• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern

    2018-03-06 03:35:53XiaoweiHONGRiyuLUandShuanglinLIClimateChangeResearchCenterChineseAcademyofSciencesBeijing00029China
    Advances in Atmospheric Sciences 2018年4期

    Xiaowei HONG,Riyu LU,and Shuanglin LIClimate Change Research Center,Chinese Academy of Sciences,Beijing 00029,China

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3University of the Chinese Academy of Sciences,Beijing 100049,China

    4Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    5Department of Atmospheric Science,School of Environmental Studies,China University of Geosciences,Wuhan 430074,China

    1.Introduction

    The meridional displacement of the Asian jet(JMD)in summer,which manifests as the leading mode of zonal wind anomalies in the upper troposphere over the midlatitude Eurasian continent,has been revealed by recent studies(Du et al.,2016;Hong and Lu,2016;Wei et al.,2017).The JMD is characterized by a north–south seesaw pattern,with out-of-phase anomalies in zonal wind to the north of the climatological mean Asian jet axis and to the south.In other words,a northward JMD corresponds to westerly anomalies to the north of the axis and easterly anomalies to the south,and vice versa.Hong and Lu(2016)emphasized that the circulation anomalies associated with the JMD appear inhomogeneous along the zonal direction,with much stronger amplitudes over West Asia and East Asia but weak amplitudes over Central Asia.

    Hong and Lu(2016)found that the JMD is significantly related to the Silk Road Pattern(SRP),which is a well-known teleconnection pattern in summer along the Asian jet in the form of alternate southerly and northerly anomalies,and behaves as the leading mode of upper-tropospheric meridional wind anomalies(e.g.,Lu et al.,2002;Sato and Takahashi,2006;Kosaka et al.,2009;Yasui and Watanabe,2010;Chen and Huang,2012).Corresponding to a northward(southward)JMD,the SRP tends to appear as a Specific phase,that is,there are southerly(northerly)anomalies over the Caspian Sea.Hong and Lu(2016)suggested that the JMD may trigger the meridional wind anomalies at the entrance of the Asian jet,and further induce the downstream SRP.This JMD–SRP connection therefore results in a combination of the JMD-and SRP-related circulation anomalies manifested by two significant anomalous anticyclones(cyclones)in the midlatitudes,with one located over West Asia and the other over East Asia,but a weak cyclone(anticyclone)over Central Asia(Hong and Lu,2016).These circulation anomalies—particularly the two anticyclonic(or cyclonic)anomalies over West Asia and East Asia—have been identified as the dominant pattern in the leading mode of upper-tropospheric hori-zontal winds(Hong and Lu,2016).

    The SRP propagates along the Asian jet,and its wave source has been demonstrated in various previous studies to be around the entrance of the Asian jet(e.g.,Enomoto et al.,2003;Sato and Takahashi,2006;Kosaka et al.,2009;Yasui and Watanabe,2010;Chen and Huang,2012;Lin and Lu,2016).For instance,through model experiments,Yasui and Watanabe(2010)indicated that the diabatic forcing over the Black Sea and the Caspian Sea contributes to more than 60%of the SRP response.Chen and Huang(2012)suggested that the SRP is triggered through the advection of vorticity by the divergent flow over this domain.Therefore,changes in the wave source here might be crucial for the variability of the SRP and the JMD–SRP relationship.

    The present study is an extension of Hong and Lu(2016).We show that a positive JMD–SRP relationship exists during northward JMD years but not during southward years(section 3).Furthermore,the possible mechanisms underlying this asymmetry in the JMD–SRP relationship are explored(section 4).Conclusions are given in section 5.

    2.Data and methods

    The main data source for this study is the monthly NCEP–NCAR reanalysis dataset(Kalnay et al.,1996),with a 2.5°×2.5°horizontal resolution.The analysis period for all data is 1958–2014,and the average calculations for June–July–August(JJA)are used to represent summer.

    We define separate indexes for the JMD and SRP,as follows.In line with Yasui and Watanabe(2010),we define the SRP index(SRPI)as the principal component(PC)of the leading mode for the 200-hPa meridional wind(V200)anomalies,which is obtained through empirical orthogonal function(EOF)analysis in the domain(20°–60°N,0°–150°E).A positive(negative)SRPI indicates an SRP phase with southerly(northerly)anomalies over the Caspian Sea.In addition,we define the JMD index (JMDI) as the difference in 200-hPa zonal wind(U200)anomalies between the domains(40°–55°N,40°–150°E)and(25°–40°N,40°–150°E),which are located to the north and south of the climatological jet axis,respectively,following Hong and Lu(2016).A positive(negative)JMDI indicates a northward(southward)JMD.To obtain robust results,we also use another index for the JMD,i.e.,the PC of the first EOF mode of U200 anomalies over the domain(20°–60°N,0°–150°E)(hereafter,Upc1).

    The main method used in the present study is composite analysis.Positive and negative cases are defined as the maximum 14 years and minimum 14 years,respectively,based on the JMDI and Upc1(Table 1).The same number for positive and negative cases is used deliberately to guarantee a reliable description of the asymmetry in the JMD–SRP relationship.This total of 28 years constitutes about half of the entire analysis period,and the residual 29 years are considered as“normal”cases.These normal cases are used as a reference,i.e.,the anomalies for positive/negative cases are the differences between these cases and normal cases.Besides using 14 selected years,we also checked other thresholds andobtained similar results(not shown).The Student’s t-test is used to test the statistical significance of the analyzed results.

    Table 1.Selected cases for the positive and negative JMDI and Upc1.Bold and italic font delineate the discrepancies for the positive and negative phases,respectively,when selecting the cases.

    3.Asymmetry in the relationship between the JMD and SRP

    Figure 1 shows the composite V200 and U200 anomalies for the positive and negative JMDI cases(hereafter referred to as“JMDI+”and “JMDI?”cases),respectively.The V200 anomalies in the JMDI+cases(Fig.1a)are characterized by a well-organized wave-like pattern along the Asian jet,from West Asia to East Asia.The amplitudes of these alternate anomalies are roughly the same for each cell,which are all above 3 m s?1.The wave-like pattern along the Asian jet agrees with the SRP-related anomalies, which are represented by the red contours,and coincide well with the anomalies related to the SRP in previous studies(e.g.,Lu et al.,2002;Yasui and Watanabe,2010).By contrast,there is no clear wavelike pattern along the Asian jet for the JMDI?cases(Fig.1b).The V200 anomalies tend to be scattered to the north and south of the Asian jet,but are weak along the jet.These anomalies differ remarkably from the SRP-related anomalies(also shown as red contours in Fig.1b),even showing opposite signs over the Caspian Sea and Central Asia.Therefore,the relationship between the JMD and SRP is close for positive JMDI years but vague for negative years.

    On the other hand,the composite U200 anomalies for the JMDI+and JMDI?cases also show evident distinctions.For the JMDI+cases(Fig.1c),the most prominent feature of the U200 anomalies is a north–south seesaw pattern,with westerly and easterly anomalies on the two sides of the climatological mean jet axis,respectively.Consistent with previous studies(Du et al.,2016;Hong and Lu,2016),this seesaw pattern appears much stronger over West Asia and East Asia,with the amplitudes of the centers around these regions being above 7 m s?1.Meanwhile,the anomalies over Central Asia are quite weak,as indicated by the strength being only about 2 m s?1.Hong and Lu(2016)suggested that the JMD can be further promoted by the SRP,manifested by intensi fi ed wind anomalies over West Asia and East Asia but weakened anomalies over Central Asia.Therefore,the inhomogeneous U200 anomalies in the zonal direction for the JMDI+cases(Fig.1c)can also be viewed as a manifestation of a close JMD–SRP relationship.The U200 anomalies in the JMDI?cases(Fig.1d)also exhibit a seesaw pattern,similar to that for the JMDI+cases.However,these anomalies are much weaker and tend to shift westward.

    Fig.1.Composite JJA mean 200-hPa anomalies of(a,b)meridional wind and(c,d)zonal wind(contours;units:m s?1)for(a,c)positive and(b,d)negative JMDI cases.Contour intervals are 1 m s?1and zero contours are omitted.Solid and dashed contours indicate positive and negative anomalies,respectively.Thick lines delineate the jet axes for the(a,c)positive and(b,d)negative JMDI cases,which are determined by the maximum zonal wind being greater than 25 m s?1.Red solid(dashed)contours denote regions where the composite V200 anomalies exceed 2 m s?1(fall below?2 m s?1)for the(a)maximum 14 years and(b)minimum 14 years,based on the SRPI.Shading indicates regions of significance at the 0.05 level,according to the Student’s t-test.

    To check that the above mentioned asymmetry in the JMD–SRP relationship is not merely the result of a particular index used,we adopt Upc1 as another index for the JMD.This index is similar to the JMDI,with the correlation coefficient between them being as high as 0.96,but the two indexes differ appreciably,as explained later.Figure 2 shows the composite V200 and U200 anomalies for the positive and negative Upc1 cases(hereafter referred to as“Upc1+”and“Upc1?”cases),respectively.It is clear that for the Upc1+cases(Figs.2a and c),there is a well-organized wave-like pattern in V200 anomalies along the Asian jet,which nearly overlaps with the anomalies related to the SRP(red contours in Fig.2a),and the north–south seesaw pattern of U200 anomalies is stronger over West Asia and East Asia.These anomalies show great resemblance to those for the JMDI+cases(Figs.1a and c),verifying the robustness of the JMD–SRP relationship in northward JMD years.By comparison,the anomalies for the Upc1?cases(Figs.2b and d)show much weaker intensity compared to those for the Upc1+cases.Hardly any significant V200 anomalies exist along the Asian jet over the western Eurasian continent,deviating greatly from those related to the SRP(red contours in Fig.2b),and the intensities of the U200 anomalies are roughly only around half those for the Upc1+cases.

    Figures 1 and 2 indicate that when different indexes are used for the JMD,the related anomalies are similar for the northward JMD but quite different for the southward JMD cases.The reason for this similarity and difference is that the cases selected by the two indexes are similar for the northward JMD cases but quite different for the southward JMD cases,as shown in Fig.3 and Table 1.Almost all cases(13 of 14)are the same for the northward JMD cases,but 10 cases in total are distinct for the southward JMD cases.specifically,1960,1968,1983,1988 and 2003 are included in the JMDI?cases but are absent in the Upc1?cases;while 1965,1974,1991,2002 and 2012 are selected for the Upc1?cases but are not chosen for the JMDI?cases.

    In addition, the anomalies tend to be more spatially coherent for the northward JMD cases than the southward cases.The pattern correlation coefficients in the U200 anomalies within the domain(20°–60°N,0°–150°E)between individual cases and the corresponding composites(e.g.,positive cases with the positive composite and negative cases with the negative composite)are generally greater for the positive cases than the negative cases(Table 2).

    Fig.2.As in Fig.1 but for composites based on the Upc1.

    Fig.3.Time series of standardized JMDI(bars)and Upc1(marked line).The thin horizontal lines indicate the thresholds selecting the JMDI+and JMDI?cases.

    Table 2.Pattern correlations coefficients(c.c.)in U200 anomalies within the domain(20°–60°N,0°–150°E)between individual selected cases(see Table 1)and the corresponding composites.

    Scatterplots of standardized JMDI and Upc1 with the SRPI,as shown in Fig.4,better illustrate the asymmetry in the JMD–SRP relationship.In general,there is a positive relationship between the JMD and SRP:the SRPI is positive(negative)in most positive(negative)JMDI/Upc1 years.This positive relationship is confirmed by the correlation coefficient between the JMDI(Upc1)and SRPI,which is 0.40(0.54)and significant at the 0.01 level.However,Fig.4 also indicates an interesting detail of this positive relationship:with increment of the JMDI,the SRPI increases obviously when the JMDI is positive but tends to decrease when the JMDI is negative(Fig.4a).This can be verified by the correlation coefficients between the two indexes,which drop dramatically from 0.60 for the positive JMDI years to?0.16 for the negative JMDI years.The correlation coefficient is negative,although weak, for the negative JMDI years. The scatterplot of Upc1 and SRPI(Fig.4b)shows quite similar features to Fig.4a,with contrasting correlation coefficients of 0.62 and?0.04 for positive and negative Upc1 years,respectively.

    All the above results on the asymmetry in the JMD–SRP relationship are obtained from the viewpoint of JMD indexes.If this relationship is viewed from the perspective of positive and negative SRPI years,the asymmetry can also be found.The correlation coefficient between JMDI(Upc1)and SRPI is 0.55(0.59)and significant at the 0.01 level in positive SRPI years,but is only 0.04/0.20 in negative SRPI years.For brevity,we only show the results based mainly on the JMD indexes in this paper.

    4.Role of the Rossby wave source in the asymmetry of the JMD–SRP relationship

    The Rossby wave source(RWS),which plays a primary role in inducing the SRP,has been demonstrated to be located around the entrance of the Asian westerly jet(Enomoto et al.,2003;Sato and Takahashi,2006;Kosaka et al.,2009;Yasui and Watanabe,2010;Chen and Huang,2012;Lin and Lu,2016).Consequently,changes in the jet stream—the JMD,for instance—may initiate corresponding changes of the RWS, and eventually influence the SRP and its connection with the JMD.Therefore,we next analyze the role played by the RWS in the asymmetry of the JMD–SRP relationship.

    Fig.4.Scatterplots of standardized JMDI and Upc1 with the SRPI.“cc”indicates the correlation coefficient between the JMDI/Upc1 and SRPI,and the subscripts“+”and“?”denote the positive JMD years and negative JMD years,respectively.

    Fig.5.As in Figs.1c–d and Figs.2c–d but for the JJA mean RWS anomalies at 200 hPa(contours;units:10?10s?2).Contour intervals are 0.3×10?10s?2,and zero contours are omitted.Thick lines delineate the jet axes for the(a,c)northward and(b,d)southward JMD cases,respectively,which are determined by the maximum zonal wind being greater than 25 m s?1.

    Figure 5 shows the composite 200-hPa RWS(Sardeshmukh and Hoskins,1988)anomalies,based on the JMD indexes.In the above expression,f and ζ are the planetary vorticity and relative vorticity,respectively;denotes the divergent component of horizontal winds.

    The most prominent feature of the RWS for the JMD+cases is the significant anomalies over Central Asia:negative anomalies to the east of the Caspian Sea and positive ones to the south of the Lake Balkhash.There are also positive anomalies over the Mediterranean Sea and eastern Europe.These RWS anomalies are very similar to the SRP-related anomalies(Fig.6),and thus it can be deduced that the SRP is effectively triggered in northward JMD years and results in the close JMD–SRP connection.It should be mentioned that the SRP-related RWS anomalies are basically opposite in sign between the positive and negative SRPI years,so we show in Fig.6 the differences between the positive and negative years.In comparison with the JMD+cases,the RWS anomalies for the JMD?cases(Fig.5b)are much weaker and tend to be of the same sign,which may be associated with the negative correlation coefficient between the JMDI and SRPI when the JMDI is negative.On the other hand,the weak RWS anomalies for these cases suggest much less efficiency in the triggering of the SRP and the resultant JMD–SRP relationship.Results for the Upc1+composite(Fig.5c)present a high degree of similarity with those for the JMDI+composite(Fig.5a),in terms of both distribution and intensity.However,the distribution for the Upc1?cases(Fig.5d)appears much more chaotic.The noisy RWS anomalies for the southward JMD cases(Figs.5b and d)are possibly related to the smaller spatial consistency between the southward JMD cases than the northward cases.

    The RWS can be rewritten as

    Here,we ignore the small terms of vorticity tendency,vertical advection and twisting.Dχis the divergence and β =df/dy.

    Fig.6.Composite differences in the JJA mean 200-hPa RWS anomalies(contours;units:10?10s?2)between the maximum 14 and minimum 14 SRPI years.Contour intervals are 0.6×10?10s?2,and zero contours are omitted.Shading indicates regions of statistical significance at the 0.05 level,according to the Student’s t-test.The three boxes denote domains where the SRP-related RWS anomalies are most significant.The thick line delineates the climatological jet axis,which is determined by the maximum zonal wind being greater than 25 m s?1.

    Although we analyzed the horizontal distribution of each RWS term,for brevity we only show the values averaged over three domains(boxes in Fig.6),i.e.,(35°–42.5°N,10°–35°E),(35°–45°N,55°–65°E)and(35°–45°N,70°–85°E),to estimate the relative contribution of the four RWS terms.These values are shown in Fig.7.It is evident that,for both the JMDI+and Upc1+cases,term1,i.e.,the planetary vortex stretching term ?fDχ,plays the primary role in determining the RWS,for all three domains(Figs.7a and c).Term2 and term4,i.e.,?ζDχand ?Vχ·?ζ,also contribute to the RWS,but they are much weaker than term1.On the other hand,the values for the southward JMD cases are much weaker(Figs.7b and d),particularly for the Upc1?cases.The RWS anomalies for the JMDI?cases tend to be in phase with those for the northward JMD cases(Fig.7b),and those for the Upc1? cases are much weaker—consistent with the meridional wind anomalies shown in Figs.1 and 2.

    Fig.7.Domain-averaged values of the four terms of the JJA mean RWS anomalies at 200 hPa for the(a)positive JMDI cases,(b)negative JMDI cases,(c)positive Upc1 cases,and(d)negative Upc1 cases.

    Therefore,we focus on the anomalies of the planetary vortex stretching term(?fDχ)and show their horizontal distribution in Fig.8.significant and positive anomalies appear to the south of the Lake Balkhash,the Mediterranean Sea and eastern Europe,and negative anomalies appear around the Caspian Sea,for the northward JMD cases(Figs.8a and c).These anomalies resemble the RWS anomalies well in both distribution and intensity,con fi rming?fDχis the term that contributes most to the RWS,as shown in Fig.7.The?fDχanomalies are much weaker for the southward JMD cases(Figs.8b and d).

    Fig.8.As in Fig.5 but for anomalies in term1 of the RWS.

    Fig.9.As in Fig.5 but for anomalies in the JJA mean 200-hPa divergence(contours;units:10?6s?1).

    The planetary vortex stretching term is determined by the divergence,although can be modified by the planetary vorticity.Therefore,200-hPa divergence anomalies play a crucial role in inducing the asymmetry in the JMD–SRP relationship.The upper-tropospheric divergence anomalies are generally associated with precipitation anomalies through ascent or de-scent.Therefore,we analyzed the precipitation anomalies for the northward JMD cases,and found that there are negative anomalies in Central Asia(not shown).The region for these negative precipitation anomalies includes both anomalous convergence and divergence,shown in Figs.9a and c.Thus,the relationship between divergence and precipitation anomalies may be complicated in Central Asia,where the amount of climatological rainfall is generally light.The reason for 200-hPa divergence anomalies requires further investigation.

    5.Conclusions and discussion

    In this study,we have carried out further investigation into the relationship between the JMD and SRP in summer,which had been earlier identified by Hong and Lu(2016).The present results indicate that the JMD–SRP relationship is asymmetric:the SRP becomes stronger with a more northward JMD,resulting in a significant JMD–SRP relationship.However,the relationship is weak in southward JMD years.This asymmetric relationship is confirmed by the correlation coefficients between the indexes of JMD and SRP in northward and southward JMD years,which are 0.60 and?0.16 with respect to JMDI–SRPI,and 0.62 and ?0.04 with respect to Upc1–SRPI(Upc1 being another indicator quantifying the JMD),during the analysis period of this study(1958–2014).Due to this asymmetry of the relationship,the uppertropospheric zonal wind anomalies are much stronger in West Asia and East Asia and weaker in Central Asia for northward JMD years,but tend to be not well-organized for southward JMD years.

    Further results suggest that northward JMD years correspond to much stronger RWS anomalies,which are primarily determined by the planetary vortex stretching term?fDχ,around the entrance of the Asian jet.specifically,there are significant positive anomalies to the south of Lake Balkhash and over the Mediterranean Sea,and negative anomalies to the east of the Caspian Sea—closely coherent with those associated with the SRP.However,the RWS anomalies are much weaker and not well-organized for southward JMD years. Therefore,we conclude that the RWS anomalies around the entrance of the Asian jet play a crucial role in inducing the asymmetry of the JMD–SRP relationship.

    However,the mechanisms responsible for the asymmetry of the RWS or vortex stretching term ?fDχanomalies between northward and southward JMD years,remain unknown.This may be related to the internal processes between the JMD and RWS,but possibly also to the greater spatial coherence between northward JMDs than the southward ones.In addition,the asymmetry in the relationship between the JMD and SRP implies that their impacts on climate anomalies may also be distinct between positive and negative JMDI/SRPI years.These issues require further investigation in future studies.

    Acknowledgements.We thank the two anonymous reviewers for their comments,which triggered the results shown in section 4 and helped considerably in improving the expression of our findings.This work was supported by the National Natural Science Foundation of China(Grant Nos.41320104007,41421004,and 41731177).

    Chen,G.S.,and R.H.Huang,2012:Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China.J.Climate,25,7834–7851,https://doi.org/10.1175/JCLI-D-11-00684.1.

    Du,Y.,T.Li,Z.Q.Xie,and Z.W.Zhu,2016:Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies.Climate Dyn.,46,2673–2688,https://doi.org/10.1007/s00382-015-2723-x.

    Enomoto,T.,B.J.Hoskins,and Y.Matsuda,2003:The formation mechanism of the Bonin high in August.Quart.J.Roy.Meteor.Soc.,129,157–178,https://doi.org/10.1256/qj.01.211.

    Hong,X.W.,and R.Y.Lu,2016: The meridional displacement of the summer Asian jet,Silk Road Pattern,and tropical SST anomalies.J.Climate,29,3753–3766,https://doi.org/10.1175/JCLI-D-15-0541.1.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kosaka,Y.,H.Nakamura,M.Watanabe,and M.Kimoto,2009:Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations.J.Meteor.Soc.Japan,87,561–580,https://doi.org/10.2151/jmsj.87.561.

    Lin,Z.D.,and R.Y.Lu,2016:Impact of summer rainfall over southern-central Europe on the circumglobal teleconnection.Atmospheric Science Letters,17,258–262,https://doi.org/10.1002/asl.652.

    Lu,R.-Y.,J.-H.Oh,and B.-J.Kim,2002:A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer.Tellus A,54,44–55,https://doi.org/10.1034/j.1600-0870.2002.00248.x10.3402/tellusa.v54i1.12122.

    Sardeshmukh,P.D.,and B.J.Hoskins,1988:The generation of global rotational fl ow by steady idealized tropical divergence.J.Atmos.Sci.,45,1228–1251,https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    Sato,N.,and M.Takahashi,2006:Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer northern hemisphere.J.Climate,19,1531–1544,https://doi.org/10.1175/JCLI3697.1.

    Wei,W.,R.H.Zhang,M.Wen,and S.Yang,2017:Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China:Roles of the Indian monsoon and the South Asian High.J.Climate,30,537–552,https://doi.org/10.1175/JCLI-D-15-0814.1.

    Yasui,S.,and M.Watanabe,2010:Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM.J.Climate,23,2093–2114,https://doi.org/10.1175/2009JCLI3323.1.

    老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久久久大精品| 嫁个100分男人电影在线观看| 免费在线观看成人毛片| 99精品久久久久人妻精品| 日本a在线网址| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人av一区二区三区在线看| 12—13女人毛片做爰片一| 午夜免费成人在线视频| 精品国产三级普通话版| 国产一区二区三区在线臀色熟女| 国产成人av教育| 看免费av毛片| 国内少妇人妻偷人精品xxx网站| 97超视频在线观看视频| 亚洲成av人片免费观看| 免费观看精品视频网站| 精品人妻偷拍中文字幕| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 免费人成在线观看视频色| 欧美三级亚洲精品| 欧美黄色片欧美黄色片| 一本一本综合久久| 成人欧美大片| 日韩精品青青久久久久久| 免费高清视频大片| 欧美xxxx黑人xx丫x性爽| 色av中文字幕| 国产黄片美女视频| 国产精品,欧美在线| 91在线精品国自产拍蜜月 | 久久精品夜夜夜夜夜久久蜜豆| 在线观看美女被高潮喷水网站 | 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 九九在线视频观看精品| 中文在线观看免费www的网站| 久久午夜亚洲精品久久| 禁无遮挡网站| 欧美一级毛片孕妇| 亚洲在线观看片| 久久香蕉精品热| 国产精品乱码一区二三区的特点| 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 日本三级黄在线观看| www日本在线高清视频| 免费看a级黄色片| 成人特级av手机在线观看| 一本一本综合久久| 国产激情欧美一区二区| 日韩精品青青久久久久久| 九九热线精品视视频播放| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 午夜福利在线在线| 日本免费a在线| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区三| 欧美xxxx黑人xx丫x性爽| 久久久久精品国产欧美久久久| 亚洲专区国产一区二区| 长腿黑丝高跟| 在线看三级毛片| 人人妻人人看人人澡| 91字幕亚洲| 色综合站精品国产| 可以在线观看的亚洲视频| 国产av麻豆久久久久久久| 在线观看av片永久免费下载| 亚洲av一区综合| 欧美3d第一页| 欧美日韩精品网址| 美女黄网站色视频| 成人午夜高清在线视频| 久99久视频精品免费| 看片在线看免费视频| 波多野结衣巨乳人妻| 一级黄色大片毛片| 国产视频一区二区在线看| 亚洲av成人不卡在线观看播放网| 国产免费av片在线观看野外av| 亚洲av电影在线进入| 成人午夜高清在线视频| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 9191精品国产免费久久| 在线观看免费视频日本深夜| av天堂中文字幕网| 最新在线观看一区二区三区| 日韩欧美在线二视频| 国产精品 欧美亚洲| 成熟少妇高潮喷水视频| 欧美丝袜亚洲另类 | 国产 一区 欧美 日韩| 国产精品永久免费网站| 午夜免费男女啪啪视频观看 | 五月伊人婷婷丁香| 变态另类丝袜制服| 国产高清有码在线观看视频| 亚洲av成人av| netflix在线观看网站| 亚洲天堂国产精品一区在线| 少妇的逼水好多| 国产极品精品免费视频能看的| www日本黄色视频网| 有码 亚洲区| 成人无遮挡网站| 桃色一区二区三区在线观看| 最新美女视频免费是黄的| 黄色成人免费大全| 综合色av麻豆| 成人18禁在线播放| 日韩精品青青久久久久久| 超碰av人人做人人爽久久 | 婷婷精品国产亚洲av| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 色尼玛亚洲综合影院| 国产又黄又爽又无遮挡在线| 免费看十八禁软件| 最近在线观看免费完整版| 操出白浆在线播放| 欧美大码av| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| 一级作爱视频免费观看| 丰满人妻熟妇乱又伦精品不卡| 久久久久免费精品人妻一区二区| avwww免费| 嫁个100分男人电影在线观看| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| av视频在线观看入口| 日韩欧美国产在线观看| 1000部很黄的大片| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 亚洲美女黄片视频| 免费搜索国产男女视频| 一级作爱视频免费观看| 伊人久久精品亚洲午夜| 一二三四社区在线视频社区8| 国产成人av教育| 99国产精品一区二区三区| 久久久成人免费电影| 色播亚洲综合网| xxx96com| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 国产乱人视频| 深爱激情五月婷婷| 国产精品 欧美亚洲| 国内精品一区二区在线观看| 色在线成人网| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 欧美乱色亚洲激情| 村上凉子中文字幕在线| 变态另类丝袜制服| 黄色片一级片一级黄色片| 成人一区二区视频在线观看| 亚洲专区中文字幕在线| 国产精品电影一区二区三区| 老熟妇乱子伦视频在线观看| 午夜两性在线视频| 中文字幕人妻熟人妻熟丝袜美 | 在线观看一区二区三区| 狠狠狠狠99中文字幕| 久久草成人影院| 91九色精品人成在线观看| 国产亚洲精品久久久久久毛片| 亚洲国产中文字幕在线视频| 岛国在线观看网站| 男女做爰动态图高潮gif福利片| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 国产老妇女一区| 免费电影在线观看免费观看| 午夜福利在线观看吧| 久久人妻av系列| 一区二区三区高清视频在线| 久久精品影院6| 一级黄片播放器| 国产午夜精品论理片| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 美女cb高潮喷水在线观看| 亚洲在线观看片| 身体一侧抽搐| 99久久精品热视频| 老鸭窝网址在线观看| 国产精品久久久久久久久免 | 午夜激情福利司机影院| 国产久久久一区二区三区| 色老头精品视频在线观看| 啦啦啦免费观看视频1| 日本a在线网址| 国产v大片淫在线免费观看| 国产激情欧美一区二区| 91字幕亚洲| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 激情在线观看视频在线高清| 久久久久久大精品| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 日韩欧美免费精品| 免费在线观看日本一区| 亚洲国产精品999在线| 男人的好看免费观看在线视频| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 精品午夜福利视频在线观看一区| 全区人妻精品视频| 免费人成视频x8x8入口观看| 99热精品在线国产| 亚洲激情在线av| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 男女床上黄色一级片免费看| 99热这里只有精品一区| 亚洲乱码一区二区免费版| 国产精品自产拍在线观看55亚洲| 久久久国产成人免费| 久久久久久久久久黄片| 51午夜福利影视在线观看| 亚洲国产色片| 久久人妻av系列| 亚洲精品在线美女| 亚洲av免费在线观看| 久久久色成人| 午夜视频国产福利| 精品人妻1区二区| 国产伦人伦偷精品视频| 一卡2卡三卡四卡精品乱码亚洲| 波野结衣二区三区在线 | 中国美女看黄片| 亚洲成av人片在线播放无| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 精品人妻偷拍中文字幕| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 国产国拍精品亚洲av在线观看 | 国产精品亚洲av一区麻豆| 国产精品女同一区二区软件 | 在线观看舔阴道视频| 国产精品影院久久| 亚洲av一区综合| 亚洲人成网站在线播| 熟女电影av网| 国产精品日韩av在线免费观看| 亚洲人成伊人成综合网2020| 一个人看视频在线观看www免费 | 精品99又大又爽又粗少妇毛片 | 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| xxx96com| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月 | 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 精品国产美女av久久久久小说| 最新在线观看一区二区三区| 精品国产亚洲在线| 久久久久国内视频| 激情在线观看视频在线高清| 乱人视频在线观看| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 看片在线看免费视频| 亚洲真实伦在线观看| 精品久久久久久久末码| 国产aⅴ精品一区二区三区波| 久久精品亚洲精品国产色婷小说| 97超级碰碰碰精品色视频在线观看| 久久久久久久亚洲中文字幕 | 精品99又大又爽又粗少妇毛片 | 成人特级av手机在线观看| 18禁在线播放成人免费| 国产美女午夜福利| 天堂网av新在线| 两个人的视频大全免费| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 国产黄片美女视频| 长腿黑丝高跟| 一级黄片播放器| 三级国产精品欧美在线观看| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 免费看十八禁软件| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 搞女人的毛片| 在线观看美女被高潮喷水网站 | 欧美不卡视频在线免费观看| 一夜夜www| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站高清观看| 岛国视频午夜一区免费看| 亚洲不卡免费看| 国产成人系列免费观看| 亚洲欧美精品综合久久99| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 久久久色成人| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 欧美最新免费一区二区三区 | 欧美成狂野欧美在线观看| av福利片在线观看| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 久久久久久大精品| 午夜福利成人在线免费观看| 嫁个100分男人电影在线观看| xxx96com| 身体一侧抽搐| 亚洲av成人av| 91在线精品国自产拍蜜月 | 亚洲成av人片在线播放无| 成人国产一区最新在线观看| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 午夜精品在线福利| 亚洲无线观看免费| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 亚洲av免费高清在线观看| 亚洲成人免费电影在线观看| 久久九九热精品免费| 动漫黄色视频在线观看| 99在线视频只有这里精品首页| 女同久久另类99精品国产91| 男人的好看免费观看在线视频| 国产精品亚洲一级av第二区| 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 国模一区二区三区四区视频| 国产视频一区二区在线看| 久久久久国内视频| 中文亚洲av片在线观看爽| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 精品国产超薄肉色丝袜足j| 免费观看的影片在线观看| 午夜两性在线视频| 国产欧美日韩一区二区精品| 午夜福利高清视频| 国产成人影院久久av| 9191精品国产免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 美女被艹到高潮喷水动态| 日韩免费av在线播放| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| 久久精品国产综合久久久| 午夜免费观看网址| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av涩爱 | 欧美成狂野欧美在线观看| 日本黄大片高清| 男人和女人高潮做爰伦理| 我的老师免费观看完整版| 久9热在线精品视频| 国产精品综合久久久久久久免费| 非洲黑人性xxxx精品又粗又长| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 色在线成人网| 一本久久中文字幕| 国产高清videossex| 中出人妻视频一区二区| av天堂中文字幕网| 90打野战视频偷拍视频| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看| 午夜福利在线观看吧| 无限看片的www在线观看| 哪里可以看免费的av片| 欧美大码av| 精品国产美女av久久久久小说| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲 国产 在线| av片东京热男人的天堂| 欧美bdsm另类| 精品人妻一区二区三区麻豆 | 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 91av网一区二区| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 欧美大码av| 长腿黑丝高跟| 国产熟女xx| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 久久久久九九精品影院| av在线蜜桃| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 欧美一级毛片孕妇| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 深爱激情五月婷婷| 一个人看的www免费观看视频| 亚洲五月婷婷丁香| 日韩人妻高清精品专区| 中出人妻视频一区二区| 宅男免费午夜| 小蜜桃在线观看免费完整版高清| 日本a在线网址| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 日本五十路高清| 91麻豆av在线| 国产精品免费一区二区三区在线| 日韩欧美精品v在线| 免费看日本二区| 草草在线视频免费看| 精品人妻一区二区三区麻豆 | 国产高清videossex| 十八禁网站免费在线| 午夜日韩欧美国产| 亚洲国产精品成人综合色| 中文亚洲av片在线观看爽| 欧美日韩福利视频一区二区| 午夜福利18| 亚洲欧美精品综合久久99| 欧美午夜高清在线| 国产伦精品一区二区三区四那| 叶爱在线成人免费视频播放| 免费av不卡在线播放| 欧美色视频一区免费| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 亚洲成av人片在线播放无| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 一级黄片播放器| 色噜噜av男人的天堂激情| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 国模一区二区三区四区视频| 伊人久久大香线蕉亚洲五| 少妇的丰满在线观看| 国产欧美日韩一区二区三| av专区在线播放| 露出奶头的视频| 婷婷亚洲欧美| 麻豆成人午夜福利视频| 亚洲精品日韩av片在线观看 | 日韩 欧美 亚洲 中文字幕| 天堂影院成人在线观看| 久久久国产精品麻豆| 国产探花极品一区二区| 免费看十八禁软件| 波多野结衣高清无吗| 欧美一级毛片孕妇| 欧美黑人欧美精品刺激| 国产成+人综合+亚洲专区| 一边摸一边抽搐一进一小说| 日韩免费av在线播放| 99久国产av精品| 久久久久久久久久黄片| 国产午夜精品论理片| 成人无遮挡网站| 成人国产一区最新在线观看| 日韩欧美在线二视频| 床上黄色一级片| 久久精品国产亚洲av涩爱 | 一级毛片女人18水好多| 搡老妇女老女人老熟妇| 国产极品精品免费视频能看的| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影| 波多野结衣巨乳人妻| 91久久精品国产一区二区成人 | 高清毛片免费观看视频网站| 日本五十路高清| 久久久久精品国产欧美久久久| 丰满乱子伦码专区| 亚洲va日本ⅴa欧美va伊人久久| 国产精华一区二区三区| 国产男靠女视频免费网站| 黄色丝袜av网址大全| 九九热线精品视视频播放| 国产黄片美女视频| 51国产日韩欧美| 国产高清激情床上av| 日日夜夜操网爽| 最近最新中文字幕大全免费视频| 每晚都被弄得嗷嗷叫到高潮| 精品午夜福利视频在线观看一区| 久久精品影院6| www日本在线高清视频| 亚洲欧美日韩高清专用| 一级a爱片免费观看的视频| 观看免费一级毛片| 免费观看人在逋| 在线天堂最新版资源| 午夜激情福利司机影院| 一进一出好大好爽视频| 欧美乱码精品一区二区三区| 国产精华一区二区三区| 欧美av亚洲av综合av国产av| 亚洲人成网站高清观看| 一夜夜www| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| АⅤ资源中文在线天堂| 成人国产综合亚洲| 国产麻豆成人av免费视频| 久久99热这里只有精品18| 久久久久久久久中文| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 国产成人a区在线观看| 欧美一区二区国产精品久久精品| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 免费av不卡在线播放| 嫩草影视91久久| 亚洲最大成人手机在线| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 香蕉丝袜av| netflix在线观看网站| 我要搜黄色片| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 天天一区二区日本电影三级| 亚洲欧美一区二区三区黑人| 手机成人av网站| 日本 欧美在线| 国产精品亚洲一级av第二区| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 三级毛片av免费| 2021天堂中文幕一二区在线观| 特大巨黑吊av在线直播| 午夜免费观看网址| 免费在线观看日本一区| 中文字幕熟女人妻在线| 老司机深夜福利视频在线观看| 久久亚洲真实| 久久久久亚洲av毛片大全| 熟女少妇亚洲综合色aaa.| a级毛片a级免费在线| 午夜两性在线视频| 中出人妻视频一区二区| 国产一区二区亚洲精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲五月天丁香| 我的老师免费观看完整版| 免费看十八禁软件| 亚洲人与动物交配视频| 国产男靠女视频免费网站| 色av中文字幕| 午夜福利18| 欧美日韩一级在线毛片| 亚洲真实伦在线观看| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 日韩欧美国产在线观看| 亚洲精品国产精品久久久不卡| 亚洲一区二区三区不卡视频| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 在线观看免费午夜福利视频| 亚洲成人精品中文字幕电影| 亚洲黑人精品在线| 国产中年淑女户外野战色| 人人妻,人人澡人人爽秒播| 久久久国产成人精品二区| av欧美777| xxx96com| 19禁男女啪啪无遮挡网站| 波多野结衣巨乳人妻| 欧美zozozo另类| 黄色日韩在线| 精品久久久久久久末码| 悠悠久久av| 女人被狂操c到高潮|