• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport

    2018-03-06 03:36:07MarcoLEUNGWenZHOUChiMingSHUNandPakWaiCHANGuyCarpenterAsiaPacificClimateImpactCenterSchoolofEnergyandEnvironmentCityUniversityofHongKongHongKongChina
    Advances in Atmospheric Sciences 2018年4期

    Marco Y.T.LEUNG,Wen ZHOU?,Chi-Ming SHUN,and Pak-Wai CHANGuy Carpenter Asia-Pacific Climate Impact Center,School of Energy and Environment,City University of Hong Kong,Hong Kong,China

    2Hong Kong Observatory,Hong Kong,China

    1.Introduction

    Hong Kong International Airport(HKIA)handles more than 68 million passengers and 4 million tons of air cargo annually,and is one of the busiest airports in the world.It handles around 1100 flights per day.Hence,aviation safety during aircraft departure and landing is important.As shown in Fig.1,HKIA is located north of Lantau Island.The island has complex topography,with elevation varying from around mean sea level to almost 1000 m above mean sea level.This disrupts the wind passing over the island.

    To monitor the low-level turbulence around HKIA—in particular over the approach and departure corridors of the airport—the Hong Kong Observatory operates a Doppler Light Detection and Range(LIDAR)system at HKIA,as presented in Fig.1.It measures the radial component of wind with a 2-μm laser beam.The LIDAR data are applied to calculate the cubic root of the eddy dissipation rate(EDR1/3),which is widely used to measure turbulence intensity.More details about the LIDAR-based EDR1/3at HKIA can be found in Chan(2011)and Hon and Chan(2014).

    It has been found that the regional climate variation over Hong Kong is subject to variation in large-scale circulation(Cheung et al.,2015;Li et al.,2015;Zhou et al.,2017).This suggests that regional wind direction and speed in Hong Kong are modulated by large-scale circulation.Therefore,the occurrence and frequency of low-level turbulence at HKIA are possibly controlled by variation in the atmospheric circulation.However,the linkage between large-scale circulation and regional turbulence generation has not been investigated in previous studies.So,one of the objectives of this study is to identify the atmospheric circulation that is favorable for the occurrence of low-level turbulence.Furthermore,the atmosphere shows variation at different timescales(Lau and Li,1984;Webster et al.,1998),which affects the frequency of low-level turbulence.Therefore,another objective of this study is to clarify the contributions of seasonal,intraseasonal,and synoptic variation to the occurrence of low-level turbulence.

    Fig.1.Map of HKIA and surrounding topography.Elevation values are from SRTM 90-m data(Jarvis et al.,2008).

    The rest of this study is organized as follows:Section 2 presents the data employed in this study and the definitions of turbulence and nonturbu-lence cases.Section 3 shows the atmospheric circulation corresponding to turbulence occurrence and the contributions by forcing at different timescales.Finally,a discussion and summary are provided in section 4.

    2.Data and methodology

    In this study,glide-path scans of LIDAR data along two runways(north and south)at HKIA from 2014 to 2015 are employed(Fig.1).They are obtained during the scanning of the LIDAR over the arrival glide paths of the airport.The coverage goes from the ground near the runway threshold to 4 nautical miles(7.4 km)away from the threshold,which represents altitudes below approximately 388 m MSL for the 3°glide slope.The time interval between the scans of the LIDAR is around 2 min.Based on the LIDAR measurements,the cubic root of the eddy dissipation rate(EDR1/3)can be calculated.This is used to measure turbulence intensity.

    We define the occurrence of low-level turbulence as any value of EDR1/3along the runway larger than or equal to 0.3 m2/3s?1.Subsequently,we calculate the possibility of turbulence occurrence(PTO)as follows:

    Nevertheless,the time interval between LIDAR observations is not constant,and there are missing data in the observations.Thus,we exclude the PTO cases with fewer than 450 observations along the north or south runways in one day.The remaining PTO cases along the two runways are illustrated in Fig.2.It should be noted that the values of PTO from the southern runway are remarkably higher than those from the north runway.Both runways also demonstrate notable seasonal variation in values of PTO;the values are remarkably higher in spring than in other seasons.

    We define the turbulence and nonturbu-lence cases based on the values of PTO.Turbulence cases are those with PTO values≥0.2 on either the north or south runway.nonturbu-lence cases are those with PTO values=0 on both runways.To avoid double counting the turbulence and nonturbu-lence cases,any cases with a time difference of under two days are considered as one case.Subsequently,37 turbulence and 52 nonturbu-lence cases are identified over the two-year period.

    To present the state of large-scale circulation associated with turbulence and nonturbu-lence cases,different parameters in ERA-Interim data are employed,including geopo-tential(Φ),temperature(T),zonal wind(U),and meridional wind(V)(Dee et al.,2011).Additionally,we utilize the radiosonde data recorded from King’sPark Meteorological Station,to verify the result based on the ERA-Interim data.It should be noted that the radiosonde data at 0000 and 1200 UTC are averaged to be daily values.

    3.Results

    To investigate the circulation conditions favorable for the occurrence of low-level turbulence,we calculate the composite difference between the turbulence and nonturbu-lence cases for horizontal wind and geopo-tential at 850 hPa,as presented in Fig.3.The 850-hPa level is chosen because it is near the top of the boundary layer height in Hong Kong(around 1 to 1.5 km normally)and it is readily available from the reanalysis data.The composite difference for horizontal wind shows a cyclonic center in South China.To clarify the importance of wind direction on occurrence of the turbulence,the horizontal is divided into zonal and meridional components.For zonal wind,the composite difference between turbulence and nonturbu-lence cases at 850 hPa shows a significant westerly wind in the southeast of the Tibetan Plateau(Fig.3b).However,the zonal wind difference is weak around the South China coast.This implies that zonal wind is unlikely to be the cause of low-level turbulence.For meridional wind,the composite difference delineates significant southerly wind over the subtropical western Pacific and Southeast Asia.It shows a maximum center around the South China coast(Fig.3c).Hence,the southerly wind is remarkably stronger in turbulence cases than in nonturbu-lence cases.Accordingly,variation in the strength of the southerly is directly related to the occurrence of turbulence.

    Fig.2.Possibility of turbulence occurrence along the(a)north and(b)south runway.Transitional seasons(spring and autumn)are indicated by gray shading.

    In association with the difference in horizontal wind over Southeast Asia and the tropical western Pacific,we also calculate the geopo-tential difference between turbulence and nonturbu-lence cases(Fig.3d).A negative and a positive center of geopo-tential difference are found south of the Tibetan Plateau and the subtropical western Pacific,respectively.Hence,westerly wind differences are located south of the negative center and southerly wind differences are located between the negative and positive centers,because of geostrophic balance.Therefore,the negative center is linked to the occurrence of low-level turbulence through its modulation of meridional wind over the South China coast.

    Since the southerly anomaly over the South China coast is possibly contributed by a combination of seasonal(>90 days),intraseasonal(90–10 days),and synoptic(< 10 days)forcing,we separate these forcings with a Lanczos filter(Duchon,1979).This filter is commonly used in temporalscale separation(Li and Zhou,2015;Li et al.,2015;Leung and Zhou,2016;Leung et al.,2017).The weight of the filter is 90 days.

    The composite differences between turbulence and nonturbu-lence cases in seasonal,intraseasonal,and synoptic horizontal wind are portrayed in Fig.4.For zonal wind at 850 hPa,it is noted that the significant westerly wind difference southeast of the Tibetan Plateau is contributed by the seasonal and intraseasonal signal(Figs.4a and b).It should be noted that the significant seasonal westerly difference is off-set by the significant synoptic easterly difference around the South China coast(Figs.4a and c).This results in a weak zonal wind difference between turbulence and nonturbu-lence cases(Fig.3a).For meridional wind,the southerly wind is contributed mainly by the intraseasonal signal and followed by the synoptic signal.Despite a relatively weak contribution by the seasonal signal,Fig.2 strongly suggests that this is still a possible cause of the seasonal variation in the frequency of turbulence.Consequently,the southerly wind difference at seasonal,intraseasonal,and synoptic timescales is also important to the occurrence of low-level turbulence.

    Fig.3.Composite difference between turbulence and nonturbu-lence cases for(a)horizontal wind(units:m s?1),(b)zonal wind(units:m s?1),(c)meridional wind(units:m s?1),and(d)geopo-tential,at 850 hPa(units:m2s?2).Red(blue)shading in(b–d)indicates positive(negative)values exceeding the 0.05 significance level.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    To explain the synoptic southerly wind difference between turbulence and nonturbu-lence cases,we examine the synoptic geopo-tential difference in the middle and lower troposphere(Fig.5).Leading to the occurrence of turbulence,an eastward-propagating wave train of positive and negative geopo-tential is noted in the mid-troposphere(500 hPa)over East Asia,as illustrated in the upper panel of Fig.5.Another wave train of geopo-tential is noted in the lower troposphere(850 hPa),as shown in the lower panel of Fig.5.It also shows a slight phase-lead to the wave train in the midtroposphere.The westward tilting with height of positive and negative geopo-tential centers represents the baroclinic structure of extratropical cyclones and anticyclones.Accordingly,the synoptic southerly wind difference is caused by the passage of temperate cyclones and anticyclones.

    Intraseasonal geopo-tential differences between turbulence and nonturbu-lence cases in the middle and lower troposphere are presented in Fig.6.In the mid-troposphere,the intraseasonal geopo-tential differences are not significant(upper panel of Fig.6).On the contrary,a positive center of geopo-tential difference is observed in the lower troposphere over the subtropical western Pacific,as shown in the lower panel of Fig.6.This positive center is possibly related to the intraseasonal variation of the western North Pacific subtropical high that steers the southerly wind at its western flank.Therefore,the intraseasonal southerly wind difference is associated with a stronger western flank of the western North Pacific subtropical high.

    Fig.4.Composite difference between turbulence and nonturbu-lence cases for(a)seasonal,(b)intraseasonal,and(c)synoptic zonal winds.(d–f)Similar to(a–c)but for meridional winds.The units for wind are m s?1.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    Fig.5.Synoptic difference in geopo-tential at 500 hPa(upper panel;units:m2s?2)and at 850 hPa(lower panel;units:m2s?2)from two days before[day(?2)]to the day of turbulence occurrence[day(0)].Red(blue)shading indicates positive(negative)values exceeding the 0.05 significance level.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    Fig.6.Similar to Fig.5 but for intraseasonal geopo-tential difference.

    Fig.7.Similar to Fig.5 but for seasonal geopo-tential difference.

    The seasonal geopo-tential differences between turbulence and nonturbu-lence cases are displayed in Fig.7.The seasonal differences are weak in the mid-troposphere.In the lower troposphere,a negative center of difference is located on the lee side of the Tibetan Plateau.This negative center contributes to the seasonal southerly wind difference and seasonal variation in the frequency of turbulence.

    4.Discussion and summary

    The circulation features associated with the occurrence of low-level turbulence at HKIA are documented in this study.It is noted that turbulence occurrence shows strong and weak relations with meridional wind and zonal wind,respectively,over the South China coast.This implies that the turbulence is generated by the passage of wind over the complex topography south of HKIA within the atmospheric boundary layer.It also explains the PTO values being lower along the north runway than along the south runway,because the south runway is closer to the source of turbulence generation.To support the dominant forcing of meridional wind,we also investigate the vertical profile of horizontal wind recorded in the radiosonde data(Fig.8a).Both turbulence and nonturbu-lence cases also demonstrate wind direction change from southeasterly in the lower troposphere to southwesterly in the middle to upper troposphere.However,it is worth noting that an obviously stronger southerly component is found in turbulence cases than in nonturbu-lence cases in the lower troposphere.The zonal and meridional components of horizontal wind for turbulence and nonturbu-lence cases are compared in Fig.8b.The distributions of meridional winds for turbulence and nonturbu-lence cases are well separated.Nonetheless,the distributions of zonal wind are highly overlapping.This is consistent with the result from reanalysis data that turbulence is likely to occur in conjunction with strong southerly wind.In addition,the result based on radiosonde data also suggests that the local southerly wind is possibly controlled by regional southerly wind over the South China coast.

    Fig.8.(a)Composite difference in the vertical profile of horizontal wind(units:m s?1)between turbulence and nonturbu-lence cases.(b)Zonal and meridional winds(units:m s?1)for turbulence and nonturbu-lence cases.(c)Vertical profile of dew-point depression for each turbulence case(units:°C;dashed brown line)and nonturbu-lence cases(units:°C;dashed green line).Their mean values are indicated by thick brown and green lines,respectively.(d)Composite difference in dew-point temperature,temperature,and dew-point depression(units:°C).

    Apart from the terrain-induced turbulence,it is noted that an increase in static stability will suppress the generation of mechanical turbulence(Romero et al.,1995;Clark et al.,1997).Therefore,we also investigate the local stability based on the records of radiosonde data(Fig.8c).By contrast,the dew-point depression in turbulence cases is generally lower than in nonturbu-lence cases.This implies the air parcel over Hong Kong in turbulence cases is more likely to become saturated in comparison with nonturbu-lence cases.As a result,the stability is weaker in turbulence cases.Since the variations in temperature and dew-point temperature also influence dew-point depression,the differences in temperature and dew-point temperature between turbulence and nonturbu-lence cases are calculated and shown in Fig.8d.It is observed that the difference in temperature for the mean of both cases is weak in contrast to the difference in dew-point temperature.The higher dew-point temperatures in turbulence cases are possibly caused by northward moisture transport from the South China Sea to Hong Kong.Accordingly,southerly wind over South China not only generates terrain-induced turbulence,but also weakens stability that is favorable for the development of strong turbulence.

    Fig.9.Climatological seasonal contrast(seasonal mean minus annual mean)of Φ850(850-hPa geopo-tential;units:m2s?2;shading)and V850(850-hPa meridional wind;units:m s?1;contours)in(a)MAM(March–May),(b)JJA(June–August),(c)SON(September–November),and(d)DJF(December–February),over the period 1985–2015.Solid(dashed)contours represent positive(negative)values in meridional wind.The units of Φ850 and V850 are m2s?2and m s?1,respectively.Values under the ground surface are shaded gray.The location of HKIA is indicated by the gray dot.

    In this study, the variations in meridional wind and geopo-tential are separated into different timescales.We find that seasonal,intraseasonal,and synoptic signals also contribute to the meridional wind difference between turbulence and nonturbu-lence cases.The synoptic and seasonal geopo-tentials show negative values west of the South China coast.The intraseasonal geopo-tential,on the other hand,demonstrates positive values east of the province.As a consequence of these variations in geopo-tential,the zonal geopo-tential gradient is altered,by which geostrophic southerly wind is likely to occur over the South China coast.

    We find that different systems in atmospheric circulation are responsible for the variations in geopo-tential at different timescales.For the synoptic timescale,the negative geopo-tentials west of the South China coast are concurrent with the passage of midlatitude extratropical cyclones and anticyclones.For the intraseasonal timescale,the positive geopo-tentials west of the South China coast seem to be related to the intraseasonal variation of the western North Pacific subtropical high.For the seasonal timescale,the negative values east of the Tibetan Plateau modulate southerly wind over Southeast Asia.

    As mentioned above,the seasonal variation of geopo-tential east of the Tibetan Plateau is a possible cause of the seasonal variation in the frequency of turbulence.The climatological seasonal contrast in the four seasons for geopo-tential and meridional wind in the lower troposphere is illustrated in Fig.9.Remarkably lower values of geopo-tential are found east of the Tibetan Plateau in spring and summer(Figs.9a and b),and higher values in autumn and winter.Along with this seasonal variation of geopo-tential,a comparably strong southerly is noted in spring and summer and a strong northerly is noted in autumn.Accordingly,the sea-sonal variation of meridional wind is consistent with the seasonal variation of the frequency of turbulence(Fig.2).

    Aside from the seasonal variation in geopotential, the seasonal change in the activity of temperate cyclones and anticyclones is another possible cause of the seasonal variation in the frequency of turbulence.According to earlier studies,cyclones and anticyclones occur with higher frequency in transitional seasons(Nakamura,1992;Wang et al.,2009).This supports the occurrence of low-level turbulence in spring and leads to seasonal variation in turbulence occurrence.These studies also noted that the frequency also delineates interan-nual and interdecadal variations.However,the interannual and interdecadal modulation of temperate cyclones and anticyclones on the occurrence of low-level turbulence at HKIA remains unknown.

    Apart from the variation in frequency,the variation in the pathways of cyclones and anticyclones is also potentially linked to the occurrence of low-level turbulence.In Leung et al.(2015),major pathways of cyclones and anticyclones were investigated.It was noted that the cyclones and anticyclones along lower-latitude paths lead to stronger impacts on wind and temperature variation over Southeast Asia.This implies that the occurrence of low-level turbulence is possibly subject to the pathways of cyclones and anticyclones.Furthermore,the pathways show a tendency toward an equator ward shift,compared to its climatological location(Zhang and Ding,2012).Consequently,the occurrence of low-level turbulence will possibly enhance along with this shift in pathways in the future.

    In addition to temperate cyclones and anticyclones,another possibility for low-level turbulence to occur at HKIA occurs in summertime when Hong Kong is under the influence of tropical cyclones.When a tropical cyclone is located to the west of Hong Kong,which is under the control of strong southerly winds,turbulent air fl ow may occur over the airport due to mechanical turbulence.

    This paper represents a preliminary attempt to document the synoptic weather patterns that may be associated with the occurrence of low level turbulence at HKIA.Further studies are still required,e.g.,on the mesoscale features embedded within synoptic patterns,the sensitivity of the results to the choice of the EDR threshold,the use of a larger dataset(over a longer period of time)etc.,to achieve a comprehensive understanding.We expect to carry out such studies and report their results in future publications.

    Acknowledgements.This study was supported by National Natural Science Foundation of China(Grant Nos.41675062 and 41375096)and the RGC General Research Fund(Grant No.11335316).

    Chan,P.W.,2011:Generation of an eddy dissipation rate map at the Hong Kong International Airport based on Doppler Lidar data.J.Atmos.Oceanic Technol.,28,37–49,https://doi.org/10.10.1175/2010JTECHA1458.1.

    Cheung,H.H.N.,W.Zhou,S.-M.Lee,and H.-W.Tong,2015:Interannual and interdecadal variability of the number of Cold days in Hong Kong and their relationship with large-scale circulation.Mon.Wea.Rev.,143,1438–1454,https://doi.org/10.10.1175/MWR-D-14-00335.1.

    Clark,T.L.,T.Keller,J.Coen,P.Neilley,H.-M.Hsu,and W.D.Hall,1997:Terrain-induced turbulence over Lantau Island:7 June 1994 tropical storm Russ case study.J Atmos Sci,54,1795–1814,https://doi.org/10.10.1175/1520-0469(1997)054<1795:TITOLI>2.0.CO;2.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.10.1002/qj.828.

    Duchon,C.E.,1979:Lanczos filtering in one and two dimensions.J.Appl.Meteor.,18,1016–1022,https://doi.org/10.10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Hon,K.K.,and P.W.Chan,2014:Application of LIDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport.Meteorological Applications,21,74–85,https://doi.org/10.10.1002/met.1430.

    Jarvis,A.,H.I.Reuter,and E.Guevara,2008:Hole- filled SRTM for the globe Version 4.[Available from CGIAR-CSI SRTM 90m Database,http://srtm.csi.cgiar.org].

    Lau,K.-M.,and M.-T.Li,1984:The monsoon of East Asia and its global associations-A survey.Bull.Amer.Meteor.Soc.,65,114–125,https://doi.org/10.10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    Leung,M.Y.-T.,and W.Zhou,2016:Eddy contributions at multiple timescales to the evolution of persistent anomalous East Asian trough.Climate Dyn.,46,2287–2303,https://doi.org/10.10.1007/s00382-015-2702-2.

    Leung,M.Y.-T.,H.H.-N.Cheung,and W.Zhou,2015:Energetics and dynamics associated with two typical mobile trough pathways over East Asia in boreal winter.Climate Dyn.,44,1611–1626,https://doi.org/10.10.1007/s00382-014-2355-6.

    Leung,M.Y.-T.,H.H.-N.Cheung,and W.Zhou,2017:Meridional displacement of the East Asian trough and its response to the ENSO forcing.Climate Dyn.,48,335–352,https://doi.org/10.10.1007/s00382-016-3077-8.

    Li,R.C.Y.,and W.Zhou,2015:Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic,intraseasonal,and low-frequency background.Climate Dyn.,45,1043–1057,https://doi.org/10.10.1007/s00382-014-2347-6.

    Li,R.C.Y.,W.Zhou,and T.C.Lee,2015:Climatological characteristics and observed trends of tropical cyclone-induced rainfall and their influences on long-term rainfall variations in Hong Kong.Mon.Wea.Rev.,143,2192–2206,https://doi.org/10.10.1175/MWR-D-14-00332.1.

    Nakamura,H.,1992:Midwinter suppression of baroclinic wave activity in the Pacific.J.Atmos.Sci.,49,1629–1642,https://doi.org/10.10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    Romero,R.,S.Alonso,E.C.Nickerson,and C.Ramis,1995:The influence of vegetation on the development and structure of mountain waves.J.Appl.Meteor.,34,2230–2242,.

    Wang,X.M.,P.M.Zhai,and C.C.Wang,2009:Variations in extratropical cyclone activity in northern East Asia.Adv.Atmos.Sci.,26,471–479,https://doi.org/10.10.1007/s00376-009-0471-8.

    Webster,P.J.,V.O.Maga?a,T.N.Palmer,J.Shukla,R.A.Tomas,M.Yanai,and T.Yasunari 1998:Monsoons:Processes,predictability,and the prospects for prediction.J.Geophys.Res.,103,14 451–14 510,https://doi.org/10.10.1029/97JC02719.

    Zhang,Y.X.,and Y.H.Ding,2012:Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere.Chinese Journal of Atmospheric Sciences,36,912–928,https://doi.org/10.3878/j.issn.1006-9895.2012.11158.(in Chinese)

    Zhou,W.,R.C.Y.Li,and E.C.H.Chow,2017:Intraseasonal variation of visibility in Hong Kong.Adv.Atmos.Sci.,34,26–38,https://doi.org/10.10.1007/s00376-016-6056-4.

    黄色配什么色好看| 老司机福利观看| 久久久精品欧美日韩精品| 色哟哟哟哟哟哟| 日日摸夜夜添夜夜添小说| 久久久国产成人精品二区| 青草久久国产| 九色成人免费人妻av| 日韩免费av在线播放| av天堂中文字幕网| 波多野结衣巨乳人妻| 麻豆av噜噜一区二区三区| 一个人免费在线观看电影| 欧美在线黄色| 亚洲经典国产精华液单 | 国产aⅴ精品一区二区三区波| 亚洲成a人片在线一区二区| 在线免费观看不下载黄p国产 | 国模一区二区三区四区视频| 免费高清视频大片| 精品午夜福利在线看| 亚洲美女视频黄频| 免费看a级黄色片| 全区人妻精品视频| 国产精品一区二区性色av| 日韩中文字幕欧美一区二区| 看黄色毛片网站| 亚洲中文日韩欧美视频| 天堂网av新在线| 精品久久久久久久久久久久久| 欧美极品一区二区三区四区| 午夜激情福利司机影院| 日韩亚洲欧美综合| 高清毛片免费观看视频网站| 激情在线观看视频在线高清| 精品欧美国产一区二区三| 中文字幕熟女人妻在线| 欧美黄色片欧美黄色片| 成人国产一区最新在线观看| 国产亚洲精品久久久久久毛片| 午夜日韩欧美国产| 精品久久久久久成人av| 欧美成狂野欧美在线观看| 亚洲狠狠婷婷综合久久图片| 美女高潮喷水抽搐中文字幕| 色在线成人网| 变态另类成人亚洲欧美熟女| 久久久久久久久中文| 亚洲成a人片在线一区二区| 一边摸一边抽搐一进一小说| 亚洲国产欧美人成| 亚洲片人在线观看| 亚洲专区中文字幕在线| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清在线视频| 在线免费观看不下载黄p国产 | 91麻豆精品激情在线观看国产| 国内少妇人妻偷人精品xxx网站| 亚洲精品一卡2卡三卡4卡5卡| 成人永久免费在线观看视频| 亚洲av中文字字幕乱码综合| 99热精品在线国产| 啦啦啦韩国在线观看视频| 亚洲国产精品久久男人天堂| 免费看日本二区| 午夜激情福利司机影院| 欧美色视频一区免费| www.www免费av| 丝袜美腿在线中文| 亚洲精华国产精华精| 我要搜黄色片| or卡值多少钱| 美女黄网站色视频| 一进一出好大好爽视频| 久久这里只有精品中国| 美女大奶头视频| 亚洲真实伦在线观看| 国产老妇女一区| 亚洲va日本ⅴa欧美va伊人久久| 国产av麻豆久久久久久久| 小蜜桃在线观看免费完整版高清| 日本一本二区三区精品| 国产精品永久免费网站| 99久国产av精品| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女搞黄在线观看 | 91午夜精品亚洲一区二区三区 | 国产精品亚洲一级av第二区| h日本视频在线播放| 国产黄片美女视频| 天堂网av新在线| 黄色丝袜av网址大全| 日本三级黄在线观看| 免费在线观看亚洲国产| 精品一区二区三区视频在线| 日韩高清综合在线| 51午夜福利影视在线观看| 国产av不卡久久| 色吧在线观看| 男人舔女人下体高潮全视频| 午夜福利在线在线| 91午夜精品亚洲一区二区三区 | 99久久99久久久精品蜜桃| 怎么达到女性高潮| 高清在线国产一区| 欧美中文日本在线观看视频| 在现免费观看毛片| 欧美激情在线99| 极品教师在线免费播放| 久久精品影院6| 色吧在线观看| 国产精品,欧美在线| 99久久精品热视频| 久久精品夜夜夜夜夜久久蜜豆| 3wmmmm亚洲av在线观看| 自拍偷自拍亚洲精品老妇| 亚洲专区中文字幕在线| 国产极品精品免费视频能看的| 国内精品一区二区在线观看| 亚洲一区二区三区不卡视频| 波多野结衣巨乳人妻| 日韩大尺度精品在线看网址| 3wmmmm亚洲av在线观看| 日韩成人在线观看一区二区三区| 一进一出抽搐gif免费好疼| 成人av一区二区三区在线看| 99久久久亚洲精品蜜臀av| 麻豆成人av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 少妇熟女aⅴ在线视频| 少妇的逼水好多| 亚洲国产日韩欧美精品在线观看| 韩国av一区二区三区四区| 国产伦在线观看视频一区| 日韩欧美在线乱码| 国产在线男女| 亚洲无线观看免费| 精品人妻偷拍中文字幕| 国产老妇女一区| 身体一侧抽搐| 91久久精品电影网| 2021天堂中文幕一二区在线观| 2021天堂中文幕一二区在线观| 久久国产乱子免费精品| 88av欧美| 精品免费久久久久久久清纯| 久99久视频精品免费| 成年免费大片在线观看| 婷婷丁香在线五月| 国产成人a区在线观看| 91九色精品人成在线观看| 国产乱人伦免费视频| 亚洲真实伦在线观看| 变态另类丝袜制服| 日韩欧美免费精品| 色精品久久人妻99蜜桃| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 日日摸夜夜添夜夜添av毛片 | 色尼玛亚洲综合影院| 观看免费一级毛片| 国产久久久一区二区三区| 脱女人内裤的视频| netflix在线观看网站| 国产精品人妻久久久久久| 国产精品人妻久久久久久| 欧美日韩国产亚洲二区| 成人永久免费在线观看视频| 在线十欧美十亚洲十日本专区| 欧美不卡视频在线免费观看| 麻豆成人av在线观看| 日本黄色视频三级网站网址| 少妇丰满av| 国产av不卡久久| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 午夜精品久久久久久毛片777| 精品午夜福利视频在线观看一区| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区四那| 欧美日韩国产亚洲二区| 激情在线观看视频在线高清| 色哟哟哟哟哟哟| 搡老岳熟女国产| 精品乱码久久久久久99久播| 变态另类丝袜制服| 噜噜噜噜噜久久久久久91| 成年人黄色毛片网站| 少妇人妻精品综合一区二区 | 国产成年人精品一区二区| 亚洲18禁久久av| 亚洲18禁久久av| 我要搜黄色片| 久久性视频一级片| 两人在一起打扑克的视频| 亚洲男人的天堂狠狠| av专区在线播放| 白带黄色成豆腐渣| 免费看a级黄色片| 久久婷婷人人爽人人干人人爱| 亚洲精品粉嫩美女一区| 女人十人毛片免费观看3o分钟| 午夜精品在线福利| 人妻久久中文字幕网| 亚洲av中文字字幕乱码综合| 又紧又爽又黄一区二区| 国产爱豆传媒在线观看| av国产免费在线观看| 一进一出好大好爽视频| 精品久久国产蜜桃| 69人妻影院| 99精品久久久久人妻精品| 国产日本99.免费观看| 亚洲第一欧美日韩一区二区三区| 又爽又黄a免费视频| 欧美潮喷喷水| 中文资源天堂在线| 国语自产精品视频在线第100页| 国产极品精品免费视频能看的| 日韩欧美国产一区二区入口| 色噜噜av男人的天堂激情| 国产精品1区2区在线观看.| 我的老师免费观看完整版| 日本与韩国留学比较| 日韩欧美一区二区三区在线观看| 久久精品影院6| 搡老妇女老女人老熟妇| 青草久久国产| 亚洲欧美激情综合另类| 直男gayav资源| 亚洲av中文字字幕乱码综合| 一个人看视频在线观看www免费| 欧美日韩综合久久久久久 | 最近最新中文字幕大全电影3| 欧美+日韩+精品| 欧美一区二区精品小视频在线| 日韩中字成人| 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 如何舔出高潮| 中文字幕高清在线视频| 熟女电影av网| 最好的美女福利视频网| 哪里可以看免费的av片| 嫩草影院入口| 99久久精品国产亚洲精品| 99久久成人亚洲精品观看| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 搡女人真爽免费视频火全软件 | 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品三级大全| 亚洲欧美日韩卡通动漫| 精品午夜福利视频在线观看一区| 日韩欧美国产在线观看| 搡老熟女国产l中国老女人| 国产高潮美女av| 美女黄网站色视频| 夜夜爽天天搞| 别揉我奶头 嗯啊视频| 色5月婷婷丁香| 一进一出抽搐gif免费好疼| 色吧在线观看| 欧美成人a在线观看| 性欧美人与动物交配| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| 色综合站精品国产| 18禁裸乳无遮挡免费网站照片| 婷婷丁香在线五月| 韩国av一区二区三区四区| 精品不卡国产一区二区三区| 午夜福利欧美成人| 天天躁日日操中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 男女下面进入的视频免费午夜| 性色av乱码一区二区三区2| 亚洲欧美激情综合另类| netflix在线观看网站| 又紧又爽又黄一区二区| 婷婷精品国产亚洲av在线| 亚洲,欧美精品.| 嫩草影院入口| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 好男人电影高清在线观看| 天堂√8在线中文| 久久午夜亚洲精品久久| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 成人三级黄色视频| 嫩草影院精品99| 无人区码免费观看不卡| 国产亚洲精品av在线| 精品人妻偷拍中文字幕| 国产一区二区激情短视频| 毛片女人毛片| 亚洲美女搞黄在线观看 | 热99在线观看视频| 一夜夜www| 欧美色欧美亚洲另类二区| 亚洲av成人精品一区久久| 亚洲专区国产一区二区| 一级a爱片免费观看的视频| 亚洲无线在线观看| 别揉我奶头~嗯~啊~动态视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 又黄又爽又刺激的免费视频.| 欧美乱色亚洲激情| 午夜福利高清视频| 国产av不卡久久| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看| 99在线人妻在线中文字幕| 久久久久九九精品影院| 中出人妻视频一区二区| 国产精品不卡视频一区二区 | 久久久久九九精品影院| 久久精品国产亚洲av天美| 怎么达到女性高潮| 亚洲中文字幕日韩| 99久久精品热视频| 欧美激情在线99| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久com| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| 日本成人三级电影网站| 亚洲美女视频黄频| 啪啪无遮挡十八禁网站| 99久国产av精品| 欧美日韩瑟瑟在线播放| 亚洲精品成人久久久久久| 一夜夜www| 色av中文字幕| 白带黄色成豆腐渣| 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 女人被狂操c到高潮| 中文资源天堂在线| av在线观看视频网站免费| a级毛片免费高清观看在线播放| 99精品久久久久人妻精品| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 97超视频在线观看视频| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 亚洲av五月六月丁香网| 午夜a级毛片| 国产高清有码在线观看视频| 亚洲精品456在线播放app | 亚洲欧美日韩高清在线视频| 全区人妻精品视频| 深夜精品福利| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| av在线蜜桃| 有码 亚洲区| 无人区码免费观看不卡| 中文字幕av在线有码专区| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 别揉我奶头~嗯~啊~动态视频| 国产高清三级在线| 午夜福利在线观看免费完整高清在 | 首页视频小说图片口味搜索| 国产在线男女| 午夜免费成人在线视频| 美女xxoo啪啪120秒动态图 | 两个人的视频大全免费| 国产高清视频在线观看网站| 国产淫片久久久久久久久 | 黄色日韩在线| 黄片小视频在线播放| 最近在线观看免费完整版| 天堂av国产一区二区熟女人妻| 成人国产一区最新在线观看| 我要看日韩黄色一级片| 日本撒尿小便嘘嘘汇集6| 成人一区二区视频在线观看| 午夜福利高清视频| 淫秽高清视频在线观看| 欧美丝袜亚洲另类 | 久久国产精品人妻蜜桃| 永久网站在线| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 美女 人体艺术 gogo| 国产成+人综合+亚洲专区| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 天堂影院成人在线观看| ponron亚洲| 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 好男人在线观看高清免费视频| 麻豆一二三区av精品| 91av网一区二区| 给我免费播放毛片高清在线观看| 亚洲成av人片在线播放无| 精品国产三级普通话版| 欧美成狂野欧美在线观看| 91在线观看av| 无遮挡黄片免费观看| 一区二区三区四区激情视频 | 国产69精品久久久久777片| 国语自产精品视频在线第100页| 欧美黑人欧美精品刺激| 欧美色欧美亚洲另类二区| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 宅男免费午夜| 色视频www国产| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人av| 美女高潮的动态| 999久久久精品免费观看国产| 深爱激情五月婷婷| 国产av一区在线观看免费| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频| 国产伦精品一区二区三区四那| 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| a级一级毛片免费在线观看| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 精品欧美国产一区二区三| 国产免费男女视频| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 亚洲自偷自拍三级| 热99在线观看视频| 深爱激情五月婷婷| 精品人妻一区二区三区麻豆 | 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看| 观看美女的网站| 国产在线精品亚洲第一网站| 色在线成人网| 毛片女人毛片| 国产成+人综合+亚洲专区| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添小说| avwww免费| 日韩 亚洲 欧美在线| 亚洲av五月六月丁香网| 久久精品综合一区二区三区| 亚洲不卡免费看| 波多野结衣高清无吗| 俺也久久电影网| 国产熟女xx| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 亚洲精品在线美女| 精品免费久久久久久久清纯| 脱女人内裤的视频| 热99在线观看视频| xxxwww97欧美| 久久精品91蜜桃| 亚洲av熟女| 国产精品不卡视频一区二区 | 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| АⅤ资源中文在线天堂| 婷婷丁香在线五月| ponron亚洲| 午夜福利在线观看吧| 欧美日本视频| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 性插视频无遮挡在线免费观看| 精品久久久久久久人妻蜜臀av| 日韩欧美一区二区三区在线观看| 欧美色欧美亚洲另类二区| 熟女电影av网| 超碰av人人做人人爽久久| 免费在线观看日本一区| 久久精品久久久久久噜噜老黄 | 亚洲片人在线观看| 欧美黄色淫秽网站| 久久精品人妻少妇| 久久九九热精品免费| 亚洲av二区三区四区| 性色av乱码一区二区三区2| 久久久久久久久中文| 天堂√8在线中文| 欧美日韩亚洲国产一区二区在线观看| 国产av在哪里看| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| 十八禁人妻一区二区| 日本成人三级电影网站| 午夜福利在线观看吧| 国内精品一区二区在线观看| 51午夜福利影视在线观看| 搞女人的毛片| 嫩草影院新地址| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 精品欧美国产一区二区三| 波野结衣二区三区在线| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 亚洲18禁久久av| av黄色大香蕉| 久久这里只有精品中国| 国产精品久久久久久久久免 | 国产精品,欧美在线| 亚洲男人的天堂狠狠| 亚洲国产精品999在线| 一级黄片播放器| 精品人妻偷拍中文字幕| 午夜精品在线福利| 日本成人三级电影网站| 日本a在线网址| 免费看光身美女| 最近中文字幕高清免费大全6 | 别揉我奶头~嗯~啊~动态视频| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 又黄又爽又免费观看的视频| 深爱激情五月婷婷| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 成人亚洲精品av一区二区| 午夜影院日韩av| 少妇人妻精品综合一区二区 | 观看免费一级毛片| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 国产麻豆成人av免费视频| 国产免费一级a男人的天堂| 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 日本熟妇午夜| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 成人精品一区二区免费| a级毛片免费高清观看在线播放| 麻豆一二三区av精品| 有码 亚洲区| 午夜视频国产福利| 色综合站精品国产| 真人做人爱边吃奶动态| 国产精品日韩av在线免费观看| 麻豆一二三区av精品| 国产精品三级大全| 窝窝影院91人妻| 少妇的逼好多水| 丁香六月欧美| 亚洲精品粉嫩美女一区| 99热这里只有是精品50| 88av欧美| 脱女人内裤的视频| 色综合站精品国产| 看黄色毛片网站| 亚洲最大成人av| 日日摸夜夜添夜夜添av毛片 | 久久精品国产清高在天天线| 国产久久久一区二区三区| 少妇被粗大猛烈的视频| 成熟少妇高潮喷水视频| www日本黄色视频网| 人妻久久中文字幕网| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 国产精品三级大全| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 深夜a级毛片| 精品午夜福利视频在线观看一区| 少妇被粗大猛烈的视频|