• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific

    2018-03-06 03:36:04ShuminCHENWeibiaoLIZhipingWENMingsenZHOUYouyuLUYuKunQIANHaoyaLIUandRongFANGSchoolofAtmosphericSciencesCenterforMonsoonandEnvironmentResearchGuangdongProvinceKeyLaboratoryforClimateChangeandNaturalDisasterStudiesSunYa
    Advances in Atmospheric Sciences 2018年4期

    Shumin CHEN,Weibiao LI?,Zhiping WEN,Mingsen ZHOU,2,Youyu LU,Yu-Kun QIAN,Haoya LIU,and Rong FANGSchool of Atmospheric Sciences/Center for Monsoon and Environment Research/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-Sen University,Guangzhou 50275,China

    2Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou 510062,China

    3Bedford Institute of Oceanography,Fisheries and Oceans Canada,Dartmouth,Nova Scotia B2Y 4A2,Canada

    4State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China

    1.Introduction

    Tropical cyclones(TCs)are one of the most destructive natural disasters to affect coastal regions(Emanuel,2005;Peng et al.,2014)and pose great Scientific challenges to meteorologists.TCs are complex systems and their intensities are affected by a variety of physical processes.Many studies have focused on the TC updraft and updraft-produced eye wall;i.e.,conditional instability of the second kind(Charney and Eliassen,1964),vortical hot towers(Hendricks et al.,2004;Montgomery et al.,2006),and secondary rainbands(e.g.,Montgomery and Kallenbach,1997;Reasor et al.,2000).Because the eye wall is essential for TC evolution,studies have been conducted on small-scale processes within the eye wall,such as the eye wall replacement cycle(Shapiro and Willoughby,1982;Willoughby et al.,1982;Chen,1987)and wave activities.The latter aspect generally covers the stationary wavenumber-one convective pattern(Reasor et al.,2009),vortex Rossby waves(Zhong et al.,2009;Menelaou and Yau,2014),inertia gravity waves(Kurihara,1976;Willoughby,1976;Schecter,2008;Ki and Chun,2011), fine-scale spiral rain bands(Gall et al.,1998)associated with Kelvin–Helmholtz instability(Romine and Wilhelmson,2006),inertial-buoyancy waves(Li et al.,2010),and semi-diurnal convection(Kossin,2002).However,the cited studies were largely confined to the horizontal structures of waves.The short-term temporal evolution and vertical propagation of waves have not been fully investigated.

    Chen et al.(2015)used both observational data and modeling results to identify high-frequency oscillations having a period of approximately 2 h in the vertical structure of secondary circulations within the eye wall of analyzed TCs in the South China Sea(SCS).These oscillations occur within the vertical motion,convergence and dry air density around the eye wall,and induce oscillation of the TC intensity through the oscillation of convection.The present study further investigates variations of the high-frequency oscillations of TCs over the western North Pacific(WNP)via numerical model simulations(owing to a lack of observations).Here,the difference in TCs in the SCS and WNP excluding the SCS (hereafter referred to as the open WNP) are analyzed because some physical characteristics differ between these two regions during TC intensification,owing to the distribution of land(as detailed by Chen et al.,2014).

    The rest of the paper is organized as follows:Section 2 gives a general description of the model.Section 3 presents a power spectrum analysis of an ensemble of 15 simulated TCs,and determines the variation in the high-frequency oscillation between the open WNP and SCS.Section 4 presents the physical features that are further demonstrated in a case simulation of Typhoon Hagupit(2008).Section 5 draws conclusions from the results of the study and presents a discussion.

    2.General description of the model settings

    The simulations in this study are performed using the Weather Research and Forecasting(WRF)model(Skamarock et al.,2008).In our simulations,the model has 28 unevenly spaced vertical levels and greater resolution in the planetary boundary layer.The top level of the model is set to a pressure of 50 hPa.The model physics chosen are the Kain–Fritsch cumulus parameterization scheme(Kain and Fritsch,1990,1993;Kain,2004),WSM6 microphysics scheme(Hong et al.,2004),YSU PBL scheme(Hong and Lim,2006), five-layer thermal diffusion land surface model(Skamarock et al.,2008),long wave radiation scheme of the Rapid Radiative Transfer Model(Mlawer et al.,1997),and Dudhia shortwave radiation scheme(Dudhia,1989).

    Dynamic downscaling is applied to simulate small-scale and mesoscale features of the TCs.First,one-way nesting is used for the coarser-resolution model covering an outer domain,taking initial and boundary conditions from the sixhourly NCEP Final Analysis(FNL)data.This involves horizontally and vertically interpolating the analysis fields on 1°×1°horizontal cells and having mandatory pressure levels of the WRF model cells.Next,two-way nesting is used to link the outer-domain model with an inner-domain model with finer horizontal resolution.For this application,the sea surface temperature, fixed in time but spatially varying during model integration,is also obtained from NCEP FNL data.According to the relationship between the period and discrete scale given by Torrence and Compo(1998),a period of two hours corresponds to a spatial scale of about 10 km.A resolution of 3–4 km is hence used in the simulation to study the high-frequency oscillations.

    3.Analysis of an ensemble of simulated TCs

    3.1. Description of the ensemble of simulations

    Table 1 lists the 15 TCs simulated using the WRF model.These cyclones occurred during 2008–2014 in the WNP,and seven were active in the SCS.For these simulations,the twoway interactive WRF model includes two components covering two fixed domains with Lambert projections for the open WNP and SCS(Fig.1).Domain 1,the outer mesh,has a horizontal resolution of 12 km and is designed to simulate the synoptic-scale environment in which the TCs evolved.Domain 2 has a horizontal resolution of 4 km and is designed to simulate TC mesoscale structure.The simulations are initialized when each TC reaches tropical storm intensity.Each simulation spans 192 h.

    The simulated TC tracks and intensities,defined by the minimum sea-level pressure(MSLP)and the maximum wind speed at 10 m(MWS10),are compared with observational data.The observed TC tracks are obtained from the best-track observation dataset compiled by the Shanghai TyphoonInstitute(STI)of the China Meteorological Administration(CMA)(Ying et al.,2014).Figure 2 shows good agreement between observed and simulated TC tracks in Domain 2 in terms of the discrepancy in the TC center locations being less than 150 km on average.

    Table 1.List of TCs,start times of the experiments,and analysis durations for the ensemble of simulations.

    Fig.1.Domains of the WRF model for the ensemble of TC simulations of(a)the open WNP and(b)the SCS.

    Table 2 lists the maximum MWS10of the observed and simulated TCs.The simulated intensities are comparable to the observed intensities;however,the simulated intensities of TCs in the open WNP and SCS are similar because the simulated intensities are a little weaker and stronger in the open WNP and SCS,respectively.Table 3 lists correlations between TC intensities obtained from simulations and the best-track data.The trends of the simulated TC intensities are similar to those of observations,because all correlations are significant at the 95%confidence level according to the t-test,except in the case of the MWS10of Typhoon Chan-Hom(2009).It is thus concluded that the simulated and observed TC intensities agree well because the magnitude and trends of TC intensities are comparable to observations.Because the high-frequency oscillations are more significant in TCs with higher intensity,the following analysis is applied to model outputs during the period(also listed in Table 1)when the simulated TC intensity is stronger than severe tropical storm intensity(i.e.,an MWS10exceeding 24.5 m s?1).

    Fig.2.Tracks of TCs at 6-h intervals from the ensemble of simulations(dashed lines with open circles)and best-track data(solid lines with filled circles)for TCs in(a)the open WNP and(b)the SCS.The best-track data are from CMA-STI.Here,except in the cases of Man-yi(2007),Chanthu(2010),Hagupit(2008),and Chan-Hom(2009),which respectively started at 1800 UTC 9 July,1800 UTC 19 July,1800 UTC 19 September,and 0000 UTC 5 May,all tracks begin at the start times of the experiments listed in Table 1.

    3.2. General features of the difference between the open WNP and SCS

    According to our previous study(Chen et al.,2015),high frequency oscillations are significant in both variables(i.e.,density,horizontal velocities and vertical velocities)averaged over the eyewall region and the MWS10.Thus,considering that the MWS10is widely used to represent the intensity of a TC,the MWS10is used for the analysis in the present study.Following Gilman et al.(1963)and Stott et al.(2002),power spectrum analysis is performed for the simulated MWS10,with a temporal interval of 15 min.Prior to this analysis,each MWS10time series is high-pass filtered by subtracting its running average over a 6-h window.Figure 3 shows the resulting power spectrum density and the noise spectrum computed following Stott et al.(2002).Areas with spectrum density higher than the noise spectrum can be regarded as significant during the corresponding periods.Figure 4 shows the averaged significant periods and their variation ranges according to the results presented in Fig.3.Here,only the smallest significant period is considered because double periods are also significant for some TCs[i.e.,Neoguri(2008)and Hagupit(2008)shown in Fig.3].For all simulated TCs,significant high-frequency oscillations are identified,with averaged periods of 2.33–4.15 h in the open WNP and 1.12–3.20 h in the SCS.The means of the averaged periods of TCs in the open WNP and the SCS are 2.83 and 1.93 h,respectively.Additionally,the variation range of the oscillation periods of TCs in the open WNP is longer than that in the SCS,with the mean of variation ranges being 1.25 h in the open WNP and 0.66 ho in the SCS.

    Table 2.Maximum MWS10from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    Table 3.Correlations of MSLP and MWS10between TCs from the ensemble of simulations and best-track data.The best-track data are from CMA-STI.Values with “*”indicate correlation at the>95%confidence level,based on the t-test.

    The Butterworth bandpass filter method is applied to the MWS10of each simulated TC to analyze the magnitude of high-frequency oscillations.The time series of high-frequency oscillation is obtained by filtering the variation range of the significant periods in Fig.4.The deviation and maximum amplitude(listed in Table 4)of the filtered time seriesareusedtodescribethemagnitudesofhigh-frequencyoscillations.The deviations and maximum magnitude are similar in the open WNP and SCS,although the significant period in the open WNP is longer than that in the SCS.

    3.3.Factors of variations of periods in the two oceans

    It can be concluded from the work of Chen et al.(2015)that high-frequency oscillations are significant within TC secondary circulations that interact with the TC intensity.The variation in the significant oscillation periods in the openWNP and SCS is thus probably due to the disturbance of the TC intensity or secondary circulation that is enhanced by the TCs themselves or the environment.Factors for the disturbance of TC intensity are the strengthening of TCs themselves and environmental atmospheric dynamical features;meanwhile,the factor for the disturbance of TC secondary circulation is convergence within the boundary layer because all upward transport signals within the secondary circulation are generated by oscillations of the inward radial winds within the boundary layer.

    Table 4.Standard deviation and maximum amplitude from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    Fig.3.Power spectrum density of the MWS10of TCs from the ensemble of simulations.Black solid and gray dashed lines show the resulting power spectrum density and the noise spectrum,respectively.

    Fig.4.Averaged significant period(gray bars)and variation ranges(black lines)of TCs in(a)the open WNP and(b)the SCS,from the results of the power spectrum analysis shown in Fig.3.(c)Mean of the averaged significant periods and variation ranges of TCs in the open WNP and the SCS.

    Strengthening of TCs themselves,however,is not the reason for the longer oscillation periods over the open WNP,because simulated intensities of TCs in the open WNP and SCS are similar.Meanwhile,environmental atmospheric dynamical features including the low-level vorticity,high-level divergence,and vertical wind shear,are analyzed.Table 5 lists the mean values of these variables averaged over an annular area with a radius of 300–600 km from the center,defined as the location of the MSLP,of the simulated TCs during the periods when the TC intensity is higher than severe tropical storm intensity.The design of this ring area is based on estimations of the steering fl ow of TCs made in previous studies(i.e.,Chan and Gray,1982;Peng et al.,2015),where an area with a range larger than 1000 km,within which the region affected by TC features is removed,was used to represent the large-scale features of TCs.The ring area used here covers a range of 1200 km and is thus able to describe the large-scale features around the TC.Furthermore,an area with radius of 300 km is suitable for describing a TC structure,asconcluded from previous studies(i.e.,Emanuel,1986;Wang et al.,2008).This ring area with radius of 300 km to the TC center is generally affected by TC features of the simulated TCs in this study( figures not shown).Although the mean values of all TCs in the open WNP and SCS are different,the differences in the low-level vorticity and high-level divergence are not significant in these two areas.Additionally,differences in vertical wind shears in the open WNP and SCS are not significant.Thus,environmental dynamical factors also do not explain the longer significant periods in the open WNP.

    Table 5.Environmental low-level vorticity[unit:m s?1per longitude(latitude)],high-level divergence[unit:m s?1per longitude(latitude)],and vertical wind shear(unit:m s?1)from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    As detailed by Chen et al.(2015),all upward transport signals within the secondary circulation are generated by oscillations of the inward radial winds(convergence)within the boundary layer.Thus,another potential factor of the longer periods in the open WNP is the weaker terrain effects over the open water,because terrain friction intensifies convergence and thus enhances the disturbance when the convergence and rotation are imbalanced,compared with their relationships in mechanisms of TC development and maintenance[i.e.,the thermal wind balance in wind-induced surface heat exchange(Emanuel,1986)].Instead of using the mean divergence within the boundary layer,which is affected by the overall wind speeds,the ratio of radial winds(Rr)is applied to estimate the efficiency of convergence.Rrcan be calculated as

    Fig.5.Sketch of the estimation of radial wind(with positive velocities being outward).Here, isthe overallwind speed from which the speed of TC motion has been removed,andis the tangential wind(with positive velocities being anticlockwise).

    Fig.6.Asin Fig.4but for the ratio of radial winds(Rr)averaged within the PBL of TC eye wall region.

    The physical mechanism of the longer variation range in the open WNP is worth discussing,because the longer variation range means the oscillations vary with different spatial scale structure,suggesting that the process may also be affected by a variety of physical factors,such as the air–sea interaction,TC size,and inner structure of the TC.There is thus a need for more detailed investigation.

    4.Case study of Typhoon Hagupit(2008)

    To verify the effect of terrain on the period of high frequency oscillations,we execute another sensitivity experiment called NoTer for simulation of Hagupit(2008)constructed in Chen et al.(2015)(hereafter referred to as the CTL simulation).The CTL simulation is an excellent example selected from multiple tests with different settings of the domain design,physical scheme,and initial vortex,through the validation with observations.For this application,the WRF model,physical schemes,and initial and boundary conditions are the same as those of the ensemble of simulation as previously described,although the settings of the model domains in CTL are different.The CTL simulation includes three fixed,two-way interactive domains with Mercator projections.The outer(Domain 1),intermediate(Domain 2),and inner(Domain 3)meshes have horizontal resolutions of 27,9 and 3 km,designed to simulate the synoptic-scale environment for the storm to evolve,the mesoscale structure,and the inner-core structure of Hagupit(2008),respectively.More detailed information about the CTL simulation can be found in Chen et al.(2015).In contrast to the CTL simulation,the continents in Domain 2 and 3 are replaced by ocean in NoTer(Fig.7).

    Fig.7.Domains of the WRF model for the high-quality simulation of Typhoon Hagupit(2008),and the area in which land is replaced by ocean(blank in Domains 2 and 3)in NoTer.

    Fig.8.Power spectrum density of the MWS10of TCs in(a)CTL and(b)NoTer,from the high-quality simulation of Typhoon Hagupit(2008).Solid and dashed lines show the resulting power spectrum density and noise spectrum,respectively.

    Power spectrum analysis is performed for the MWS10,with a temporal interval of 15 min,of the simulated Hagupit(2008).Figure 8 shows the results of the power spectrum analysis of the MWS10in Domain 3 for the CTL and NoTer simulations.Figure 9 shows the averaged periods and the variation ranges according to the results presented in Fig.8.The averaged significant periods of high-frequency oscillations vary:1.28 h for CTL and 1.60 h for NoTer.Additionally,the variation range of the period in NoTer is longer than that in CTL.This suggests that weaker terrain effects result in a longer oscillation period and variation range.The longer oscillation period is not due to the strengths of TCs themselves because the TC intensity in the NoTer simulation is a little weaker than that in the CTL simulation(Fig.10).

    Fig.9.Averaged significant periods(gray bars)and variation ranges(black lines)of TCs in CTL and NoTer,from the results of the power spectrum analysis shown in Fig.8.

    Fig.10.MWS10during 21–36 integration hours of CTL(black line)and NoTer(gray line).

    Fig.11.Mean of secondary circulation during the whole simulation period for Domain 3 in(a)CTL and(b)NoTer,and(c)the difference between CTL and NoTer.(d)Mean of Rrin the two experiments averaged over the same period.For(a–c),shading shows the radial winds(positive for outwards;units:m s?1)and contours show the vertical velocity(positive for upwards;units:m s?1).

    The secondary circulations of TCs in the two experiments are analyzed(Fig.11).It is found that secondary circulation at a low level in the TC in the NoTer simulation is weaker than that in the CTL simulation,with weaker radial winds in the boundary layer(abnormal outward winds with positive speeds in Fig.11c)and vertical velocities in the low layer.Additionally,Rrwithin the boundary layer of the eyewall region in the NoTer simulation is approximately 10%less than that in the CTL simulation(Fig.11d),while the gradient wind speed and thermal wind speed within the upper level of the boundary layer are only approximately 4%more and 3%less than those in the CTL(Fig.12).The eyewall region in this case study is defined as the ring area with radius of 120 km to the TC center,on the basis of the structure of the updraft shown in Fig.11.The eyewall region of this simulated TC is smaller than that of the ensemble simulations,because the TC is well-developed by initializing with the bogussing scheme.The results regarding the Rr,gradient wind,and thermal wind,show that the lesser terrain in NoTer weakens the convergence within the boundary layer,and then weakens the disturbance of the gradient and thermal wind balances,thus possibly generating a longer significant period of high-frequency oscillations.Note that the factor of the smaller-scale features of the eyewall evolution requires further detailed study because the features of secondary circulation,including the updraft,are similar but different in some details(i.e.,Fig.12)in the two experiments.

    5.Conclusions

    Fig.12.Mean of(a)the gradient wind speed and(b)the thermal wind speed averaged within the upper level of the boundary layer of the TC eyewall region in the two experiments averaged over the same period.

    The present study analyzes the variations in high-frequency oscillations in the eyewalls of TCs using an ensemble of 15 simulated TCs over the WNP(including the SCS)and a simulation case study of Typhoon Hagupit (2008).Power spectrum analysis of the MWS10s of TCs shows that high-frequency oscillations are significant in all simulated TCs,with the oscillation periods and the variation range being shorter in the SCS than in the open WNP.The means of the average periods of TCs in the open WNP and SCS are 2.83 and 1.93 h,respectively,and the variation range of the oscillation periods of TCs in the open WNP is approximately twice that of TCs in the SCS.Additionally,the magnitudes of the oscillations are similar in the two areas.

    Factors of the variation in the significant oscillation periods in the open WNP and SCS are analyzed.The factors include the strengths of TCs themselves,environmental atmospheric dynamical features,and convergence within the boundary layer.Results show that the longer oscillation periods in the open WNP are not generated by the strengths of TCs themselves.The environmental atmospheric dynamical features that affect the development of TCs are also not the cause of the disturbance of longer significant periods for TCs in the open WNP,because the differences in environmental low-level vorticity,high-level divergence,and vertical wind shear of TCs,are not significant between the open WNP and SCS.Meanwhile,analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect,which intensifies convergence through greater friction.This is further demonstrated by the case simulation of Typhoon Hagupit(2008)and a sensitivity experiment,in which the continent is replaced by ocean.Results show that the enhanced convergence possibly strengthens the disturbance of the gradient and thermal wind balances,which is favorable for the shorter oscillation periods.

    Because the condition of the underlying surface is a factor of the period of the high-frequency oscillations,and all upward signals are generated by the oscillations of radial winds with the boundary layer(detailed by Chen et al.,2015),further study is required to determine the small-scale features within the boundary layer and their interactions with the underlying surface.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(Grant Nos.41405048,41675043,41375050,41205032 and 41775094)and Independent Research Project Program of State Key Laboratory of Tropical Oceanography(Grant No.LTOZZ1603).We are grateful for the use of the Tianhe-2 supercomputer(National Supercomputer Center in Guangzhou,Sun Yat-Sen University)and the HPCC(South China Sea Institute of Oceanology,Chinese Academy of Sciences),which were used in all numerical simulations.The authors would like to thank the three anonymous reviewers for their comments to improve the paper.

    Chan,J.C.L.,and W.M.Gray,1982:Tropical cyclone movement and surrounding flow relationships.Mon.Wea.Rev.,110,1354–1374,https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    Charney,J.G.,and A.Eliassen,1964:On the growth of the hurricane depression.J.Atmos.Sci.,21,68–75,https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    Chen,S.M.,1987:Preliminary analysis on the structure and intensity of concentric double-eye typhoons.Adv.Atmos.Sci.,4,113–118,https://doi.org/10.1007/BF02656667.

    Chen,S.M.,W.B.Li,Y.Y.Lu,and Z.P.Wen,2014:Variations of latent heat flux during tropical cyclones over the South China Sea.Meteorological Applications,21,717–723,https://doi.org/10.1002/met.1398.

    Chen,S.M.,Y.Y.Lu,W.B.Li,and Z.P.Wen,2015:Identification and analysis of high-frequency oscillations in the eyewalls of tropical cyclones.Adv.Atmos.Sci.,32,624–634,https://doi.org/10.1007/s00376-014-4063-x.

    Dudhia,J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos.Sci.,46,3077–3107,https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43,585–604,https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    Emanuel,K.A.,2005:Increasing destructiveness of tropical cyclones over the past 30 years.Nature,436,686–688,https://doi.org/10.1038/nature03906.

    Gall,R.,J.Tuttle,and P.Hildebrand,1998:Small-scale spiral bands observed in Hurricanes Andrew,Hugo,and Erin.Mon.Wea.Rev.,126,1749–1766,https://doi.org/10.1175/1520-0493(1998)126<1749:SSSBOI>2.0.CO;2.

    Gilman,D.L.,F.J.Fuglister,and J.M.Mitchell Jr.,1963:On the power spectrum of “red noise”.J.Atmos.Sci.,20,182–184,https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    Hendricks,E.A.,M.T.Montgomery,and C.A.Davis,2004:The role of “vortical”hot towers in the formation of tropical cyclone Diana(1984).J.Atmos.Sci.,61,1209–1232,https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    Hong,S.Y.,and J.O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of Korean Meteorological Society,42,129–151.

    Hong,S.Y.,J.Dudhia,and S.H.Chen,2004:A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation.Mon.Wea.Rev.,132,103–120,https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    Kain,J.S.,2004:The Kain Fritsch convective parameterization:An update.J.Appl.Meteor.,43,170–181,https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802,https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme.The Representation of Cumulus Convection in Numerical Models,Emanuel,K.A.,and D.J.Raymond,Eds.American Meteorological Society,Boston,MA,24,165–170,https://doi.org/10.1007/978-1-935704-13-316.

    Ki,M.O.,and H.Y.Chun,2011:Inertia gravity waves associated with deep convection observed during the summers of 2005 and 2007 in Korea.J.Geophys.Res.,116(D16),D16122,https://doi.org/doi:10.1029/2011JD015684.

    Kossin,J.P.,2002:Daily hurricane variability inferred from GOES infrared imagery.Mon.Wea.Rev.,130,2260–2270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    Kurihara,Y.,1976:On the development of spiral bands in a tropical cyclone.J.Atmos.Sci.,33,940–958,https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.

    Li,Q.Q.,Y.H.Duan,H.Yu,and G.Fu,2010:Finescale spiral rainbands modeled in a high-resolution simulation of Typhoon Rananim(2004).Adv.Atmos.Sci.,27,685–704,https://doi.org/10.1007/s00376-009-9127-y.

    Menelaou,K.,and M.K.Yau,2014:On the role of asymmetric convective bursts to the problem of hurricane intensification:Radiation of vortex Rossby waves and wave-mean fl ow interactions.J.Atmos.Sci.,71,2057–2077,https://doi.org/10.1175/JAS-D-13-0343.1.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682,https://doi.org/10.1029/97JD00237.

    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc.,123,435–465,https://doi.org/10.1002/qj.49712353810.

    Montgomery,M.T.,M.E.Nicholls,T.A.Cram,A.B.Saunders,2006:A vortical hot tower route to tropical cyclogenesis.J.Atmos.Sci.,63,355–386,https://doi.org/10.1175/JAS3604.1.

    Peng,S.Q.,andCoauthors,2014:On the mechanisms of the recur-vature of super typhoon megi.Sci.Rep.,4,4451,https://doi.org/10.1038/srep04451.

    Peng,S.Q.,and Coauthors,2015:A real-time regional forecasting system established for the south china sea and its performance in the track forecasts of tropical cyclones during 2011-13.Wea.Forecasting,30,471–485,https://doi.org/10.1175/WAF-D-14-00070.1.

    Reasor,P.D.,M.D.Eastin,and J.F.Gamache,2009:Rapidly intensifying Hurricane Guillermo(1997).Part I:Low-wavenumber structure and evolution.Mon.Wea.Rev.,137,603–631,https://doi.org/10.1175/2008MWR2487.1.

    Reasor,P.D.,M.T.Montgomery,F.D.Marks Jr,and J.F.Gamache,2000:Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar.Mon.Wea.Rev.,128,1653–1680,https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    Romine,G.S.,and R.B.Wilhelmson,2006:Finescale spiral band features within a numerical simulation of Hurricane Opal(1995).Mon.Wea.Rev.,134,1121–1139,https://doi.org/10.1175/MWR3108.1.

    Schecter,D.A.,2008:The spontaneous imbalance of an atmospheric vortex at high Rossby number.J.Atmos.Sci.,65,2498–2521,https://doi.org/10.1175/2007JAS2490.1.

    Shapiro,L.J.,and H.E.Willoughby,1982:The response of balanced hurricanes to local sources of heat and momentum.J.Atmos.Sci.,39,378–394,https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    Skamarock,W.C.,and Coauthors,2008:A description of the Advanced Research WRF Version 3,1–113.[Available at http://www2.mmm.ucar.edu/wrf/users/docs/arwv3.pdf].

    Stott,L.,C.Poulsen,S.Lund,and R.Thunell,2002:Super ENSO and global climate oscillations at millennial time scales.Science,297,222–226,https://doi.org/10.1126/science.1071627.

    Torrence,C.,and G.T.Compo,1998:A practical guide to wavelet analysis.Bull.Amer.Meteor.Soc.,79,61–78,https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    Wang,D.L.,X.D.Liang,Y.Zhao,and B.Wang,2008:A comparison of two tropical cyclone bogussing schemes.Wea.Forecasting,23,194–204,https://doi.org/10.1175/2007 WAF2006094.1.

    Willoughby,H.E.,1976:Inertia-buoyancy waves in hurricanes.J.Atmos.Sci.,34,1028–1039,https://doi.org/10.1175/1520-0469(1977)034<1028:IBWIH>2.0.CO;2.

    Willoughby,H.E.,J.A.Clos,and M.G.Shoreibah,1982:Concentric eye walls,secondary wind maxima,and the evolution of the hurricane vortex.J.Atmos.Sci.,39,395–411,https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    Ying,M.,W.Zhang,H.Yu,X.Q.Lu,J.X.Feng,Y.X.Fan,Y.T.Zhu,and D.Q.Chen,2014:An overview of the China Meteorological Administration tropical cyclone database.J.Atmos.Oceanic Technol.,31,287–301,https://doi.org/10.1175/JTECH-D-12-00119.1.

    Zhong,W.,D.L.Zhang,and H.C.Lu,2009:A theory for mixed vortex Rossby-gravity waves in tropical cyclones.J.Atmos.Sci.,66,3366–3381,https://doi.org/10.1175/2009JAS3060.1.

    午夜福利欧美成人| 国产精品 欧美亚洲| 91精品国产国语对白视频| 欧美成人午夜精品| 亚洲精品在线观看二区| 午夜福利视频在线观看免费| 亚洲美女黄片视频| 国产又色又爽无遮挡免费看| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 一区福利在线观看| 少妇精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女毛片儿| 黄色成人免费大全| 国产亚洲一区二区精品| 精品一区二区三区视频在线观看免费 | 美女高潮到喷水免费观看| 精品福利永久在线观看| 久久ye,这里只有精品| 9热在线视频观看99| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 黄色视频不卡| 日本wwww免费看| 日日爽夜夜爽网站| 亚洲伊人色综图| 亚洲精品国产精品久久久不卡| 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| 午夜激情av网站| 99re在线观看精品视频| 中亚洲国语对白在线视频| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 制服诱惑二区| 午夜福利视频精品| 老熟女久久久| 亚洲人成77777在线视频| 男人操女人黄网站| 色综合欧美亚洲国产小说| 国产aⅴ精品一区二区三区波| 国产精品98久久久久久宅男小说| 国产不卡av网站在线观看| 9191精品国产免费久久| 乱人伦中国视频| 性高湖久久久久久久久免费观看| 亚洲国产av新网站| 高清欧美精品videossex| 日本五十路高清| 老司机影院毛片| 国产成人一区二区三区免费视频网站| 精品久久久精品久久久| 国产真人三级小视频在线观看| 黄色视频,在线免费观看| 99热国产这里只有精品6| 国产av国产精品国产| 免费在线观看影片大全网站| 国产免费现黄频在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区久久| 人人妻,人人澡人人爽秒播| 五月开心婷婷网| 桃红色精品国产亚洲av| 中文字幕av电影在线播放| 少妇粗大呻吟视频| 午夜福利欧美成人| 免费少妇av软件| 国产男靠女视频免费网站| h视频一区二区三区| 岛国毛片在线播放| 香蕉丝袜av| 这个男人来自地球电影免费观看| 亚洲精品久久午夜乱码| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡| 欧美+亚洲+日韩+国产| 国产精品一区二区在线观看99| 国产一区二区在线观看av| 午夜日韩欧美国产| 91成人精品电影| 天堂中文最新版在线下载| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 久久精品91无色码中文字幕| 黄色怎么调成土黄色| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 黄色成人免费大全| 五月开心婷婷网| 国产一区二区在线观看av| 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 中国美女看黄片| 91大片在线观看| 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 黄色丝袜av网址大全| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜一区二区| 国产一区二区在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 怎么达到女性高潮| 日本五十路高清| 天堂中文最新版在线下载| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 一区二区av电影网| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| 在线av久久热| 亚洲成人免费电影在线观看| 国产男女超爽视频在线观看| www.精华液| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 国产精品亚洲av一区麻豆| 成年版毛片免费区| 国产在线视频一区二区| 99久久国产精品久久久| 色老头精品视频在线观看| 亚洲视频免费观看视频| 亚洲国产av新网站| 变态另类成人亚洲欧美熟女 | 免费观看a级毛片全部| 国产单亲对白刺激| 黑人欧美特级aaaaaa片| 王馨瑶露胸无遮挡在线观看| 欧美性长视频在线观看| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 欧美黑人精品巨大| 男女床上黄色一级片免费看| 国产精品av久久久久免费| 欧美精品一区二区免费开放| 国产区一区二久久| 精品第一国产精品| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 另类精品久久| 男女之事视频高清在线观看| 黄色怎么调成土黄色| 18禁观看日本| 国产一区二区在线av高清观看| 成人无遮挡网站| 午夜精品在线福利| 99久国产av精品| xxx96com| www日本在线高清视频| 大型黄色视频在线免费观看| 婷婷六月久久综合丁香| 欧美性猛交╳xxx乱大交人| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 久久热在线av| 日韩精品中文字幕看吧| 午夜a级毛片| 久久九九热精品免费| 人人妻人人看人人澡| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 国产蜜桃级精品一区二区三区| 99在线视频只有这里精品首页| 好看av亚洲va欧美ⅴa在| 最新中文字幕久久久久 | 国产乱人伦免费视频| 国产精品爽爽va在线观看网站| 成熟少妇高潮喷水视频| www.自偷自拍.com| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 久久精品夜夜夜夜夜久久蜜豆| 最近在线观看免费完整版| 国产亚洲精品一区二区www| 色综合亚洲欧美另类图片| 久久久国产成人免费| 日韩国内少妇激情av| 在线免费观看的www视频| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影| 18禁观看日本| 免费av毛片视频| 69av精品久久久久久| 成人av在线播放网站| 精品午夜福利视频在线观看一区| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 亚洲精品国产精品久久久不卡| 国产69精品久久久久777片 | 中文字幕精品亚洲无线码一区| 老司机在亚洲福利影院| 亚洲av电影在线进入| 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 亚洲av成人精品一区久久| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 中文资源天堂在线| 天堂√8在线中文| 色综合欧美亚洲国产小说| 色哟哟哟哟哟哟| 国产精品女同一区二区软件 | 最近视频中文字幕2019在线8| 日本三级黄在线观看| 精品电影一区二区在线| 久久天躁狠狠躁夜夜2o2o| 一区二区三区国产精品乱码| 黄片小视频在线播放| 国产日本99.免费观看| 九九在线视频观看精品| 欧美激情在线99| 欧美最黄视频在线播放免费| 免费av毛片视频| xxxwww97欧美| 日本免费一区二区三区高清不卡| 一本久久中文字幕| 婷婷亚洲欧美| 久久中文字幕人妻熟女| 脱女人内裤的视频| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 国产野战对白在线观看| 国产真实乱freesex| 亚洲午夜精品一区,二区,三区| 国产精品九九99| 日本三级黄在线观看| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| 日韩国内少妇激情av| 国产午夜精品久久久久久| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站| 老熟妇乱子伦视频在线观看| 一夜夜www| 一级毛片精品| 亚洲美女视频黄频| 免费看日本二区| 1000部很黄的大片| 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 精品久久蜜臀av无| 波多野结衣高清无吗| 免费观看的影片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 最近视频中文字幕2019在线8| 91老司机精品| 1024香蕉在线观看| 午夜成年电影在线免费观看| 中文字幕人成人乱码亚洲影| www国产在线视频色| 亚洲专区中文字幕在线| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 黄片小视频在线播放| 一级作爱视频免费观看| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 欧美色欧美亚洲另类二区| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 欧美日韩亚洲国产一区二区在线观看| 国产三级中文精品| 欧美色视频一区免费| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 琪琪午夜伦伦电影理论片6080| 伦理电影免费视频| 色噜噜av男人的天堂激情| 日本撒尿小便嘘嘘汇集6| 国内精品美女久久久久久| 亚洲国产欧美一区二区综合| 搞女人的毛片| 露出奶头的视频| 午夜精品一区二区三区免费看| 草草在线视频免费看| 亚洲一区高清亚洲精品| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 一个人看的www免费观看视频| 我要搜黄色片| 韩国av一区二区三区四区| 国产av不卡久久| 伦理电影免费视频| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 大型黄色视频在线免费观看| 国产成人aa在线观看| 午夜两性在线视频| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 国产麻豆成人av免费视频| www日本在线高清视频| or卡值多少钱| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 国产aⅴ精品一区二区三区波| 久久精品夜夜夜夜夜久久蜜豆| 日本黄色片子视频| 亚洲av成人不卡在线观看播放网| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 欧美在线一区亚洲| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 嫩草影院精品99| 国产探花在线观看一区二区| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 午夜免费观看网址| 最新美女视频免费是黄的| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| www日本黄色视频网| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 精品一区二区三区视频在线 | 天堂动漫精品| 久久热在线av| 欧美黄色片欧美黄色片| 亚洲在线自拍视频| 免费高清视频大片| 怎么达到女性高潮| 国产成年人精品一区二区| 在线播放国产精品三级| 他把我摸到了高潮在线观看| 国产高清videossex| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片 | 亚洲在线自拍视频| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影| 美女扒开内裤让男人捅视频| 国产伦精品一区二区三区视频9 | 国产1区2区3区精品| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| www.999成人在线观看| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 亚洲在线观看片| 亚洲av美国av| 夜夜躁狠狠躁天天躁| 国产人伦9x9x在线观看| 1024香蕉在线观看| 欧美国产日韩亚洲一区| 精品国产美女av久久久久小说| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免费看| 精品99又大又爽又粗少妇毛片 | 精品一区二区三区av网在线观看| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 99热精品在线国产| 国产精品日韩av在线免费观看| 美女被艹到高潮喷水动态| АⅤ资源中文在线天堂| 一区二区三区国产精品乱码| 黄色视频,在线免费观看| 黑人操中国人逼视频| 九九热线精品视视频播放| 少妇的逼水好多| 久久精品综合一区二区三区| 两个人看的免费小视频| 少妇丰满av| 一进一出抽搐动态| 婷婷亚洲欧美| 视频区欧美日本亚洲| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 久久精品91蜜桃| 久久性视频一级片| 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| 国产99白浆流出| 久久久国产成人免费| 日韩人妻高清精品专区| 欧美色欧美亚洲另类二区| 2021天堂中文幕一二区在线观| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 久久久久国产一级毛片高清牌| av国产免费在线观看| 人妻久久中文字幕网| 色噜噜av男人的天堂激情| 午夜成年电影在线免费观看| 美女高潮喷水抽搐中文字幕| 丁香六月欧美| 国产精品精品国产色婷婷| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 麻豆成人av在线观看| 亚洲成av人片免费观看| 成人国产一区最新在线观看| 老司机午夜福利在线观看视频| 国产不卡一卡二| 国产精品 欧美亚洲| 一进一出好大好爽视频| 看免费av毛片| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费 | 亚洲五月天丁香| 国产成人精品久久二区二区免费| 草草在线视频免费看| 国产成人一区二区三区免费视频网站| 精品福利观看| 亚洲九九香蕉| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 久久精品人妻少妇| www国产在线视频色| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| АⅤ资源中文在线天堂| 国产熟女xx| 制服丝袜大香蕉在线| 成年版毛片免费区| 国产淫片久久久久久久久 | 丰满人妻一区二区三区视频av | 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| www日本黄色视频网| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 观看美女的网站| 看片在线看免费视频| 亚洲av免费在线观看| 欧美中文综合在线视频| 久久人人精品亚洲av| 狂野欧美激情性xxxx| 国产精品综合久久久久久久免费| a在线观看视频网站| 国内精品美女久久久久久| 久久这里只有精品19| 精品久久久久久,| 成熟少妇高潮喷水视频| 男女床上黄色一级片免费看| 麻豆一二三区av精品| 国产精品女同一区二区软件 | 国产淫片久久久久久久久 | 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 亚洲精品在线美女| 日本撒尿小便嘘嘘汇集6| 少妇丰满av| 九色国产91popny在线| 国产成人福利小说| 免费看光身美女| 在线观看午夜福利视频| 久久久久久九九精品二区国产| 国产精品亚洲av一区麻豆| 久久亚洲精品不卡| 亚洲在线观看片| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 十八禁人妻一区二区| 国产乱人视频| 精品日产1卡2卡| 宅男免费午夜| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 我的老师免费观看完整版| 欧美色欧美亚洲另类二区| 男女做爰动态图高潮gif福利片| 欧美一级a爱片免费观看看| 欧美性猛交╳xxx乱大交人| 老司机在亚洲福利影院| av女优亚洲男人天堂 | 国产 一区 欧美 日韩| 国产一区二区激情短视频| 亚洲片人在线观看| 日日夜夜操网爽| 性色av乱码一区二区三区2| 久久国产精品影院| 三级毛片av免费| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 国产黄色小视频在线观看| 亚洲专区国产一区二区| 美女 人体艺术 gogo| 最新中文字幕久久久久 | 香蕉av资源在线| 精品久久久久久久人妻蜜臀av| 99国产精品一区二区蜜桃av| 12—13女人毛片做爰片一| 色视频www国产| 国产精品一及| 9191精品国产免费久久| 久久久久国内视频| 婷婷精品国产亚洲av在线| 国内久久婷婷六月综合欲色啪| 19禁男女啪啪无遮挡网站| 亚洲最大成人中文| 99在线视频只有这里精品首页| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 我要搜黄色片| 不卡一级毛片| 性欧美人与动物交配| 宅男免费午夜| 波多野结衣巨乳人妻| 69av精品久久久久久| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 久久久水蜜桃国产精品网| 国内精品一区二区在线观看| 精品一区二区三区视频在线 | 欧美zozozo另类| 12—13女人毛片做爰片一| 精品午夜福利视频在线观看一区| АⅤ资源中文在线天堂| 亚洲午夜精品一区,二区,三区| 午夜精品久久久久久毛片777| 国产精品久久久av美女十八| 人妻丰满熟妇av一区二区三区| 亚洲av第一区精品v没综合| 国产一区二区三区视频了| 99久国产av精品| 久久精品影院6| 欧美激情久久久久久爽电影| 熟女人妻精品中文字幕| 久久精品aⅴ一区二区三区四区| 国产激情欧美一区二区| 国产黄色小视频在线观看| 亚洲电影在线观看av| 国产97色在线日韩免费| 精品乱码久久久久久99久播| 久久精品亚洲精品国产色婷小说| 男人和女人高潮做爰伦理| 99re在线观看精品视频| 99久久精品一区二区三区| 免费搜索国产男女视频| 97碰自拍视频| 国产aⅴ精品一区二区三区波| 偷拍熟女少妇极品色| 国产午夜福利久久久久久| 中出人妻视频一区二区| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看不下载黄p国产 | 日韩欧美在线乱码| 高清毛片免费观看视频网站| 美女大奶头视频| 脱女人内裤的视频| 亚洲精华国产精华精| av中文乱码字幕在线| 国产在线精品亚洲第一网站| av视频在线观看入口| 18禁观看日本| 久久午夜综合久久蜜桃| 国内毛片毛片毛片毛片毛片| 1000部很黄的大片| 亚洲国产精品久久男人天堂| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 婷婷丁香在线五月| 视频区欧美日本亚洲| 亚洲中文字幕日韩| 欧美一级毛片孕妇| 变态另类丝袜制服| 麻豆成人av在线观看| 亚洲一区高清亚洲精品| 久久久水蜜桃国产精品网| 国产精品一区二区精品视频观看| e午夜精品久久久久久久| 五月玫瑰六月丁香| 成人国产综合亚洲| 99热6这里只有精品| 美女黄网站色视频| 色老头精品视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲,欧美精品.| 婷婷亚洲欧美| aaaaa片日本免费| 欧美黑人欧美精品刺激| 婷婷亚洲欧美| 国产视频内射| 九色成人免费人妻av| av福利片在线观看| 免费看日本二区| 久久精品综合一区二区三区| 亚洲国产高清在线一区二区三| 亚洲av电影不卡..在线观看| 国产精品爽爽va在线观看网站| 亚洲中文字幕一区二区三区有码在线看 | 国产高清视频在线播放一区| 高清在线国产一区|