlation(Fig.11b),while the w–P correlation is generally weak(Fig.11c).Although the validation results show a high consistency between the results of CLM4.0 and GLDAS2.0,the potential uncertainties caused by the use of only one model’s products in the current study should still be kept in mind.Therefore,more simulations using different models and original forcings for developing ensemble datasets are needed,and a quantitative evaluation of the uncertainties induced by the model itself and initial values deserves further investigation in the future.

    Another aspect of uncertainty comes from the use of the MLR method for what is a complex and nonlinear system(i.e.,the soil system).Particularly,the two explanatory variables(w and T)are highly dependent,which does not influence the establishment of the MLR model but may have introduced uncertainties in separating out their individual contributions.Although w and T are only two of the factors that control the temporal variability of H,other factors are not included in the explanatory variables,such as the soil texture and soil porosity,which have limited contributions compared with w and T.

    Acknowledgements.This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41230422 and 41625019),the Special Fund for Research in the Public Interest of China(Grant No.GYHY201206017),the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20130047 and BK20151525),the Research Innovation Program forCollegeGraduatesofJiangsuProvince(GrantNo.KYLX 0823),and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Amenu,G.G.,P.Kumar,and X.-Z.Liang,2005:Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes.J.Climate,18,5024–5045,https://doi.org/10.1175/JCLI3590.1.

    Bohren,C.F.,and B.A.Albrecht,1998:Atmospheric Thermodynamics.Oxford University Press,420 pp.

    Bonan,G.B.,S.Levis,L.Kergoat,and K.W.Oleson,2002:Landscapes as patches of plant functional types:An integrating concept for climate and ecosystem models.Global Biogeochemical Cycles,16,5-1–5-23,https://doi.org/10.1029/2000 GB001360.

    Chen,J.,and P.Kumar,2004:A modeling study of the ENSO influence on the terrestrial energy profile in North America.J.Climate,17,1657–1670,https://doi.org/10.1175/1520-0442(2004)017<1657:AMSOTE>2.0.CO;2.

    Collow,T.W.,A.Robock,and W.Wu,2014:influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains.J.Geophys.Res.,119,9338–9358,https://doi.org/10.1002/2014JD021454.

    Davey,C.A.,R.A.Pielke,and K.P.Gallo,2006:Differences between near-surface equivalent temperature and temperature trends for the Eastern United States:Equivalent temperature as an alternative measure of heat content.Global and Planetary Change,54,19–32,https://doi.org/10.1016/j.gloplacha.2005.11.002.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.1002/qj.828.

    Dirmeyer,P.A.,M.J.Fennessy,and L.Marx,2003:Low skill in dynamical prediction of boreal summer climate:Grounds for looking beyond sea surface temperature.J.Climate,16,995–1002,https://doi.org/10.1175/1520-0442(2003)016<0995:LSIDPO>2.0.CO;2.

    Guo,W.D.,and S.F.Sun,2002:Preliminary study on the effects of soil thermal anomaly on land surface energy budget.Acta Meteorologica Sinica,60,706–714,https://doi.org/10.3321/j.issn:0577-6619.2002.06.008.(in Chinese)

    Hu,Q.,and S.Feng,2004:A role of the soil enthalpy in land memory.J.Climate,17,3633–3643,https://doi.org/10.1175/1520-0442(2004)017<3633:AROTSE>2.0.CO;2.

    Hua,W.J.,H.S.Chen,S.G.Zhu,S.L.Sun,M.Yu,and L.M.Zhou,2013:Hotspots of the sensitivity of the land surface hydrological cycle to climate change.Chinese Science Bulletin,58,3682–3688,https://doi.org/10.1007/s11434-013-5846-7.

    Koster,R.D.,and Coauthors,2004:Regions of strong coupling between soil moisture and precipitation.Science,305,1138–1140,https://doi.org/10.1126/science.1100217.

    Koster,R.D.,and Coauthors,2010:Contribution of land surface initialization to subseasonal forecast skill:First results from a multi-model experiment.Geophys.Res.Lett.,37,L02402,https://doi.org/10.1029/2009GL041677.

    Lawrence,D.M.,and A.G.Slater,2008:Incorporating organic soil into a global climate model.Climate Dyn.,30,145–160,https://doi.org/10.1007/s00382-007-0278-1.

    Lawrence,D.M.,andCoauthors,2011:Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model.Journal of Advances in Modeling Earth Systems,3,M03001,https://doi.org/10.1029/2011 MS00045.

    Li,Z.X.,T.J.Zhou,H.S.Chen,D.H.Ni,and R.-H.Zhang,2015:Modelling the effect of soil moisture variability on summer precipitation variability over East Asia.International Journal of Climatology,35,879–887,https://doi.org/10.1002/joc.4023.

    Liu,Z.Y.,2010:Bimodality in a monostable climate-ecosystem:The role of climate variability and soil moisture memory.J.Climate,23,1447–1455,https://doi.org/10.1175/2009 JCLI3183.1.

    Mahanama,S.P.P.,R.D.Koster,R.H.Reichle,and M.J.Suarez,2008:Impact of subsurface temperature variability on surface air temperature variability:An AGCM study.Journal of Hydro meteorology,9,804–815,https://doi.org/10.1175/2008 JHM949.1.

    Murray,E.J.,2002:An equation of state for unsaturated soils.Canadian Geotechnical Journal,39,125–140,https://doi.org/10.1139/t01-087.

    Oleson,K.W.,and Coauthors,2010:Technical Description of Version 4.0 of the Community Land Model(CLM).NCAR Technical Note.NCAR/TN-478+STR.

    Pielke,R.A.,2003:Heat storage within the earth system.Bull.Amer.Meteor.Soc.,84,331–335,https://doi.org/10.1175/BAMS-84-3-331.

    Qian,B.D.,E.G.Gregorich,S.Gameda,D.W.Hopkins,and X.L.Wang,2011:Observed soil temperature trends associated with climate change in Canada.J.Geophys.Res.,116,D02106,https://doi.org/10.1029/2010JD015012.

    Seneviratne,S.I.,T.Corti,E.L.Davin,M.Hirschi,E.B.Jaeger,I.Lehner,B.Orlowsky,and A.J.Teuling,2010:Investigating soil moisture-climate interactions in a changing climate:A review.Earth-Science Reviews,99,125–161,https://doi.org/10.1016/j.earscirev.2010.02.004.

    Sheffield,J.,G.Goteti,and E.F.Wood,2006:Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling.J.Climate,19,3088–3111,https://doi.org/10.1175/JCLI3790.1.

    Sun,S.F.,2005:Parameterization Study of Physical and Biochemical Mechanism and Parameter Model of Land Surface Process.China Meteorology Press,307 pp.(in Chinese)

    Tang,M.C.,and E.R.Reiter,1986:The similarity between the maps of soil temperature and precipitation anomaly of the subsequent season.Plateau Meteorology,5,293–307.(in Chinese)

    Tung,K.-K.,and J.S.Zhou,2010:The Pacific’s response to surface heating in 130 Yr of SST:La Ni?a-like or El Ni?o-like?J.Atmos.Sci.,67,2649–2657,https://doi.org/10.1175/2010 JAS3510.1.

    van den Hurk,B.,F.Doblas-Reyes,G.Balsamo,R.D.Koster,S.I.Seneviratne,and H.Camargo Jr.,2012:Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe.Climate Dyn.,38,349–362,https://doi.org/10.1007/s00382-010-0956-2.

    Wang,Y.H.,W.Chen,J.Y.Zhang,and D.Nath,2013:Relationship between soil temperature in May over Northwest China and the East Asian summer monsoon precipitation.Acta Meteorologica Sinica,27,716–724,https://doi.org/10.1007/s13351-013-0505-0.

    Wu,G.X.,2001:Comparison between the complete-form vorticity equation and the traditional vorticity equation.Acta Meteorologica Sinica,59,385–392,https://doi.org/10.11676/qxxb2001.042.(in Chinese)

    Wu,G.X.,Y.M.Liu,and P.Liu,1999:The effect of spatially nonuniform heating on the formation and variation of sub tropical high I:Scale analysis.Acta Meteorologica Sinica,57,257–263,https://doi.org/10.11676/qxxb1999.025.(in Chinese)

    Wu,J.,and X.J.Gao,2013:A gridded daily observation dataset over China region and comparison with the other datasets.Chinese Journal of Geophysics,56,1102–1111,https://doi.org/10.6038/cjg20130406.(in Chinese)

    Wu,L.Y.,and J.Y.Zhang,2014:Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia.Atmospheric Science Letters,15,307–313,https://doi.org/10.1002/asl2.504.

    Wu,W.R.,and R.E.Dickinson,2004:Time scales of layered soil moisture memory in the context of land-atmosphere interaction.J.Climate,17,2752–2764,https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    Xu,Y.,X.J.Gao,Y.Shen,C.H.Xu,Y.Shi,and F.Giorgi,2009:A daily temperature dataset over China and its application in validating a RCM simulation.Adv.Atmos.Sci.,26,763–772,https://doi.org/10.1007/s00376-009-9029-z.

    Xue,Y.K.,R.Vasic,Z.Janjic,Y.M.Liu,and P.C.Chu,2012:The impact of spring subsurface soil temperature anomaly in the western U.S.on North American summer precipitation:A case study using regional climate model downscaling.J.Geophys.Res.,117,D11103,https://doi.org/10.1029/2012JD017692.

    Yang,K.,and J.Y.Zhang,2016:Spatiotemporal characteristics of soil temperature memory in China from observation.Theor.Appl.Climatol.,126,739–749,https://doi.org/10.1007/s00704-015-1613-9.

    Zhang,J.Y.,and W.J.Dong,2010:Soil moisture influence on summertime surface air temperature over East Asia.Theor.Appl.Climatol.,100,221–226,https://doi.org/10.1007/s00704-009-0236-4.

    Zhang,J.Y.,and L.Y.Wu,2014:Impacts of Land-Atmosphere Interactions on Climate over East China.China Meteorological Press,138 pp.(in Chinese)

    Zhang,J.Y.,W.-C.Wang,and J.F.Wei,2008:Assessing landatmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation.J.Geophys.Res.,113,D17119,https://doi.org/10.1029/2008JD009807.

    Zhang,J.Y.,L.Y.Wu,and W.J.Dong,2011:Land-atmosphere coupling and summer climate variability over East Asia.J.Geophys.Res.,116,D05117,https://doi.org/10.1029/2010 JD014714.

    Zhang,R.H.,and Z.Y.Zuo,2011:Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China.J.Climate,24,3309–3322,https://doi.org/10.1175/2011JCLI4084.1.

    Zhang,R.N.,R.H.Zhang,and Z.Y.Zuo,2017:Impact of Eurasian spring snow decrement on east Asian summer precipitation.J.Climate,30,3421–3437,https://doi.org/10.1175/JCLI-D-16-0214.1.

    Zhang,Z.Q.,X.J.Zhou,W.L.Li,and M.Sparrow,2003:Calculation of the energy budget for heterogeneous land surfaces.Earth Interactions,7,1,https://doi.org/10.1175/1087-3562(2003)007<0001:COTEBF>2.0.CO;2.

    Zhu,S.G.,H.S.Chen,and J.Zhou,2013:Simulations of global land surface conditions in recent 50 years with three versions of NCAR Community Land Models and their comparative analysis.Transactions of Atmospheric Sciences,36,434–446,https://doi.org/10.3969/j.issn.1674-7097.2013.04.006.(in Chinese)

    伊人久久大香线蕉亚洲五| 午夜a级毛片| 亚洲精品色激情综合| а√天堂www在线а√下载| 99国产精品一区二区蜜桃av| 成年人黄色毛片网站| 制服诱惑二区| 亚洲七黄色美女视频| 亚洲全国av大片| 人人妻人人澡人人看| 久久精品成人免费网站| 黄频高清免费视频| 日本撒尿小便嘘嘘汇集6| 中文字幕av电影在线播放| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | www.熟女人妻精品国产| 亚洲人成网站在线播放欧美日韩| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 日韩欧美三级三区| 亚洲色图 男人天堂 中文字幕| 一本精品99久久精品77| 亚洲电影在线观看av| 草草在线视频免费看| 视频区欧美日本亚洲| 1024手机看黄色片| 中文字幕久久专区| 国产成+人综合+亚洲专区| 人人妻,人人澡人人爽秒播| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 久久中文字幕人妻熟女| 91麻豆av在线| 日本成人三级电影网站| 国产欧美日韩一区二区三| 国产精品 国内视频| 亚洲av电影不卡..在线观看| 亚洲专区国产一区二区| 亚洲久久久国产精品| 黄片大片在线免费观看| 欧美最黄视频在线播放免费| 亚洲国产欧美日韩在线播放| 国产一区二区在线av高清观看| 后天国语完整版免费观看| 观看免费一级毛片| 欧美亚洲日本最大视频资源| 大型av网站在线播放| www国产在线视频色| 搡老熟女国产l中国老女人| 国产精品影院久久| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av| 日本 av在线| 99久久无色码亚洲精品果冻| 午夜久久久久精精品| 亚洲成人免费电影在线观看| 变态另类丝袜制服| xxxwww97欧美| 亚洲午夜精品一区,二区,三区| 丁香欧美五月| 日日干狠狠操夜夜爽| 老司机福利观看| 757午夜福利合集在线观看| 欧美在线黄色| 99riav亚洲国产免费| 精品第一国产精品| 一区二区三区激情视频| 亚洲中文av在线| 99精品久久久久人妻精品| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 三级毛片av免费| 亚洲av成人一区二区三| 亚洲国产精品999在线| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 一区二区三区高清视频在线| 视频区欧美日本亚洲| 国产视频内射| 老司机在亚洲福利影院| 在线免费观看的www视频| 国产色视频综合| 人人澡人人妻人| 亚洲一区二区三区色噜噜| 国产免费av片在线观看野外av| 日本黄色视频三级网站网址| 嫁个100分男人电影在线观看| 这个男人来自地球电影免费观看| 最近在线观看免费完整版| 国产国语露脸激情在线看| 精品欧美一区二区三区在线| 黑人操中国人逼视频| 亚洲中文字幕日韩| 欧美日韩黄片免| 麻豆久久精品国产亚洲av| 最好的美女福利视频网| 免费女性裸体啪啪无遮挡网站| www国产在线视频色| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 午夜免费鲁丝| 国产精品久久久av美女十八| 给我免费播放毛片高清在线观看| 看黄色毛片网站| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 欧美大码av| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 欧美一级毛片孕妇| 欧美日韩黄片免| 视频区欧美日本亚洲| 狂野欧美激情性xxxx| 国产黄片美女视频| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 男人舔女人下体高潮全视频| 欧美日韩一级在线毛片| 91在线观看av| 老司机靠b影院| 日韩精品免费视频一区二区三区| 国产激情偷乱视频一区二区| 亚洲第一电影网av| 精品国产乱子伦一区二区三区| 又黄又爽又免费观看的视频| 日韩精品青青久久久久久| 久久天堂一区二区三区四区| 欧美日韩乱码在线| 很黄的视频免费| 99精品在免费线老司机午夜| 久久国产精品影院| 美女免费视频网站| 90打野战视频偷拍视频| 成年人黄色毛片网站| 日韩欧美国产在线观看| 99国产精品一区二区三区| 久久久久亚洲av毛片大全| 天堂√8在线中文| 国产色视频综合| 两个人看的免费小视频| 变态另类成人亚洲欧美熟女| 色在线成人网| 午夜精品在线福利| 欧美 亚洲 国产 日韩一| 丰满的人妻完整版| 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 午夜福利一区二区在线看| 真人一进一出gif抽搐免费| 欧美日本视频| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 国产精品综合久久久久久久免费| 99热只有精品国产| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| or卡值多少钱| 夜夜夜夜夜久久久久| 欧美乱码精品一区二区三区| 美女免费视频网站| 久久久久久大精品| 母亲3免费完整高清在线观看| 久久香蕉国产精品| 日韩大码丰满熟妇| 精品久久久久久久久久免费视频| 国产精品精品国产色婷婷| 国产成人av教育| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 1024香蕉在线观看| 后天国语完整版免费观看| 国产1区2区3区精品| 精品电影一区二区在线| 国产精品九九99| 国产视频内射| 激情在线观看视频在线高清| 亚洲片人在线观看| 久久久久国内视频| 观看免费一级毛片| 999精品在线视频| videosex国产| 久久久国产成人免费| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 免费高清在线观看日韩| 国产成人欧美在线观看| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 国产精品免费一区二区三区在线| 国产熟女午夜一区二区三区| 国产激情偷乱视频一区二区| 日韩精品青青久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久成人av| 欧美精品亚洲一区二区| 亚洲第一青青草原| 欧美色视频一区免费| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 啪啪无遮挡十八禁网站| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 欧美激情高清一区二区三区| 欧美中文综合在线视频| 老司机靠b影院| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 一二三四在线观看免费中文在| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲av美国av| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 精华霜和精华液先用哪个| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | 99精品欧美一区二区三区四区| 女警被强在线播放| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 久久九九热精品免费| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 成人午夜高清在线视频 | 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 国产成人av激情在线播放| 精品电影一区二区在线| 深夜精品福利| 亚洲五月天丁香| 国产高清videossex| 久久 成人 亚洲| 97碰自拍视频| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 久久久久久久久久黄片| 十分钟在线观看高清视频www| 国产精品亚洲一级av第二区| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 日韩免费av在线播放| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 欧美乱色亚洲激情| 88av欧美| x7x7x7水蜜桃| 女同久久另类99精品国产91| 99国产综合亚洲精品| 一本精品99久久精品77| 国产精品影院久久| 久久亚洲真实| 日韩大尺度精品在线看网址| 在线视频色国产色| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 精品久久久久久,| 丝袜人妻中文字幕| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| av电影中文网址| 精品国产美女av久久久久小说| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 日韩欧美一区视频在线观看| 好男人在线观看高清免费视频 | 90打野战视频偷拍视频| 99久久综合精品五月天人人| 精品不卡国产一区二区三区| 欧美激情极品国产一区二区三区| 99久久精品国产亚洲精品| 欧美日韩精品网址| 国产av不卡久久| 97超级碰碰碰精品色视频在线观看| 老司机在亚洲福利影院| 亚洲精品美女久久久久99蜜臀| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 国产三级黄色录像| 成人国语在线视频| 国产精品98久久久久久宅男小说| 好男人在线观看高清免费视频 | 国产精品二区激情视频| 免费在线观看成人毛片| 超碰成人久久| 国产蜜桃级精品一区二区三区| 在线av久久热| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久, | 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 好男人电影高清在线观看| 黄频高清免费视频| 色尼玛亚洲综合影院| 午夜视频精品福利| 国内毛片毛片毛片毛片毛片| 色尼玛亚洲综合影院| 亚洲全国av大片| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| 丰满的人妻完整版| 午夜激情福利司机影院| 亚洲av五月六月丁香网| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| 在线十欧美十亚洲十日本专区| 亚洲成人国产一区在线观看| 午夜激情福利司机影院| 白带黄色成豆腐渣| 免费高清视频大片| 精品久久蜜臀av无| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看| 久久久精品欧美日韩精品| 中文字幕最新亚洲高清| 日本免费一区二区三区高清不卡| 大型av网站在线播放| 午夜免费鲁丝| 久久久国产欧美日韩av| 一区二区三区精品91| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 在线av久久热| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区高清亚洲精品| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久毛片微露脸| 亚洲第一电影网av| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 国产精品野战在线观看| 色综合亚洲欧美另类图片| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 99国产综合亚洲精品| 成人欧美大片| 国产蜜桃级精品一区二区三区| 在线av久久热| 18禁观看日本| 久久精品成人免费网站| 香蕉久久夜色| 亚洲熟妇中文字幕五十中出| 亚洲成国产人片在线观看| 国产成人欧美| 99久久无色码亚洲精品果冻| 99国产精品99久久久久| 亚洲成人国产一区在线观看| www国产在线视频色| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 精品高清国产在线一区| 久久天堂一区二区三区四区| 国产区一区二久久| 亚洲成人久久性| a级毛片在线看网站| 我的亚洲天堂| 自线自在国产av| cao死你这个sao货| 看片在线看免费视频| 国产又爽黄色视频| 欧美色视频一区免费| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 日韩欧美国产在线观看| 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 国产亚洲精品久久久久久毛片| 日本a在线网址| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 欧美中文日本在线观看视频| 男人舔奶头视频| 成年人黄色毛片网站| 超碰成人久久| 日本精品一区二区三区蜜桃| 91麻豆av在线| 18禁观看日本| 国产成人影院久久av| www日本在线高清视频| 亚洲无线在线观看| 国内精品久久久久精免费| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| 日本成人三级电影网站| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 色播亚洲综合网| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 久久久久精品国产欧美久久久| 精品人妻1区二区| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 欧美日韩中文字幕国产精品一区二区三区| 国产av一区在线观看免费| 国产在线观看jvid| x7x7x7水蜜桃| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 在线观看一区二区三区| 国产成人啪精品午夜网站| 18禁国产床啪视频网站| 欧美最黄视频在线播放免费| 久久中文字幕一级| 国产精品免费视频内射| 中文字幕人妻熟女乱码| 国产精品日韩av在线免费观看| 国产亚洲精品综合一区在线观看 | 性欧美人与动物交配| 国产精品香港三级国产av潘金莲| 欧美久久黑人一区二区| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 欧美成人一区二区免费高清观看 | 日本成人三级电影网站| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 制服人妻中文乱码| 淫秽高清视频在线观看| 老熟妇乱子伦视频在线观看| 国产av又大| 99国产极品粉嫩在线观看| 可以免费在线观看a视频的电影网站| 久热这里只有精品99| 50天的宝宝边吃奶边哭怎么回事| 成人亚洲精品一区在线观看| 国产精品国产高清国产av| 大香蕉久久成人网| 免费在线观看影片大全网站| 国产精品亚洲av一区麻豆| 草草在线视频免费看| 欧美一级a爱片免费观看看 | 可以免费在线观看a视频的电影网站| 久久婷婷人人爽人人干人人爱| 50天的宝宝边吃奶边哭怎么回事| 久久中文字幕人妻熟女| 一级a爱视频在线免费观看| 欧美色视频一区免费| 男女午夜视频在线观看| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 天天一区二区日本电影三级| 成人手机av| 97碰自拍视频| 亚洲国产精品久久男人天堂| 19禁男女啪啪无遮挡网站| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 国产精品影院久久| 日本三级黄在线观看| 亚洲国产欧洲综合997久久, | 久久久久国内视频| 伊人久久大香线蕉亚洲五| 成人三级做爰电影| 亚洲av成人av| 国产精品乱码一区二三区的特点| 久久九九热精品免费| 最好的美女福利视频网| 一本精品99久久精品77| 黑丝袜美女国产一区| av免费在线观看网站| 亚洲人成电影免费在线| 亚洲国产看品久久| 高潮久久久久久久久久久不卡| 国产精品av久久久久免费| 少妇 在线观看| 真人一进一出gif抽搐免费| 午夜影院日韩av| 精品久久久久久久久久久久久 | 我的亚洲天堂| 欧美日韩乱码在线| 国产午夜福利久久久久久| 夜夜夜夜夜久久久久| 欧美午夜高清在线| 精品卡一卡二卡四卡免费| 日本 欧美在线| 18禁观看日本| 日本三级黄在线观看| 久久香蕉国产精品| 亚洲色图av天堂| 中文字幕人妻熟女乱码| 在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 欧美zozozo另类| 成人av一区二区三区在线看| 老司机福利观看| 哪里可以看免费的av片| 成人国产综合亚洲| 久9热在线精品视频| 亚洲国产精品999在线| 亚洲人成网站高清观看| 欧美日韩乱码在线| 亚洲精品国产区一区二| 精品午夜福利视频在线观看一区| 亚洲熟妇熟女久久| 婷婷亚洲欧美| 黄色片一级片一级黄色片| 久热这里只有精品99| 成人精品一区二区免费| 欧美成人一区二区免费高清观看 | 一区二区三区高清视频在线| 校园春色视频在线观看| 琪琪午夜伦伦电影理论片6080| 午夜激情av网站| 黄色片一级片一级黄色片| 久热这里只有精品99| 人人妻人人看人人澡| 免费看十八禁软件| 免费看a级黄色片| 中文在线观看免费www的网站 | 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久久久99蜜臀| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 久热这里只有精品99| 日韩大尺度精品在线看网址| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 在线播放国产精品三级| АⅤ资源中文在线天堂| 久久精品国产综合久久久| 亚洲精品久久国产高清桃花| 91成人精品电影| 我的亚洲天堂| 免费人成视频x8x8入口观看| 日韩欧美国产一区二区入口| 黄色丝袜av网址大全| 久久中文字幕一级| 身体一侧抽搐| 国产激情久久老熟女| 欧美性猛交黑人性爽| 欧美成人午夜精品| 少妇的丰满在线观看| 亚洲熟妇熟女久久| 国产精品免费视频内射| 最新在线观看一区二区三区| 88av欧美| 欧美不卡视频在线免费观看 | 亚洲一区二区三区不卡视频| 精品欧美国产一区二区三| 男人舔女人下体高潮全视频| 色综合婷婷激情| 一区二区三区精品91| 国产真人三级小视频在线观看| 黄色毛片三级朝国网站| 欧美成人一区二区免费高清观看 | 好男人电影高清在线观看| 国产人伦9x9x在线观看| 搡老妇女老女人老熟妇| 久久久久久人人人人人| 精品久久久久久久久久久久久 | 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 99re在线观看精品视频| 人人妻人人看人人澡| 青草久久国产| 久久精品夜夜夜夜夜久久蜜豆 | 国产视频一区二区在线看| www国产在线视频色| av有码第一页| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 久久久精品欧美日韩精品| 不卡一级毛片| 色尼玛亚洲综合影院| 欧美日韩乱码在线| 大型黄色视频在线免费观看| 一本精品99久久精品77| 亚洲一码二码三码区别大吗| 婷婷精品国产亚洲av在线| 日韩大尺度精品在线看网址|