• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport

    2018-03-06 03:36:07MarcoLEUNGWenZHOUChiMingSHUNandPakWaiCHANGuyCarpenterAsiaPacificClimateImpactCenterSchoolofEnergyandEnvironmentCityUniversityofHongKongHongKongChina
    Advances in Atmospheric Sciences 2018年4期

    Marco Y.T.LEUNG,Wen ZHOU?,Chi-Ming SHUN,and Pak-Wai CHANGuy Carpenter Asia-Pacific Climate Impact Center,School of Energy and Environment,City University of Hong Kong,Hong Kong,China

    2Hong Kong Observatory,Hong Kong,China

    1.Introduction

    Hong Kong International Airport(HKIA)handles more than 68 million passengers and 4 million tons of air cargo annually,and is one of the busiest airports in the world.It handles around 1100 flights per day.Hence,aviation safety during aircraft departure and landing is important.As shown in Fig.1,HKIA is located north of Lantau Island.The island has complex topography,with elevation varying from around mean sea level to almost 1000 m above mean sea level.This disrupts the wind passing over the island.

    To monitor the low-level turbulence around HKIA—in particular over the approach and departure corridors of the airport—the Hong Kong Observatory operates a Doppler Light Detection and Range(LIDAR)system at HKIA,as presented in Fig.1.It measures the radial component of wind with a 2-μm laser beam.The LIDAR data are applied to calculate the cubic root of the eddy dissipation rate(EDR1/3),which is widely used to measure turbulence intensity.More details about the LIDAR-based EDR1/3at HKIA can be found in Chan(2011)and Hon and Chan(2014).

    It has been found that the regional climate variation over Hong Kong is subject to variation in large-scale circulation(Cheung et al.,2015;Li et al.,2015;Zhou et al.,2017).This suggests that regional wind direction and speed in Hong Kong are modulated by large-scale circulation.Therefore,the occurrence and frequency of low-level turbulence at HKIA are possibly controlled by variation in the atmospheric circulation.However,the linkage between large-scale circulation and regional turbulence generation has not been investigated in previous studies.So,one of the objectives of this study is to identify the atmospheric circulation that is favorable for the occurrence of low-level turbulence.Furthermore,the atmosphere shows variation at different timescales(Lau and Li,1984;Webster et al.,1998),which affects the frequency of low-level turbulence.Therefore,another objective of this study is to clarify the contributions of seasonal,intraseasonal,and synoptic variation to the occurrence of low-level turbulence.

    Fig.1.Map of HKIA and surrounding topography.Elevation values are from SRTM 90-m data(Jarvis et al.,2008).

    The rest of this study is organized as follows:Section 2 presents the data employed in this study and the definitions of turbulence and nonturbu-lence cases.Section 3 shows the atmospheric circulation corresponding to turbulence occurrence and the contributions by forcing at different timescales.Finally,a discussion and summary are provided in section 4.

    2.Data and methodology

    In this study,glide-path scans of LIDAR data along two runways(north and south)at HKIA from 2014 to 2015 are employed(Fig.1).They are obtained during the scanning of the LIDAR over the arrival glide paths of the airport.The coverage goes from the ground near the runway threshold to 4 nautical miles(7.4 km)away from the threshold,which represents altitudes below approximately 388 m MSL for the 3°glide slope.The time interval between the scans of the LIDAR is around 2 min.Based on the LIDAR measurements,the cubic root of the eddy dissipation rate(EDR1/3)can be calculated.This is used to measure turbulence intensity.

    We define the occurrence of low-level turbulence as any value of EDR1/3along the runway larger than or equal to 0.3 m2/3s?1.Subsequently,we calculate the possibility of turbulence occurrence(PTO)as follows:

    Nevertheless,the time interval between LIDAR observations is not constant,and there are missing data in the observations.Thus,we exclude the PTO cases with fewer than 450 observations along the north or south runways in one day.The remaining PTO cases along the two runways are illustrated in Fig.2.It should be noted that the values of PTO from the southern runway are remarkably higher than those from the north runway.Both runways also demonstrate notable seasonal variation in values of PTO;the values are remarkably higher in spring than in other seasons.

    We define the turbulence and nonturbu-lence cases based on the values of PTO.Turbulence cases are those with PTO values≥0.2 on either the north or south runway.nonturbu-lence cases are those with PTO values=0 on both runways.To avoid double counting the turbulence and nonturbu-lence cases,any cases with a time difference of under two days are considered as one case.Subsequently,37 turbulence and 52 nonturbu-lence cases are identified over the two-year period.

    To present the state of large-scale circulation associated with turbulence and nonturbu-lence cases,different parameters in ERA-Interim data are employed,including geopo-tential(Φ),temperature(T),zonal wind(U),and meridional wind(V)(Dee et al.,2011).Additionally,we utilize the radiosonde data recorded from King’sPark Meteorological Station,to verify the result based on the ERA-Interim data.It should be noted that the radiosonde data at 0000 and 1200 UTC are averaged to be daily values.

    3.Results

    To investigate the circulation conditions favorable for the occurrence of low-level turbulence,we calculate the composite difference between the turbulence and nonturbu-lence cases for horizontal wind and geopo-tential at 850 hPa,as presented in Fig.3.The 850-hPa level is chosen because it is near the top of the boundary layer height in Hong Kong(around 1 to 1.5 km normally)and it is readily available from the reanalysis data.The composite difference for horizontal wind shows a cyclonic center in South China.To clarify the importance of wind direction on occurrence of the turbulence,the horizontal is divided into zonal and meridional components.For zonal wind,the composite difference between turbulence and nonturbu-lence cases at 850 hPa shows a significant westerly wind in the southeast of the Tibetan Plateau(Fig.3b).However,the zonal wind difference is weak around the South China coast.This implies that zonal wind is unlikely to be the cause of low-level turbulence.For meridional wind,the composite difference delineates significant southerly wind over the subtropical western Pacific and Southeast Asia.It shows a maximum center around the South China coast(Fig.3c).Hence,the southerly wind is remarkably stronger in turbulence cases than in nonturbu-lence cases.Accordingly,variation in the strength of the southerly is directly related to the occurrence of turbulence.

    Fig.2.Possibility of turbulence occurrence along the(a)north and(b)south runway.Transitional seasons(spring and autumn)are indicated by gray shading.

    In association with the difference in horizontal wind over Southeast Asia and the tropical western Pacific,we also calculate the geopo-tential difference between turbulence and nonturbu-lence cases(Fig.3d).A negative and a positive center of geopo-tential difference are found south of the Tibetan Plateau and the subtropical western Pacific,respectively.Hence,westerly wind differences are located south of the negative center and southerly wind differences are located between the negative and positive centers,because of geostrophic balance.Therefore,the negative center is linked to the occurrence of low-level turbulence through its modulation of meridional wind over the South China coast.

    Since the southerly anomaly over the South China coast is possibly contributed by a combination of seasonal(>90 days),intraseasonal(90–10 days),and synoptic(< 10 days)forcing,we separate these forcings with a Lanczos filter(Duchon,1979).This filter is commonly used in temporalscale separation(Li and Zhou,2015;Li et al.,2015;Leung and Zhou,2016;Leung et al.,2017).The weight of the filter is 90 days.

    The composite differences between turbulence and nonturbu-lence cases in seasonal,intraseasonal,and synoptic horizontal wind are portrayed in Fig.4.For zonal wind at 850 hPa,it is noted that the significant westerly wind difference southeast of the Tibetan Plateau is contributed by the seasonal and intraseasonal signal(Figs.4a and b).It should be noted that the significant seasonal westerly difference is off-set by the significant synoptic easterly difference around the South China coast(Figs.4a and c).This results in a weak zonal wind difference between turbulence and nonturbu-lence cases(Fig.3a).For meridional wind,the southerly wind is contributed mainly by the intraseasonal signal and followed by the synoptic signal.Despite a relatively weak contribution by the seasonal signal,Fig.2 strongly suggests that this is still a possible cause of the seasonal variation in the frequency of turbulence.Consequently,the southerly wind difference at seasonal,intraseasonal,and synoptic timescales is also important to the occurrence of low-level turbulence.

    Fig.3.Composite difference between turbulence and nonturbu-lence cases for(a)horizontal wind(units:m s?1),(b)zonal wind(units:m s?1),(c)meridional wind(units:m s?1),and(d)geopo-tential,at 850 hPa(units:m2s?2).Red(blue)shading in(b–d)indicates positive(negative)values exceeding the 0.05 significance level.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    To explain the synoptic southerly wind difference between turbulence and nonturbu-lence cases,we examine the synoptic geopo-tential difference in the middle and lower troposphere(Fig.5).Leading to the occurrence of turbulence,an eastward-propagating wave train of positive and negative geopo-tential is noted in the mid-troposphere(500 hPa)over East Asia,as illustrated in the upper panel of Fig.5.Another wave train of geopo-tential is noted in the lower troposphere(850 hPa),as shown in the lower panel of Fig.5.It also shows a slight phase-lead to the wave train in the midtroposphere.The westward tilting with height of positive and negative geopo-tential centers represents the baroclinic structure of extratropical cyclones and anticyclones.Accordingly,the synoptic southerly wind difference is caused by the passage of temperate cyclones and anticyclones.

    Intraseasonal geopo-tential differences between turbulence and nonturbu-lence cases in the middle and lower troposphere are presented in Fig.6.In the mid-troposphere,the intraseasonal geopo-tential differences are not significant(upper panel of Fig.6).On the contrary,a positive center of geopo-tential difference is observed in the lower troposphere over the subtropical western Pacific,as shown in the lower panel of Fig.6.This positive center is possibly related to the intraseasonal variation of the western North Pacific subtropical high that steers the southerly wind at its western flank.Therefore,the intraseasonal southerly wind difference is associated with a stronger western flank of the western North Pacific subtropical high.

    Fig.4.Composite difference between turbulence and nonturbu-lence cases for(a)seasonal,(b)intraseasonal,and(c)synoptic zonal winds.(d–f)Similar to(a–c)but for meridional winds.The units for wind are m s?1.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    Fig.5.Synoptic difference in geopo-tential at 500 hPa(upper panel;units:m2s?2)and at 850 hPa(lower panel;units:m2s?2)from two days before[day(?2)]to the day of turbulence occurrence[day(0)].Red(blue)shading indicates positive(negative)values exceeding the 0.05 significance level.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    Fig.6.Similar to Fig.5 but for intraseasonal geopo-tential difference.

    Fig.7.Similar to Fig.5 but for seasonal geopo-tential difference.

    The seasonal geopo-tential differences between turbulence and nonturbu-lence cases are displayed in Fig.7.The seasonal differences are weak in the mid-troposphere.In the lower troposphere,a negative center of difference is located on the lee side of the Tibetan Plateau.This negative center contributes to the seasonal southerly wind difference and seasonal variation in the frequency of turbulence.

    4.Discussion and summary

    The circulation features associated with the occurrence of low-level turbulence at HKIA are documented in this study.It is noted that turbulence occurrence shows strong and weak relations with meridional wind and zonal wind,respectively,over the South China coast.This implies that the turbulence is generated by the passage of wind over the complex topography south of HKIA within the atmospheric boundary layer.It also explains the PTO values being lower along the north runway than along the south runway,because the south runway is closer to the source of turbulence generation.To support the dominant forcing of meridional wind,we also investigate the vertical profile of horizontal wind recorded in the radiosonde data(Fig.8a).Both turbulence and nonturbu-lence cases also demonstrate wind direction change from southeasterly in the lower troposphere to southwesterly in the middle to upper troposphere.However,it is worth noting that an obviously stronger southerly component is found in turbulence cases than in nonturbu-lence cases in the lower troposphere.The zonal and meridional components of horizontal wind for turbulence and nonturbu-lence cases are compared in Fig.8b.The distributions of meridional winds for turbulence and nonturbu-lence cases are well separated.Nonetheless,the distributions of zonal wind are highly overlapping.This is consistent with the result from reanalysis data that turbulence is likely to occur in conjunction with strong southerly wind.In addition,the result based on radiosonde data also suggests that the local southerly wind is possibly controlled by regional southerly wind over the South China coast.

    Fig.8.(a)Composite difference in the vertical profile of horizontal wind(units:m s?1)between turbulence and nonturbu-lence cases.(b)Zonal and meridional winds(units:m s?1)for turbulence and nonturbu-lence cases.(c)Vertical profile of dew-point depression for each turbulence case(units:°C;dashed brown line)and nonturbu-lence cases(units:°C;dashed green line).Their mean values are indicated by thick brown and green lines,respectively.(d)Composite difference in dew-point temperature,temperature,and dew-point depression(units:°C).

    Apart from the terrain-induced turbulence,it is noted that an increase in static stability will suppress the generation of mechanical turbulence(Romero et al.,1995;Clark et al.,1997).Therefore,we also investigate the local stability based on the records of radiosonde data(Fig.8c).By contrast,the dew-point depression in turbulence cases is generally lower than in nonturbu-lence cases.This implies the air parcel over Hong Kong in turbulence cases is more likely to become saturated in comparison with nonturbu-lence cases.As a result,the stability is weaker in turbulence cases.Since the variations in temperature and dew-point temperature also influence dew-point depression,the differences in temperature and dew-point temperature between turbulence and nonturbu-lence cases are calculated and shown in Fig.8d.It is observed that the difference in temperature for the mean of both cases is weak in contrast to the difference in dew-point temperature.The higher dew-point temperatures in turbulence cases are possibly caused by northward moisture transport from the South China Sea to Hong Kong.Accordingly,southerly wind over South China not only generates terrain-induced turbulence,but also weakens stability that is favorable for the development of strong turbulence.

    Fig.9.Climatological seasonal contrast(seasonal mean minus annual mean)of Φ850(850-hPa geopo-tential;units:m2s?2;shading)and V850(850-hPa meridional wind;units:m s?1;contours)in(a)MAM(March–May),(b)JJA(June–August),(c)SON(September–November),and(d)DJF(December–February),over the period 1985–2015.Solid(dashed)contours represent positive(negative)values in meridional wind.The units of Φ850 and V850 are m2s?2and m s?1,respectively.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    In this study, the variations in meridional wind and geopo-tential are separated into different timescales.We find that seasonal,intraseasonal,and synoptic signals also contribute to the meridional wind difference between turbulence and nonturbu-lence cases.The synoptic and seasonal geopo-tentials show negative values west of the South China coast.The intraseasonal geopo-tential,on the other hand,demonstrates positive values east of the province.As a consequence of these variations in geopo-tential,the zonal geopo-tential gradient is altered,by which geostrophic southerly wind is likely to occur over the South China coast.

    We find that different systems in atmospheric circulation are responsible for the variations in geopo-tential at different timescales.For the synoptic timescale,the negative geopo-tentials west of the South China coast are concurrent with the passage of midlatitude extratropical cyclones and anticyclones.For the intraseasonal timescale,the positive geopo-tentials west of the South China coast seem to be related to the intraseasonal variation of the western North Pacific subtropical high.For the seasonal timescale,the negative values east of the Tibetan Plateau modulate southerly wind over Southeast Asia.

    As mentioned above,the seasonal variation of geopo-tential east of the Tibetan Plateau is a possible cause of the seasonal variation in the frequency of turbulence.The climatological seasonal contrast in the four seasons for geopo-tential and meridional wind in the lower troposphere is illustrated in Fig.9.Remarkably lower values of geopo-tential are found east of the Tibetan Plateau in spring and summer(Figs.9a and b),and higher values in autumn and winter.Along with this seasonal variation of geopo-tential,a comparably strong southerly is noted in spring and summer and a strong northerly is noted in autumn.Accordingly,the sea-sonal variation of meridional wind is consistent with the seasonal variation of the frequency of turbulence(Fig.2).

    Aside from the seasonal variation in geopotential, the seasonal change in the activity of temperate cyclones and anticyclones is another possible cause of the seasonal variation in the frequency of turbulence.According to earlier studies,cyclones and anticyclones occur with higher frequency in transitional seasons(Nakamura,1992;Wang et al.,2009).This supports the occurrence of low-level turbulence in spring and leads to seasonal variation in turbulence occurrence.These studies also noted that the frequency also delineates interan-nual and interdecadal variations.However,the interannual and interdecadal modulation of temperate cyclones and anticyclones on the occurrence of low-level turbulence at HKIA remains unknown.

    Apart from the variation in frequency,the variation in the pathways of cyclones and anticyclones is also potentially linked to the occurrence of low-level turbulence.In Leung et al.(2015),major pathways of cyclones and anticyclones were investigated.It was noted that the cyclones and anticyclones along lower-latitude paths lead to stronger impacts on wind and temperature variation over Southeast Asia.This implies that the occurrence of low-level turbulence is possibly subject to the pathways of cyclones and anticyclones.Furthermore,the pathways show a tendency toward an equator ward shift,compared to its climatological location(Zhang and Ding,2012).Consequently,the occurrence of low-level turbulence will possibly enhance along with this shift in pathways in the future.

    In addition to temperate cyclones and anticyclones,another possibility for low-level turbulence to occur at HKIA occurs in summertime when Hong Kong is under the influence of tropical cyclones.When a tropical cyclone is located to the west of Hong Kong,which is under the control of strong southerly winds,turbulent air fl ow may occur over the airport due to mechanical turbulence.

    This paper represents a preliminary attempt to document the synoptic weather patterns that may be associated with the occurrence of low level turbulence at HKIA.Further studies are still required,e.g.,on the mesoscale features embedded within synoptic patterns,the sensitivity of the results to the choice of the EDR threshold,the use of a larger dataset(over a longer period of time)etc.,to achieve a comprehensive understanding.We expect to carry out such studies and report their results in future publications.

    Acknowledgements.This study was supported by National Natural Science Foundation of China(Grant Nos.41675062 and 41375096)and the RGC General Research Fund(Grant No.11335316).

    Chan,P.W.,2011:Generation of an eddy dissipation rate map at the Hong Kong International Airport based on Doppler Lidar data.J.Atmos.Oceanic Technol.,28,37–49,https://doi.org/10.10.1175/2010JTECHA1458.1.

    Cheung,H.H.N.,W.Zhou,S.-M.Lee,and H.-W.Tong,2015:Interannual and interdecadal variability of the number of Cold days in Hong Kong and their relationship with large-scale circulation.Mon.Wea.Rev.,143,1438–1454,https://doi.org/10.10.1175/MWR-D-14-00335.1.

    Clark,T.L.,T.Keller,J.Coen,P.Neilley,H.-M.Hsu,and W.D.Hall,1997:Terrain-induced turbulence over Lantau Island:7 June 1994 tropical storm Russ case study.J Atmos Sci,54,1795–1814,https://doi.org/10.10.1175/1520-0469(1997)054<1795:TITOLI>2.0.CO;2.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.10.1002/qj.828.

    Duchon,C.E.,1979:Lanczos filtering in one and two dimensions.J.Appl.Meteor.,18,1016–1022,https://doi.org/10.10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Hon,K.K.,and P.W.Chan,2014:Application of LIDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport.Meteorological Applications,21,74–85,https://doi.org/10.10.1002/met.1430.

    Jarvis,A.,H.I.Reuter,and E.Guevara,2008:Hole- filled SRTM for the globe Version 4.[Available from CGIAR-CSI SRTM 90m Database,http://srtm.csi.cgiar.org].

    Lau,K.-M.,and M.-T.Li,1984:The monsoon of East Asia and its global associations-A survey.Bull.Amer.Meteor.Soc.,65,114–125,https://doi.org/10.10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    Leung,M.Y.-T.,and W.Zhou,2016:Eddy contributions at multiple timescales to the evolution of persistent anomalous East Asian trough.Climate Dyn.,46,2287–2303,https://doi.org/10.10.1007/s00382-015-2702-2.

    Leung,M.Y.-T.,H.H.-N.Cheung,and W.Zhou,2015:Energetics and dynamics associated with two typical mobile trough pathways over East Asia in boreal winter.Climate Dyn.,44,1611–1626,https://doi.org/10.10.1007/s00382-014-2355-6.

    Leung,M.Y.-T.,H.H.-N.Cheung,and W.Zhou,2017:Meridional displacement of the East Asian trough and its response to the ENSO forcing.Climate Dyn.,48,335–352,https://doi.org/10.10.1007/s00382-016-3077-8.

    Li,R.C.Y.,and W.Zhou,2015:Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic,intraseasonal,and low-frequency background.Climate Dyn.,45,1043–1057,https://doi.org/10.10.1007/s00382-014-2347-6.

    Li,R.C.Y.,W.Zhou,and T.C.Lee,2015:Climatological characteristics and observed trends of tropical cyclone-induced rainfall and their influences on long-term rainfall variations in Hong Kong.Mon.Wea.Rev.,143,2192–2206,https://doi.org/10.10.1175/MWR-D-14-00332.1.

    Nakamura,H.,1992:Midwinter suppression of baroclinic wave activity in the Pacific.J.Atmos.Sci.,49,1629–1642,https://doi.org/10.10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    Romero,R.,S.Alonso,E.C.Nickerson,and C.Ramis,1995:The influence of vegetation on the development and structure of mountain waves.J.Appl.Meteor.,34,2230–2242,.

    Wang,X.M.,P.M.Zhai,and C.C.Wang,2009:Variations in extratropical cyclone activity in northern East Asia.Adv.Atmos.Sci.,26,471–479,https://doi.org/10.10.1007/s00376-009-0471-8.

    Webster,P.J.,V.O.Maga?a,T.N.Palmer,J.Shukla,R.A.Tomas,M.Yanai,and T.Yasunari 1998:Monsoons:Processes,predictability,and the prospects for prediction.J.Geophys.Res.,103,14 451–14 510,https://doi.org/10.10.1029/97JC02719.

    Zhang,Y.X.,and Y.H.Ding,2012:Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere.Chinese Journal of Atmospheric Sciences,36,912–928,https://doi.org/10.3878/j.issn.1006-9895.2012.11158.(in Chinese)

    Zhou,W.,R.C.Y.Li,and E.C.H.Chow,2017:Intraseasonal variation of visibility in Hong Kong.Adv.Atmos.Sci.,34,26–38,https://doi.org/10.10.1007/s00376-016-6056-4.

    亚洲成人手机| 亚洲精品日本国产第一区| 国产精品av视频在线免费观看| 精品熟女少妇av免费看| 亚洲人成网站在线观看播放| 晚上一个人看的免费电影| 久久久久网色| 精品久久久精品久久久| 免费大片18禁| 精品久久久久久久久av| 最黄视频免费看| 人人妻人人爽人人添夜夜欢视频 | 久久鲁丝午夜福利片| 乱码一卡2卡4卡精品| 六月丁香七月| 欧美性感艳星| 久久久久久久久大av| 少妇丰满av| 精品人妻视频免费看| 亚洲激情五月婷婷啪啪| 高清黄色对白视频在线免费看 | 免费看不卡的av| 男女无遮挡免费网站观看| 日本欧美视频一区| 免费人成在线观看视频色| 中文在线观看免费www的网站| 18禁动态无遮挡网站| 午夜精品国产一区二区电影| 干丝袜人妻中文字幕| 亚洲国产色片| 在线 av 中文字幕| 一级毛片我不卡| 成人18禁高潮啪啪吃奶动态图 | 久久国内精品自在自线图片| 婷婷色综合www| 久久6这里有精品| 天堂8中文在线网| 亚洲国产精品一区三区| a级毛片免费高清观看在线播放| 亚洲内射少妇av| 97超视频在线观看视频| 少妇人妻久久综合中文| 色婷婷av一区二区三区视频| 亚洲怡红院男人天堂| 国产精品秋霞免费鲁丝片| 99热国产这里只有精品6| 在线观看免费日韩欧美大片 | 亚洲国产色片| 亚洲精品日本国产第一区| 久久午夜福利片| 美女内射精品一级片tv| 六月丁香七月| 中文字幕精品免费在线观看视频 | 五月天丁香电影| 国产精品久久久久成人av| 国精品久久久久久国模美| 国精品久久久久久国模美| 一区二区三区免费毛片| 久久国产亚洲av麻豆专区| 日日摸夜夜添夜夜爱| 久久影院123| 少妇裸体淫交视频免费看高清| 成人特级av手机在线观看| 搡女人真爽免费视频火全软件| 欧美3d第一页| a级毛色黄片| 深夜a级毛片| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 99视频精品全部免费 在线| 国产成人freesex在线| 亚洲国产精品999| 中文资源天堂在线| 国产毛片在线视频| 色5月婷婷丁香| 内射极品少妇av片p| 不卡视频在线观看欧美| 91狼人影院| 色5月婷婷丁香| 国产精品一区二区三区四区免费观看| 久久久精品免费免费高清| 又黄又爽又刺激的免费视频.| 一级爰片在线观看| 一级毛片aaaaaa免费看小| 久久久久久久国产电影| 妹子高潮喷水视频| 女的被弄到高潮叫床怎么办| 在线亚洲精品国产二区图片欧美 | 最近中文字幕2019免费版| 性高湖久久久久久久久免费观看| 色综合色国产| 99国产精品免费福利视频| 欧美日本视频| 久久亚洲国产成人精品v| 久久久精品免费免费高清| 免费看不卡的av| 内射极品少妇av片p| 欧美最新免费一区二区三区| 国产白丝娇喘喷水9色精品| 插逼视频在线观看| 国产女主播在线喷水免费视频网站| 身体一侧抽搐| 寂寞人妻少妇视频99o| 91久久精品电影网| 午夜日本视频在线| 亚洲一区二区三区欧美精品| 美女脱内裤让男人舔精品视频| 在线天堂最新版资源| 男的添女的下面高潮视频| 日韩欧美 国产精品| 亚洲欧美精品自产自拍| 日本黄大片高清| 国产高清不卡午夜福利| 欧美三级亚洲精品| 黄色配什么色好看| 看免费成人av毛片| 赤兔流量卡办理| 国产精品99久久久久久久久| 久久鲁丝午夜福利片| 成人免费观看视频高清| 久久亚洲国产成人精品v| 伦理电影大哥的女人| 国产在线免费精品| 国产高清不卡午夜福利| 肉色欧美久久久久久久蜜桃| 男女免费视频国产| 久久久亚洲精品成人影院| 免费高清在线观看视频在线观看| 欧美日韩在线观看h| 国产精品成人在线| 看非洲黑人一级黄片| 国产午夜精品久久久久久一区二区三区| 国产午夜精品久久久久久一区二区三区| 3wmmmm亚洲av在线观看| 国产精品国产三级国产av玫瑰| 亚洲美女视频黄频| 亚州av有码| 一级毛片电影观看| 伦理电影免费视频| 五月玫瑰六月丁香| 777米奇影视久久| 精品一区在线观看国产| 国精品久久久久久国模美| 亚洲国产最新在线播放| 老司机影院成人| 国产人妻一区二区三区在| 欧美3d第一页| 国产久久久一区二区三区| 热re99久久精品国产66热6| 欧美成人精品欧美一级黄| 久久久久久久大尺度免费视频| 久久久久久久久久久丰满| 国产高清三级在线| 99热这里只有是精品50| 最近最新中文字幕大全电影3| 丝袜喷水一区| 夜夜爽夜夜爽视频| 涩涩av久久男人的天堂| 国产无遮挡羞羞视频在线观看| 少妇 在线观看| 亚洲色图综合在线观看| 校园人妻丝袜中文字幕| 亚洲精品色激情综合| 亚州av有码| 成人漫画全彩无遮挡| 亚洲精品国产色婷婷电影| 国产综合精华液| 18禁在线播放成人免费| 欧美xxxx黑人xx丫x性爽| 国产人妻一区二区三区在| 国产v大片淫在线免费观看| 亚洲精品乱码久久久v下载方式| 99热这里只有是精品50| 18+在线观看网站| 欧美老熟妇乱子伦牲交| 免费大片黄手机在线观看| av福利片在线观看| 精品国产一区二区三区久久久樱花 | 日本与韩国留学比较| 亚洲天堂av无毛| 99久久中文字幕三级久久日本| 国产亚洲欧美精品永久| 国产国拍精品亚洲av在线观看| 中国国产av一级| videossex国产| 简卡轻食公司| 香蕉精品网在线| 最近最新中文字幕大全电影3| 人妻 亚洲 视频| 看十八女毛片水多多多| 精品熟女少妇av免费看| 亚洲激情五月婷婷啪啪| 26uuu在线亚洲综合色| 国产成人91sexporn| 国产精品欧美亚洲77777| 久久6这里有精品| 精品久久久久久久末码| 日韩亚洲欧美综合| 亚洲国产成人一精品久久久| 国产 一区 欧美 日韩| 在线精品无人区一区二区三 | 亚洲国产精品专区欧美| 欧美另类一区| 视频中文字幕在线观看| 精品久久久久久久末码| 成年免费大片在线观看| 又爽又黄a免费视频| 亚洲丝袜综合中文字幕| 不卡视频在线观看欧美| 午夜福利网站1000一区二区三区| 日本午夜av视频| 国产精品国产三级国产av玫瑰| 成人漫画全彩无遮挡| 国产精品熟女久久久久浪| 国产成人aa在线观看| 我要看黄色一级片免费的| 亚洲欧美日韩卡通动漫| 青春草亚洲视频在线观看| 中国国产av一级| 日韩精品有码人妻一区| 在线看a的网站| 网址你懂的国产日韩在线| 午夜视频国产福利| 久久久久久人妻| 麻豆乱淫一区二区| 国产在视频线精品| 久久97久久精品| 国产亚洲午夜精品一区二区久久| 日韩伦理黄色片| 美女国产视频在线观看| 亚洲av.av天堂| 一区二区三区精品91| 国产高清有码在线观看视频| 亚洲成人手机| 午夜激情福利司机影院| 国产91av在线免费观看| 国产精品麻豆人妻色哟哟久久| videos熟女内射| 日韩国内少妇激情av| 国产一区二区在线观看日韩| av国产精品久久久久影院| 尤物成人国产欧美一区二区三区| 国产免费福利视频在线观看| 国产亚洲最大av| 成年免费大片在线观看| 夫妻性生交免费视频一级片| 色吧在线观看| 99久国产av精品国产电影| 一个人免费看片子| 波野结衣二区三区在线| 99热网站在线观看| 伦理电影大哥的女人| 日本-黄色视频高清免费观看| 最新中文字幕久久久久| 深爱激情五月婷婷| 国产视频内射| 在线精品无人区一区二区三 | 午夜激情久久久久久久| 五月天丁香电影| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| 久久99热这里只有精品18| 一级毛片我不卡| 日本欧美视频一区| 91久久精品电影网| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 97超碰精品成人国产| 黄片无遮挡物在线观看| 亚洲,一卡二卡三卡| 内地一区二区视频在线| 成人亚洲精品一区在线观看 | 亚洲综合精品二区| 纯流量卡能插随身wifi吗| 黄色配什么色好看| av国产免费在线观看| 啦啦啦中文免费视频观看日本| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 男女啪啪激烈高潮av片| 男女国产视频网站| 日本黄色片子视频| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 超碰av人人做人人爽久久| 99热这里只有是精品在线观看| 亚洲性久久影院| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频高清一区二区三区二| 人妻系列 视频| 久久精品国产亚洲av涩爱| 精华霜和精华液先用哪个| 高清不卡的av网站| 亚洲精品乱码久久久v下载方式| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 在线观看免费视频网站a站| 男人舔奶头视频| 黄色怎么调成土黄色| 久久久久久久国产电影| 中文字幕久久专区| 99国产精品免费福利视频| 肉色欧美久久久久久久蜜桃| 久久久午夜欧美精品| 成人国产麻豆网| 免费av中文字幕在线| 国产免费视频播放在线视频| 99久久精品国产国产毛片| 麻豆成人午夜福利视频| 美女高潮的动态| 亚洲国产精品国产精品| 又黄又爽又刺激的免费视频.| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩东京热| 制服丝袜香蕉在线| 久久国产乱子免费精品| 爱豆传媒免费全集在线观看| 国产亚洲最大av| 一区二区三区免费毛片| 国产精品久久久久成人av| 韩国av在线不卡| 免费黄频网站在线观看国产| 亚洲精品aⅴ在线观看| 成人特级av手机在线观看| 91精品国产九色| 欧美日韩综合久久久久久| 国产亚洲欧美精品永久| 少妇 在线观看| 人妻制服诱惑在线中文字幕| 亚洲国产av新网站| 热99国产精品久久久久久7| a级一级毛片免费在线观看| 久久99精品国语久久久| 啦啦啦视频在线资源免费观看| 国产高清三级在线| freevideosex欧美| 啦啦啦中文免费视频观看日本| 内地一区二区视频在线| av在线蜜桃| 成人影院久久| 妹子高潮喷水视频| 女性生殖器流出的白浆| 五月玫瑰六月丁香| 99热这里只有是精品在线观看| 黄色一级大片看看| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| 国产淫语在线视频| 黄片无遮挡物在线观看| 久久97久久精品| 国产免费又黄又爽又色| 内射极品少妇av片p| 久久精品国产自在天天线| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 国产女主播在线喷水免费视频网站| 国产亚洲欧美精品永久| 国产 精品1| 人人妻人人爽人人添夜夜欢视频 | 伦精品一区二区三区| 久久精品国产自在天天线| 午夜福利影视在线免费观看| 欧美一级a爱片免费观看看| 亚洲一区二区三区欧美精品| 欧美日韩视频高清一区二区三区二| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99| 九色成人免费人妻av| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 国产精品人妻久久久影院| 少妇人妻精品综合一区二区| 岛国毛片在线播放| 日韩中文字幕视频在线看片 | 91午夜精品亚洲一区二区三区| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 国产高清有码在线观看视频| av在线app专区| 婷婷色麻豆天堂久久| 亚洲真实伦在线观看| 午夜福利视频精品| 免费人成在线观看视频色| 国产乱人视频| 国产高清有码在线观看视频| 亚洲第一av免费看| 亚洲av国产av综合av卡| 青春草亚洲视频在线观看| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 亚洲内射少妇av| 特大巨黑吊av在线直播| 欧美三级亚洲精品| av一本久久久久| 亚洲av综合色区一区| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 成人毛片60女人毛片免费| av在线播放精品| tube8黄色片| 亚洲精品视频女| 国精品久久久久久国模美| 国产欧美日韩精品一区二区| 深夜a级毛片| 午夜福利影视在线免费观看| 赤兔流量卡办理| 99热网站在线观看| 日韩一区二区三区影片| 看十八女毛片水多多多| 国产精品三级大全| 欧美日韩亚洲高清精品| 精品人妻偷拍中文字幕| av在线播放精品| 联通29元200g的流量卡| 婷婷色综合大香蕉| 国内精品宾馆在线| 国产伦在线观看视频一区| 少妇丰满av| 亚洲欧美一区二区三区国产| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频 | 久久精品国产亚洲av涩爱| 久久久成人免费电影| 午夜激情福利司机影院| 色网站视频免费| 天堂8中文在线网| 日本欧美视频一区| 美女主播在线视频| 国产老妇伦熟女老妇高清| 亚洲久久久国产精品| 高清日韩中文字幕在线| 色视频www国产| 亚洲欧美精品自产自拍| 美女福利国产在线 | 午夜福利高清视频| 美女福利国产在线 | 午夜福利高清视频| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 亚洲av.av天堂| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久末码| 欧美+日韩+精品| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 国产白丝娇喘喷水9色精品| 激情 狠狠 欧美| 国产精品蜜桃在线观看| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 99久久精品热视频| 香蕉精品网在线| 中文字幕av成人在线电影| 嫩草影院入口| 中文字幕免费在线视频6| 久久精品人妻少妇| av不卡在线播放| 十八禁网站网址无遮挡 | 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| h日本视频在线播放| 视频中文字幕在线观看| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 久久久久性生活片| 欧美精品一区二区大全| 久久国产亚洲av麻豆专区| 在线播放无遮挡| 亚洲av.av天堂| 免费看日本二区| 午夜福利高清视频| 午夜福利影视在线免费观看| 不卡视频在线观看欧美| 97在线视频观看| 国产成人a区在线观看| 日韩制服骚丝袜av| 久热久热在线精品观看| 只有这里有精品99| 乱系列少妇在线播放| 午夜福利在线观看免费完整高清在| 视频中文字幕在线观看| 一级毛片aaaaaa免费看小| 十分钟在线观看高清视频www | 亚洲成人手机| 亚洲精品一二三| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 久久国产亚洲av麻豆专区| 国产伦在线观看视频一区| 777米奇影视久久| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站| 能在线免费看毛片的网站| 亚洲欧美日韩东京热| 国产高清国产精品国产三级 | 黄色欧美视频在线观看| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 久久久久视频综合| 美女视频免费永久观看网站| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 亚洲国产欧美在线一区| 综合色丁香网| 嫩草影院新地址| 国产v大片淫在线免费观看| 亚洲欧美日韩东京热| 免费播放大片免费观看视频在线观看| 我要看日韩黄色一级片| 午夜激情福利司机影院| 国产精品99久久久久久久久| 中文天堂在线官网| 黑人猛操日本美女一级片| 97在线人人人人妻| 国产精品.久久久| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 欧美bdsm另类| 91精品国产九色| 免费观看a级毛片全部| 久久精品国产亚洲网站| 男的添女的下面高潮视频| 国产人妻一区二区三区在| 国产永久视频网站| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| av.在线天堂| 国产在视频线精品| 伦精品一区二区三区| 青青草视频在线视频观看| 国产成人一区二区在线| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂 | 欧美国产精品一级二级三级 | 亚洲无线观看免费| 久久综合国产亚洲精品| 久久av网站| 视频中文字幕在线观看| 久久久久久久久久成人| 日本av手机在线免费观看| 国产精品99久久久久久久久| 日本猛色少妇xxxxx猛交久久| 亚洲三级黄色毛片| 久久久国产一区二区| 一个人免费看片子| 日韩伦理黄色片| 亚洲人成网站在线播| 久久国产乱子免费精品| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 欧美极品一区二区三区四区| 亚洲欧洲国产日韩| 老熟女久久久| 亚洲av.av天堂| 99热这里只有是精品50| 大片电影免费在线观看免费| av专区在线播放| 国产高清国产精品国产三级 | 久久影院123| 在线精品无人区一区二区三 | 国产欧美亚洲国产| 午夜福利视频精品| 最近中文字幕2019免费版| 春色校园在线视频观看| 日本黄大片高清| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 最近的中文字幕免费完整| 只有这里有精品99| 欧美日韩亚洲高清精品| 视频区图区小说| 乱码一卡2卡4卡精品| 777米奇影视久久| 成人一区二区视频在线观看| 欧美少妇被猛烈插入视频| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区| 欧美激情国产日韩精品一区| 亚洲色图综合在线观看| 免费av不卡在线播放| av不卡在线播放| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 日本与韩国留学比较| 在线亚洲精品国产二区图片欧美 | 精品一区二区三卡| 国产视频首页在线观看| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 国产高清三级在线| 亚洲欧洲国产日韩| 如何舔出高潮| 日产精品乱码卡一卡2卡三|