• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific

    2018-03-06 03:36:04ShuminCHENWeibiaoLIZhipingWENMingsenZHOUYouyuLUYuKunQIANHaoyaLIUandRongFANGSchoolofAtmosphericSciencesCenterforMonsoonandEnvironmentResearchGuangdongProvinceKeyLaboratoryforClimateChangeandNaturalDisasterStudiesSunYa
    Advances in Atmospheric Sciences 2018年4期

    Shumin CHEN,Weibiao LI?,Zhiping WEN,Mingsen ZHOU,2,Youyu LU,Yu-Kun QIAN,Haoya LIU,and Rong FANGSchool of Atmospheric Sciences/Center for Monsoon and Environment Research/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-Sen University,Guangzhou 50275,China

    2Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou 510062,China

    3Bedford Institute of Oceanography,Fisheries and Oceans Canada,Dartmouth,Nova Scotia B2Y 4A2,Canada

    4State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China

    1.Introduction

    Tropical cyclones(TCs)are one of the most destructive natural disasters to affect coastal regions(Emanuel,2005;Peng et al.,2014)and pose great Scientific challenges to meteorologists.TCs are complex systems and their intensities are affected by a variety of physical processes.Many studies have focused on the TC updraft and updraft-produced eye wall;i.e.,conditional instability of the second kind(Charney and Eliassen,1964),vortical hot towers(Hendricks et al.,2004;Montgomery et al.,2006),and secondary rainbands(e.g.,Montgomery and Kallenbach,1997;Reasor et al.,2000).Because the eye wall is essential for TC evolution,studies have been conducted on small-scale processes within the eye wall,such as the eye wall replacement cycle(Shapiro and Willoughby,1982;Willoughby et al.,1982;Chen,1987)and wave activities.The latter aspect generally covers the stationary wavenumber-one convective pattern(Reasor et al.,2009),vortex Rossby waves(Zhong et al.,2009;Menelaou and Yau,2014),inertia gravity waves(Kurihara,1976;Willoughby,1976;Schecter,2008;Ki and Chun,2011), fine-scale spiral rain bands(Gall et al.,1998)associated with Kelvin–Helmholtz instability(Romine and Wilhelmson,2006),inertial-buoyancy waves(Li et al.,2010),and semi-diurnal convection(Kossin,2002).However,the cited studies were largely confined to the horizontal structures of waves.The short-term temporal evolution and vertical propagation of waves have not been fully investigated.

    Chen et al.(2015)used both observational data and modeling results to identify high-frequency oscillations having a period of approximately 2 h in the vertical structure of secondary circulations within the eye wall of analyzed TCs in the South China Sea(SCS).These oscillations occur within the vertical motion,convergence and dry air density around the eye wall,and induce oscillation of the TC intensity through the oscillation of convection.The present study further investigates variations of the high-frequency oscillations of TCs over the western North Pacific(WNP)via numerical model simulations(owing to a lack of observations).Here,the difference in TCs in the SCS and WNP excluding the SCS (hereafter referred to as the open WNP) are analyzed because some physical characteristics differ between these two regions during TC intensification,owing to the distribution of land(as detailed by Chen et al.,2014).

    The rest of the paper is organized as follows:Section 2 gives a general description of the model.Section 3 presents a power spectrum analysis of an ensemble of 15 simulated TCs,and determines the variation in the high-frequency oscillation between the open WNP and SCS.Section 4 presents the physical features that are further demonstrated in a case simulation of Typhoon Hagupit(2008).Section 5 draws conclusions from the results of the study and presents a discussion.

    2.General description of the model settings

    The simulations in this study are performed using the Weather Research and Forecasting(WRF)model(Skamarock et al.,2008).In our simulations,the model has 28 unevenly spaced vertical levels and greater resolution in the planetary boundary layer.The top level of the model is set to a pressure of 50 hPa.The model physics chosen are the Kain–Fritsch cumulus parameterization scheme(Kain and Fritsch,1990,1993;Kain,2004),WSM6 microphysics scheme(Hong et al.,2004),YSU PBL scheme(Hong and Lim,2006), five-layer thermal diffusion land surface model(Skamarock et al.,2008),long wave radiation scheme of the Rapid Radiative Transfer Model(Mlawer et al.,1997),and Dudhia shortwave radiation scheme(Dudhia,1989).

    Dynamic downscaling is applied to simulate small-scale and mesoscale features of the TCs.First,one-way nesting is used for the coarser-resolution model covering an outer domain,taking initial and boundary conditions from the sixhourly NCEP Final Analysis(FNL)data.This involves horizontally and vertically interpolating the analysis fields on 1°×1°horizontal cells and having mandatory pressure levels of the WRF model cells.Next,two-way nesting is used to link the outer-domain model with an inner-domain model with finer horizontal resolution.For this application,the sea surface temperature, fixed in time but spatially varying during model integration,is also obtained from NCEP FNL data.According to the relationship between the period and discrete scale given by Torrence and Compo(1998),a period of two hours corresponds to a spatial scale of about 10 km.A resolution of 3–4 km is hence used in the simulation to study the high-frequency oscillations.

    3.Analysis of an ensemble of simulated TCs

    3.1. Description of the ensemble of simulations

    Table 1 lists the 15 TCs simulated using the WRF model.These cyclones occurred during 2008–2014 in the WNP,and seven were active in the SCS.For these simulations,the twoway interactive WRF model includes two components covering two fixed domains with Lambert projections for the open WNP and SCS(Fig.1).Domain 1,the outer mesh,has a horizontal resolution of 12 km and is designed to simulate the synoptic-scale environment in which the TCs evolved.Domain 2 has a horizontal resolution of 4 km and is designed to simulate TC mesoscale structure.The simulations are initialized when each TC reaches tropical storm intensity.Each simulation spans 192 h.

    The simulated TC tracks and intensities,defined by the minimum sea-level pressure(MSLP)and the maximum wind speed at 10 m(MWS10),are compared with observational data.The observed TC tracks are obtained from the best-track observation dataset compiled by the Shanghai TyphoonInstitute(STI)of the China Meteorological Administration(CMA)(Ying et al.,2014).Figure 2 shows good agreement between observed and simulated TC tracks in Domain 2 in terms of the discrepancy in the TC center locations being less than 150 km on average.

    Table 1.List of TCs,start times of the experiments,and analysis durations for the ensemble of simulations.

    Fig.1.Domains of the WRF model for the ensemble of TC simulations of(a)the open WNP and(b)the SCS.

    Table 2 lists the maximum MWS10of the observed and simulated TCs.The simulated intensities are comparable to the observed intensities;however,the simulated intensities of TCs in the open WNP and SCS are similar because the simulated intensities are a little weaker and stronger in the open WNP and SCS,respectively.Table 3 lists correlations between TC intensities obtained from simulations and the best-track data.The trends of the simulated TC intensities are similar to those of observations,because all correlations are significant at the 95%confidence level according to the t-test,except in the case of the MWS10of Typhoon Chan-Hom(2009).It is thus concluded that the simulated and observed TC intensities agree well because the magnitude and trends of TC intensities are comparable to observations.Because the high-frequency oscillations are more significant in TCs with higher intensity,the following analysis is applied to model outputs during the period(also listed in Table 1)when the simulated TC intensity is stronger than severe tropical storm intensity(i.e.,an MWS10exceeding 24.5 m s?1).

    Fig.2.Tracks of TCs at 6-h intervals from the ensemble of simulations(dashed lines with open circles)and best-track data(solid lines with filled circles)for TCs in(a)the open WNP and(b)the SCS.The best-track data are from CMA-STI.Here,except in the cases of Man-yi(2007),Chanthu(2010),Hagupit(2008),and Chan-Hom(2009),which respectively started at 1800 UTC 9 July,1800 UTC 19 July,1800 UTC 19 September,and 0000 UTC 5 May,all tracks begin at the start times of the experiments listed in Table 1.

    3.2. General features of the difference between the open WNP and SCS

    According to our previous study(Chen et al.,2015),high frequency oscillations are significant in both variables(i.e.,density,horizontal velocities and vertical velocities)averaged over the eyewall region and the MWS10.Thus,considering that the MWS10is widely used to represent the intensity of a TC,the MWS10is used for the analysis in the present study.Following Gilman et al.(1963)and Stott et al.(2002),power spectrum analysis is performed for the simulated MWS10,with a temporal interval of 15 min.Prior to this analysis,each MWS10time series is high-pass filtered by subtracting its running average over a 6-h window.Figure 3 shows the resulting power spectrum density and the noise spectrum computed following Stott et al.(2002).Areas with spectrum density higher than the noise spectrum can be regarded as significant during the corresponding periods.Figure 4 shows the averaged significant periods and their variation ranges according to the results presented in Fig.3.Here,only the smallest significant period is considered because double periods are also significant for some TCs[i.e.,Neoguri(2008)and Hagupit(2008)shown in Fig.3].For all simulated TCs,significant high-frequency oscillations are identified,with averaged periods of 2.33–4.15 h in the open WNP and 1.12–3.20 h in the SCS.The means of the averaged periods of TCs in the open WNP and the SCS are 2.83 and 1.93 h,respectively.Additionally,the variation range of the oscillation periods of TCs in the open WNP is longer than that in the SCS,with the mean of variation ranges being 1.25 h in the open WNP and 0.66 ho in the SCS.

    Table 2.Maximum MWS10from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    Table 3.Correlations of MSLP and MWS10between TCs from the ensemble of simulations and best-track data.The best-track data are from CMA-STI.Values with “*”indicate correlation at the>95%confidence level,based on the t-test.

    The Butterworth bandpass filter method is applied to the MWS10of each simulated TC to analyze the magnitude of high-frequency oscillations.The time series of high-frequency oscillation is obtained by filtering the variation range of the significant periods in Fig.4.The deviation and maximum amplitude(listed in Table 4)of the filtered time seriesareusedtodescribethemagnitudesofhigh-frequencyoscillations.The deviations and maximum magnitude are similar in the open WNP and SCS,although the significant period in the open WNP is longer than that in the SCS.

    3.3.Factors of variations of periods in the two oceans

    It can be concluded from the work of Chen et al.(2015)that high-frequency oscillations are significant within TC secondary circulations that interact with the TC intensity.The variation in the significant oscillation periods in the openWNP and SCS is thus probably due to the disturbance of the TC intensity or secondary circulation that is enhanced by the TCs themselves or the environment.Factors for the disturbance of TC intensity are the strengthening of TCs themselves and environmental atmospheric dynamical features;meanwhile,the factor for the disturbance of TC secondary circulation is convergence within the boundary layer because all upward transport signals within the secondary circulation are generated by oscillations of the inward radial winds within the boundary layer.

    Table 4.Standard deviation and maximum amplitude from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    Fig.3.Power spectrum density of the MWS10of TCs from the ensemble of simulations.Black solid and gray dashed lines show the resulting power spectrum density and the noise spectrum,respectively.

    Fig.4.Averaged significant period(gray bars)and variation ranges(black lines)of TCs in(a)the open WNP and(b)the SCS,from the results of the power spectrum analysis shown in Fig.3.(c)Mean of the averaged significant periods and variation ranges of TCs in the open WNP and the SCS.

    Strengthening of TCs themselves,however,is not the reason for the longer oscillation periods over the open WNP,because simulated intensities of TCs in the open WNP and SCS are similar.Meanwhile,environmental atmospheric dynamical features including the low-level vorticity,high-level divergence,and vertical wind shear,are analyzed.Table 5 lists the mean values of these variables averaged over an annular area with a radius of 300–600 km from the center,defined as the location of the MSLP,of the simulated TCs during the periods when the TC intensity is higher than severe tropical storm intensity.The design of this ring area is based on estimations of the steering fl ow of TCs made in previous studies(i.e.,Chan and Gray,1982;Peng et al.,2015),where an area with a range larger than 1000 km,within which the region affected by TC features is removed,was used to represent the large-scale features of TCs.The ring area used here covers a range of 1200 km and is thus able to describe the large-scale features around the TC.Furthermore,an area with radius of 300 km is suitable for describing a TC structure,asconcluded from previous studies(i.e.,Emanuel,1986;Wang et al.,2008).This ring area with radius of 300 km to the TC center is generally affected by TC features of the simulated TCs in this study( figures not shown).Although the mean values of all TCs in the open WNP and SCS are different,the differences in the low-level vorticity and high-level divergence are not significant in these two areas.Additionally,differences in vertical wind shears in the open WNP and SCS are not significant.Thus,environmental dynamical factors also do not explain the longer significant periods in the open WNP.

    Table 5.Environmental low-level vorticity[unit:m s?1per longitude(latitude)],high-level divergence[unit:m s?1per longitude(latitude)],and vertical wind shear(unit:m s?1)from the ensemble of simulations of TCs in(a)the open WNP and(b)the SCS.

    As detailed by Chen et al.(2015),all upward transport signals within the secondary circulation are generated by oscillations of the inward radial winds(convergence)within the boundary layer.Thus,another potential factor of the longer periods in the open WNP is the weaker terrain effects over the open water,because terrain friction intensifies convergence and thus enhances the disturbance when the convergence and rotation are imbalanced,compared with their relationships in mechanisms of TC development and maintenance[i.e.,the thermal wind balance in wind-induced surface heat exchange(Emanuel,1986)].Instead of using the mean divergence within the boundary layer,which is affected by the overall wind speeds,the ratio of radial winds(Rr)is applied to estimate the efficiency of convergence.Rrcan be calculated as

    Fig.5.Sketch of the estimation of radial wind(with positive velocities being outward).Here, isthe overallwind speed from which the speed of TC motion has been removed,andis the tangential wind(with positive velocities being anticlockwise).

    Fig.6.Asin Fig.4but for the ratio of radial winds(Rr)averaged within the PBL of TC eye wall region.

    The physical mechanism of the longer variation range in the open WNP is worth discussing,because the longer variation range means the oscillations vary with different spatial scale structure,suggesting that the process may also be affected by a variety of physical factors,such as the air–sea interaction,TC size,and inner structure of the TC.There is thus a need for more detailed investigation.

    4.Case study of Typhoon Hagupit(2008)

    To verify the effect of terrain on the period of high frequency oscillations,we execute another sensitivity experiment called NoTer for simulation of Hagupit(2008)constructed in Chen et al.(2015)(hereafter referred to as the CTL simulation).The CTL simulation is an excellent example selected from multiple tests with different settings of the domain design,physical scheme,and initial vortex,through the validation with observations.For this application,the WRF model,physical schemes,and initial and boundary conditions are the same as those of the ensemble of simulation as previously described,although the settings of the model domains in CTL are different.The CTL simulation includes three fixed,two-way interactive domains with Mercator projections.The outer(Domain 1),intermediate(Domain 2),and inner(Domain 3)meshes have horizontal resolutions of 27,9 and 3 km,designed to simulate the synoptic-scale environment for the storm to evolve,the mesoscale structure,and the inner-core structure of Hagupit(2008),respectively.More detailed information about the CTL simulation can be found in Chen et al.(2015).In contrast to the CTL simulation,the continents in Domain 2 and 3 are replaced by ocean in NoTer(Fig.7).

    Fig.7.Domains of the WRF model for the high-quality simulation of Typhoon Hagupit(2008),and the area in which land is replaced by ocean(blank in Domains 2 and 3)in NoTer.

    Fig.8.Power spectrum density of the MWS10of TCs in(a)CTL and(b)NoTer,from the high-quality simulation of Typhoon Hagupit(2008).Solid and dashed lines show the resulting power spectrum density and noise spectrum,respectively.

    Power spectrum analysis is performed for the MWS10,with a temporal interval of 15 min,of the simulated Hagupit(2008).Figure 8 shows the results of the power spectrum analysis of the MWS10in Domain 3 for the CTL and NoTer simulations.Figure 9 shows the averaged periods and the variation ranges according to the results presented in Fig.8.The averaged significant periods of high-frequency oscillations vary:1.28 h for CTL and 1.60 h for NoTer.Additionally,the variation range of the period in NoTer is longer than that in CTL.This suggests that weaker terrain effects result in a longer oscillation period and variation range.The longer oscillation period is not due to the strengths of TCs themselves because the TC intensity in the NoTer simulation is a little weaker than that in the CTL simulation(Fig.10).

    Fig.9.Averaged significant periods(gray bars)and variation ranges(black lines)of TCs in CTL and NoTer,from the results of the power spectrum analysis shown in Fig.8.

    Fig.10.MWS10during 21–36 integration hours of CTL(black line)and NoTer(gray line).

    Fig.11.Mean of secondary circulation during the whole simulation period for Domain 3 in(a)CTL and(b)NoTer,and(c)the difference between CTL and NoTer.(d)Mean of Rrin the two experiments averaged over the same period.For(a–c),shading shows the radial winds(positive for outwards;units:m s?1)and contours show the vertical velocity(positive for upwards;units:m s?1).

    The secondary circulations of TCs in the two experiments are analyzed(Fig.11).It is found that secondary circulation at a low level in the TC in the NoTer simulation is weaker than that in the CTL simulation,with weaker radial winds in the boundary layer(abnormal outward winds with positive speeds in Fig.11c)and vertical velocities in the low layer.Additionally,Rrwithin the boundary layer of the eyewall region in the NoTer simulation is approximately 10%less than that in the CTL simulation(Fig.11d),while the gradient wind speed and thermal wind speed within the upper level of the boundary layer are only approximately 4%more and 3%less than those in the CTL(Fig.12).The eyewall region in this case study is defined as the ring area with radius of 120 km to the TC center,on the basis of the structure of the updraft shown in Fig.11.The eyewall region of this simulated TC is smaller than that of the ensemble simulations,because the TC is well-developed by initializing with the bogussing scheme.The results regarding the Rr,gradient wind,and thermal wind,show that the lesser terrain in NoTer weakens the convergence within the boundary layer,and then weakens the disturbance of the gradient and thermal wind balances,thus possibly generating a longer significant period of high-frequency oscillations.Note that the factor of the smaller-scale features of the eyewall evolution requires further detailed study because the features of secondary circulation,including the updraft,are similar but different in some details(i.e.,Fig.12)in the two experiments.

    5.Conclusions

    Fig.12.Mean of(a)the gradient wind speed and(b)the thermal wind speed averaged within the upper level of the boundary layer of the TC eyewall region in the two experiments averaged over the same period.

    The present study analyzes the variations in high-frequency oscillations in the eyewalls of TCs using an ensemble of 15 simulated TCs over the WNP(including the SCS)and a simulation case study of Typhoon Hagupit (2008).Power spectrum analysis of the MWS10s of TCs shows that high-frequency oscillations are significant in all simulated TCs,with the oscillation periods and the variation range being shorter in the SCS than in the open WNP.The means of the average periods of TCs in the open WNP and SCS are 2.83 and 1.93 h,respectively,and the variation range of the oscillation periods of TCs in the open WNP is approximately twice that of TCs in the SCS.Additionally,the magnitudes of the oscillations are similar in the two areas.

    Factors of the variation in the significant oscillation periods in the open WNP and SCS are analyzed.The factors include the strengths of TCs themselves,environmental atmospheric dynamical features,and convergence within the boundary layer.Results show that the longer oscillation periods in the open WNP are not generated by the strengths of TCs themselves.The environmental atmospheric dynamical features that affect the development of TCs are also not the cause of the disturbance of longer significant periods for TCs in the open WNP,because the differences in environmental low-level vorticity,high-level divergence,and vertical wind shear of TCs,are not significant between the open WNP and SCS.Meanwhile,analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect,which intensifies convergence through greater friction.This is further demonstrated by the case simulation of Typhoon Hagupit(2008)and a sensitivity experiment,in which the continent is replaced by ocean.Results show that the enhanced convergence possibly strengthens the disturbance of the gradient and thermal wind balances,which is favorable for the shorter oscillation periods.

    Because the condition of the underlying surface is a factor of the period of the high-frequency oscillations,and all upward signals are generated by the oscillations of radial winds with the boundary layer(detailed by Chen et al.,2015),further study is required to determine the small-scale features within the boundary layer and their interactions with the underlying surface.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(Grant Nos.41405048,41675043,41375050,41205032 and 41775094)and Independent Research Project Program of State Key Laboratory of Tropical Oceanography(Grant No.LTOZZ1603).We are grateful for the use of the Tianhe-2 supercomputer(National Supercomputer Center in Guangzhou,Sun Yat-Sen University)and the HPCC(South China Sea Institute of Oceanology,Chinese Academy of Sciences),which were used in all numerical simulations.The authors would like to thank the three anonymous reviewers for their comments to improve the paper.

    Chan,J.C.L.,and W.M.Gray,1982:Tropical cyclone movement and surrounding flow relationships.Mon.Wea.Rev.,110,1354–1374,https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    Charney,J.G.,and A.Eliassen,1964:On the growth of the hurricane depression.J.Atmos.Sci.,21,68–75,https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    Chen,S.M.,1987:Preliminary analysis on the structure and intensity of concentric double-eye typhoons.Adv.Atmos.Sci.,4,113–118,https://doi.org/10.1007/BF02656667.

    Chen,S.M.,W.B.Li,Y.Y.Lu,and Z.P.Wen,2014:Variations of latent heat flux during tropical cyclones over the South China Sea.Meteorological Applications,21,717–723,https://doi.org/10.1002/met.1398.

    Chen,S.M.,Y.Y.Lu,W.B.Li,and Z.P.Wen,2015:Identification and analysis of high-frequency oscillations in the eyewalls of tropical cyclones.Adv.Atmos.Sci.,32,624–634,https://doi.org/10.1007/s00376-014-4063-x.

    Dudhia,J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos.Sci.,46,3077–3107,https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43,585–604,https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    Emanuel,K.A.,2005:Increasing destructiveness of tropical cyclones over the past 30 years.Nature,436,686–688,https://doi.org/10.1038/nature03906.

    Gall,R.,J.Tuttle,and P.Hildebrand,1998:Small-scale spiral bands observed in Hurricanes Andrew,Hugo,and Erin.Mon.Wea.Rev.,126,1749–1766,https://doi.org/10.1175/1520-0493(1998)126<1749:SSSBOI>2.0.CO;2.

    Gilman,D.L.,F.J.Fuglister,and J.M.Mitchell Jr.,1963:On the power spectrum of “red noise”.J.Atmos.Sci.,20,182–184,https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    Hendricks,E.A.,M.T.Montgomery,and C.A.Davis,2004:The role of “vortical”hot towers in the formation of tropical cyclone Diana(1984).J.Atmos.Sci.,61,1209–1232,https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    Hong,S.Y.,and J.O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of Korean Meteorological Society,42,129–151.

    Hong,S.Y.,J.Dudhia,and S.H.Chen,2004:A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation.Mon.Wea.Rev.,132,103–120,https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    Kain,J.S.,2004:The Kain Fritsch convective parameterization:An update.J.Appl.Meteor.,43,170–181,https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802,https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme.The Representation of Cumulus Convection in Numerical Models,Emanuel,K.A.,and D.J.Raymond,Eds.American Meteorological Society,Boston,MA,24,165–170,https://doi.org/10.1007/978-1-935704-13-316.

    Ki,M.O.,and H.Y.Chun,2011:Inertia gravity waves associated with deep convection observed during the summers of 2005 and 2007 in Korea.J.Geophys.Res.,116(D16),D16122,https://doi.org/doi:10.1029/2011JD015684.

    Kossin,J.P.,2002:Daily hurricane variability inferred from GOES infrared imagery.Mon.Wea.Rev.,130,2260–2270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    Kurihara,Y.,1976:On the development of spiral bands in a tropical cyclone.J.Atmos.Sci.,33,940–958,https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.

    Li,Q.Q.,Y.H.Duan,H.Yu,and G.Fu,2010:Finescale spiral rainbands modeled in a high-resolution simulation of Typhoon Rananim(2004).Adv.Atmos.Sci.,27,685–704,https://doi.org/10.1007/s00376-009-9127-y.

    Menelaou,K.,and M.K.Yau,2014:On the role of asymmetric convective bursts to the problem of hurricane intensification:Radiation of vortex Rossby waves and wave-mean fl ow interactions.J.Atmos.Sci.,71,2057–2077,https://doi.org/10.1175/JAS-D-13-0343.1.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682,https://doi.org/10.1029/97JD00237.

    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc.,123,435–465,https://doi.org/10.1002/qj.49712353810.

    Montgomery,M.T.,M.E.Nicholls,T.A.Cram,A.B.Saunders,2006:A vortical hot tower route to tropical cyclogenesis.J.Atmos.Sci.,63,355–386,https://doi.org/10.1175/JAS3604.1.

    Peng,S.Q.,andCoauthors,2014:On the mechanisms of the recur-vature of super typhoon megi.Sci.Rep.,4,4451,https://doi.org/10.1038/srep04451.

    Peng,S.Q.,and Coauthors,2015:A real-time regional forecasting system established for the south china sea and its performance in the track forecasts of tropical cyclones during 2011-13.Wea.Forecasting,30,471–485,https://doi.org/10.1175/WAF-D-14-00070.1.

    Reasor,P.D.,M.D.Eastin,and J.F.Gamache,2009:Rapidly intensifying Hurricane Guillermo(1997).Part I:Low-wavenumber structure and evolution.Mon.Wea.Rev.,137,603–631,https://doi.org/10.1175/2008MWR2487.1.

    Reasor,P.D.,M.T.Montgomery,F.D.Marks Jr,and J.F.Gamache,2000:Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar.Mon.Wea.Rev.,128,1653–1680,https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    Romine,G.S.,and R.B.Wilhelmson,2006:Finescale spiral band features within a numerical simulation of Hurricane Opal(1995).Mon.Wea.Rev.,134,1121–1139,https://doi.org/10.1175/MWR3108.1.

    Schecter,D.A.,2008:The spontaneous imbalance of an atmospheric vortex at high Rossby number.J.Atmos.Sci.,65,2498–2521,https://doi.org/10.1175/2007JAS2490.1.

    Shapiro,L.J.,and H.E.Willoughby,1982:The response of balanced hurricanes to local sources of heat and momentum.J.Atmos.Sci.,39,378–394,https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    Skamarock,W.C.,and Coauthors,2008:A description of the Advanced Research WRF Version 3,1–113.[Available at http://www2.mmm.ucar.edu/wrf/users/docs/arwv3.pdf].

    Stott,L.,C.Poulsen,S.Lund,and R.Thunell,2002:Super ENSO and global climate oscillations at millennial time scales.Science,297,222–226,https://doi.org/10.1126/science.1071627.

    Torrence,C.,and G.T.Compo,1998:A practical guide to wavelet analysis.Bull.Amer.Meteor.Soc.,79,61–78,https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    Wang,D.L.,X.D.Liang,Y.Zhao,and B.Wang,2008:A comparison of two tropical cyclone bogussing schemes.Wea.Forecasting,23,194–204,https://doi.org/10.1175/2007 WAF2006094.1.

    Willoughby,H.E.,1976:Inertia-buoyancy waves in hurricanes.J.Atmos.Sci.,34,1028–1039,https://doi.org/10.1175/1520-0469(1977)034<1028:IBWIH>2.0.CO;2.

    Willoughby,H.E.,J.A.Clos,and M.G.Shoreibah,1982:Concentric eye walls,secondary wind maxima,and the evolution of the hurricane vortex.J.Atmos.Sci.,39,395–411,https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    Ying,M.,W.Zhang,H.Yu,X.Q.Lu,J.X.Feng,Y.X.Fan,Y.T.Zhu,and D.Q.Chen,2014:An overview of the China Meteorological Administration tropical cyclone database.J.Atmos.Oceanic Technol.,31,287–301,https://doi.org/10.1175/JTECH-D-12-00119.1.

    Zhong,W.,D.L.Zhang,and H.C.Lu,2009:A theory for mixed vortex Rossby-gravity waves in tropical cyclones.J.Atmos.Sci.,66,3366–3381,https://doi.org/10.1175/2009JAS3060.1.

    国产精品亚洲一级av第二区| 精品福利永久在线观看| 欧美黄色淫秽网站| 久久青草综合色| av免费在线观看网站| 村上凉子中文字幕在线| 狠狠婷婷综合久久久久久88av| 国产精品成人在线| 9色porny在线观看| 国产视频一区二区在线看| 一区福利在线观看| 精品福利永久在线观看| 国产精品免费大片| 757午夜福利合集在线观看| 精品亚洲成a人片在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 欧美久久黑人一区二区| 999精品在线视频| 欧美激情 高清一区二区三区| 久久久久久久久久久久大奶| 高清在线国产一区| 黄网站色视频无遮挡免费观看| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 动漫黄色视频在线观看| 99re6热这里在线精品视频| 在线观看午夜福利视频| 精品第一国产精品| 国产高清视频在线播放一区| 欧美日韩中文字幕国产精品一区二区三区 | 91大片在线观看| 欧美日韩精品网址| 精品国产美女av久久久久小说| 亚洲av欧美aⅴ国产| 欧美成人免费av一区二区三区 | 十八禁网站免费在线| 中文欧美无线码| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡免费网站照片 | 无遮挡黄片免费观看| 天天添夜夜摸| 99久久综合精品五月天人人| 9热在线视频观看99| 国产xxxxx性猛交| 天堂中文最新版在线下载| 夜夜夜夜夜久久久久| netflix在线观看网站| 亚洲av成人不卡在线观看播放网| 免费观看人在逋| 亚洲一区高清亚洲精品| 色老头精品视频在线观看| 一级a爱片免费观看的视频| 欧美日韩乱码在线| svipshipincom国产片| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 久久精品国产亚洲av高清一级| 国产成人欧美在线观看 | 一进一出抽搐gif免费好疼 | 很黄的视频免费| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| 高清黄色对白视频在线免费看| 亚洲第一欧美日韩一区二区三区| 777久久人妻少妇嫩草av网站| 国产淫语在线视频| a级毛片在线看网站| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 日韩欧美一区二区三区在线观看 | 日日爽夜夜爽网站| 少妇粗大呻吟视频| 国产午夜精品久久久久久| 国产欧美日韩综合在线一区二区| 香蕉久久夜色| 国产免费av片在线观看野外av| 精品福利永久在线观看| 国产精品一区二区免费欧美| 悠悠久久av| 日本黄色日本黄色录像| e午夜精品久久久久久久| 国产亚洲精品一区二区www | 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 国产在线观看jvid| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频| av福利片在线| 欧美性长视频在线观看| 另类亚洲欧美激情| 成年人黄色毛片网站| 国精品久久久久久国模美| 飞空精品影院首页| 大香蕉久久网| 亚洲精品乱久久久久久| 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 满18在线观看网站| 男女高潮啪啪啪动态图| 久久久精品区二区三区| 久久久国产精品麻豆| x7x7x7水蜜桃| 国产精品一区二区精品视频观看| 亚洲成av片中文字幕在线观看| 久9热在线精品视频| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 日韩欧美一区二区三区在线观看 | 淫妇啪啪啪对白视频| 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| 一区二区三区精品91| 国产成人av激情在线播放| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 国产三级黄色录像| 校园春色视频在线观看| 一级黄色大片毛片| 一个人免费在线观看的高清视频| 欧美另类亚洲清纯唯美| 黄网站色视频无遮挡免费观看| 欧美日本中文国产一区发布| 操美女的视频在线观看| 天堂俺去俺来也www色官网| 啦啦啦 在线观看视频| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 精品一区二区三卡| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 91成人精品电影| 人成视频在线观看免费观看| av国产精品久久久久影院| 乱人伦中国视频| 欧美日韩乱码在线| 精品国内亚洲2022精品成人 | 欧美色视频一区免费| 亚洲国产欧美网| 国产真人三级小视频在线观看| 最新的欧美精品一区二区| 一级毛片女人18水好多| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 国产精品98久久久久久宅男小说| 成人亚洲精品一区在线观看| 伦理电影免费视频| 亚洲美女黄片视频| 后天国语完整版免费观看| 午夜日韩欧美国产| a级片在线免费高清观看视频| 操出白浆在线播放| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 国产成人啪精品午夜网站| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 久久久久精品国产欧美久久久| 午夜精品国产一区二区电影| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 成年动漫av网址| 后天国语完整版免费观看| 美国免费a级毛片| 丰满的人妻完整版| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产 | 韩国av一区二区三区四区| 一区福利在线观看| e午夜精品久久久久久久| 一级黄色大片毛片| 天堂中文最新版在线下载| 国产精品一区二区免费欧美| av在线播放免费不卡| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 亚洲av成人不卡在线观看播放网| 国产色视频综合| 美国免费a级毛片| 欧美老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 电影成人av| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 男男h啪啪无遮挡| 精品电影一区二区在线| 成年动漫av网址| videosex国产| 人人妻人人澡人人看| 国产99久久九九免费精品| 国产精品久久久久久精品古装| 国产av一区二区精品久久| 性色av乱码一区二区三区2| 日本vs欧美在线观看视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品在线观看二区| 国产男女超爽视频在线观看| 日韩有码中文字幕| 在线观看免费高清a一片| 亚洲专区中文字幕在线| 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 国产一区在线观看成人免费| 国产成人av教育| 午夜激情av网站| 露出奶头的视频| 男女高潮啪啪啪动态图| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩另类电影网站| 亚洲七黄色美女视频| 欧美最黄视频在线播放免费 | 人人妻人人爽人人添夜夜欢视频| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 免费观看a级毛片全部| 激情在线观看视频在线高清 | 欧美不卡视频在线免费观看 | e午夜精品久久久久久久| 一区二区三区激情视频| 久久精品91无色码中文字幕| www日本在线高清视频| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 国产日韩欧美亚洲二区| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 免费在线观看亚洲国产| 不卡一级毛片| 最新的欧美精品一区二区| 国产精品久久久久成人av| 天堂√8在线中文| 欧美中文综合在线视频| 国产又爽黄色视频| 女人被狂操c到高潮| 国产精品久久久久久精品古装| 精品福利永久在线观看| 精品久久久精品久久久| 国产欧美亚洲国产| 精品国产乱子伦一区二区三区| 久久精品aⅴ一区二区三区四区| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| a级毛片在线看网站| 美国免费a级毛片| 捣出白浆h1v1| 黄片播放在线免费| 18禁国产床啪视频网站| 正在播放国产对白刺激| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 精品电影一区二区在线| 一级作爱视频免费观看| 999精品在线视频| 麻豆av在线久日| 国产精品乱码一区二三区的特点 | 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 国产在线观看jvid| 亚洲成国产人片在线观看| 亚洲 国产 在线| 欧美成狂野欧美在线观看| 国产精品1区2区在线观看. | 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 亚洲第一av免费看| 女人精品久久久久毛片| 亚洲少妇的诱惑av| 美女 人体艺术 gogo| 欧美亚洲日本最大视频资源| 国产精华一区二区三区| 亚洲精品成人av观看孕妇| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 岛国毛片在线播放| 午夜免费鲁丝| 天堂√8在线中文| 久久午夜综合久久蜜桃| av在线播放免费不卡| 女人被狂操c到高潮| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费 | 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 深夜精品福利| 久久热在线av| 欧美黄色片欧美黄色片| 91老司机精品| 亚洲成av片中文字幕在线观看| 正在播放国产对白刺激| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 建设人人有责人人尽责人人享有的| 亚洲黑人精品在线| 下体分泌物呈黄色| 日韩人妻精品一区2区三区| 欧美国产精品va在线观看不卡| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 精品国产一区二区三区久久久樱花| 久久国产亚洲av麻豆专区| 十八禁网站免费在线| 两个人看的免费小视频| 日韩欧美三级三区| 国产在线精品亚洲第一网站| 亚洲熟妇中文字幕五十中出 | 久久久久国产精品人妻aⅴ院 | 国产精品1区2区在线观看. | 成年人午夜在线观看视频| 免费女性裸体啪啪无遮挡网站| 午夜91福利影院| 露出奶头的视频| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲 | 久久久久久久精品吃奶| 成年人午夜在线观看视频| 黄频高清免费视频| 岛国在线观看网站| 国产精品久久久久久人妻精品电影| 女性被躁到高潮视频| 91av网站免费观看| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 国产成人精品在线电影| 香蕉久久夜色| 亚洲七黄色美女视频| 久久香蕉精品热| 免费看十八禁软件| 在线观看www视频免费| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费 | 男女之事视频高清在线观看| 不卡av一区二区三区| 一夜夜www| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 热99国产精品久久久久久7| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片 | 交换朋友夫妻互换小说| 少妇 在线观看| a级毛片在线看网站| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 女同久久另类99精品国产91| 国产av又大| 国产高清视频在线播放一区| 精品久久久久久电影网| 在线观看一区二区三区激情| 国产精品免费大片| 亚洲第一青青草原| 9色porny在线观看| 国产三级黄色录像| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩一区二区三| av天堂久久9| 高清视频免费观看一区二区| 看免费av毛片| 国产一区二区三区在线臀色熟女 | 国产成人系列免费观看| 熟女少妇亚洲综合色aaa.| 久久久精品免费免费高清| 久久ye,这里只有精品| 国产不卡av网站在线观看| 最新美女视频免费是黄的| 黄片小视频在线播放| 国产精品一区二区免费欧美| 19禁男女啪啪无遮挡网站| 看黄色毛片网站| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 18在线观看网站| 一区二区三区激情视频| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| 91麻豆av在线| 另类亚洲欧美激情| xxxhd国产人妻xxx| 日韩视频一区二区在线观看| 国产免费男女视频| 亚洲五月天丁香| 一区二区三区激情视频| 操出白浆在线播放| 午夜福利视频在线观看免费| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 国产99久久九九免费精品| 91成年电影在线观看| 久久精品亚洲精品国产色婷小说| 电影成人av| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| 99香蕉大伊视频| 在线观看免费视频日本深夜| 18在线观看网站| 黄色 视频免费看| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 男女高潮啪啪啪动态图| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 电影成人av| 久久久久久免费高清国产稀缺| 国产精品美女特级片免费视频播放器 | 亚洲成人手机| 久久人妻熟女aⅴ| 国产乱人伦免费视频| 久久性视频一级片| 亚洲 国产 在线| 狂野欧美激情性xxxx| 欧美黑人精品巨大| 免费在线观看日本一区| 极品教师在线免费播放| 国产精品免费视频内射| 后天国语完整版免费观看| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲国产一区二区在线观看 | 在线观看午夜福利视频| 国产欧美日韩一区二区三区在线| 成年女人毛片免费观看观看9 | 亚洲精品乱久久久久久| 国产精品国产av在线观看| 脱女人内裤的视频| 久久中文字幕一级| 侵犯人妻中文字幕一二三四区| 麻豆国产av国片精品| 日本五十路高清| 高清av免费在线| 两个人免费观看高清视频| 欧美久久黑人一区二区| 成在线人永久免费视频| 成年版毛片免费区| 欧美日韩视频精品一区| 久久久国产欧美日韩av| 欧美大码av| 日韩三级视频一区二区三区| 不卡av一区二区三区| 亚洲人成电影观看| 日韩欧美国产一区二区入口| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 如日韩欧美国产精品一区二区三区| 99国产极品粉嫩在线观看| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 精品久久久精品久久久| 最新的欧美精品一区二区| 伊人久久大香线蕉亚洲五| 成人三级做爰电影| 一二三四社区在线视频社区8| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 悠悠久久av| 成年女人毛片免费观看观看9 | √禁漫天堂资源中文www| 深夜精品福利| 无限看片的www在线观看| 18在线观看网站| 亚洲av成人不卡在线观看播放网| 夫妻午夜视频| 视频区欧美日本亚洲| 9热在线视频观看99| 免费观看a级毛片全部| 亚洲国产精品sss在线观看 | 亚洲一区二区三区不卡视频| a在线观看视频网站| 国产在线一区二区三区精| 熟女少妇亚洲综合色aaa.| 一二三四社区在线视频社区8| 欧美乱色亚洲激情| 国产色视频综合| 亚洲美女黄片视频| 欧美久久黑人一区二区| 91av网站免费观看| 久久久久久免费高清国产稀缺| av片东京热男人的天堂| 宅男免费午夜| av电影中文网址| 欧美亚洲 丝袜 人妻 在线| 午夜免费成人在线视频| 国产精品一区二区在线不卡| 久久中文字幕人妻熟女| 建设人人有责人人尽责人人享有的| 色婷婷av一区二区三区视频| av欧美777| 国产成人免费无遮挡视频| 亚洲一码二码三码区别大吗| 久久久久久人人人人人| 亚洲国产中文字幕在线视频| 女人久久www免费人成看片| 亚洲色图av天堂| 女警被强在线播放| 国产蜜桃级精品一区二区三区 | 一级片免费观看大全| 亚洲全国av大片| 午夜久久久在线观看| 久久久久久久午夜电影 | 欧美老熟妇乱子伦牲交| av电影中文网址| 91国产中文字幕| 国产日韩欧美亚洲二区| 黑人欧美特级aaaaaa片| 天堂中文最新版在线下载| 欧美亚洲日本最大视频资源| 老司机福利观看| 国产一区二区三区综合在线观看| 一边摸一边抽搐一进一出视频| 免费在线观看黄色视频的| 精品人妻在线不人妻| 99国产精品99久久久久| 久久久久国内视频| 久久国产乱子伦精品免费另类| 淫妇啪啪啪对白视频| 满18在线观看网站| 亚洲 国产 在线| 国产高清videossex| 黄色视频,在线免费观看| 国产亚洲一区二区精品| 亚洲第一欧美日韩一区二区三区| 黄色视频不卡| 亚洲欧美精品综合一区二区三区| 三级毛片av免费| 宅男免费午夜| 国产淫语在线视频| 一级毛片女人18水好多| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| 久久中文字幕人妻熟女| 亚洲精品中文字幕在线视频| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女 | 欧美黑人欧美精品刺激| av不卡在线播放| 欧美日韩福利视频一区二区| 国产精品久久久人人做人人爽| 女人爽到高潮嗷嗷叫在线视频| 香蕉国产在线看| 日韩 欧美 亚洲 中文字幕| 一区二区三区国产精品乱码| 十八禁人妻一区二区| 一级a爱片免费观看的视频| 国产1区2区3区精品| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| 亚洲色图综合在线观看| 亚洲精品自拍成人| 亚洲国产精品sss在线观看 | 成年人午夜在线观看视频| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区三| 免费在线观看视频国产中文字幕亚洲| 亚洲人成电影免费在线| 国产精品久久久人人做人人爽| 亚洲专区字幕在线| 欧美日韩福利视频一区二区| 欧美午夜高清在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久亚洲精品国产蜜桃av| 久久久久精品人妻al黑| 一二三四在线观看免费中文在| 十分钟在线观看高清视频www| 日本黄色日本黄色录像| 亚洲专区国产一区二区| 久久精品国产99精品国产亚洲性色 | 一本综合久久免费| 在线观看日韩欧美| 日韩欧美一区二区三区在线观看 | 国产精品一区二区在线观看99| 热re99久久精品国产66热6| 午夜久久久在线观看| 欧美激情高清一区二区三区|